Part 2: Linesearch methods
for unconstrained optimizationNick Gould (RAL)minimize
 $x \in \mathbb{R}^n$ MSc course on nonlinear optimization

UNCONSTRAINED MINIMIZATION

 $\begin{array}{l} \underset{x \in \mathbb{R}^n}{\text{minimize }} f(x) \\ \text{where the objective function } f: \mathbb{R}^n \longrightarrow \mathbb{R} \end{array}$

- \odot assume that $f\in C^1$ (sometimes $C^2)$ and Lipschitz
- $\odot\,$ often in practice this assumption violated, but not necessary

ITERATIVE METHODS

- \odot in practice very rare to be able to provide explicit minimizer
- \odot iterative method: given starting "guess" x_0 , generate sequence

$$\{x_k\}, \ k=1,2,\ldots$$

- **AIM:** ensure that (a subsequence) has some favourable limiting properties:
 - \diamond satisfies first-order necessary conditions
 - $\diamond\,$ satisfies second-order necessary conditions

Notation: $f_k = f(x_k), g_k = g(x_k), H_k = H(x_k).$

LINESEARCH METHODS

- \odot calculate a search direction p_k from x_k
- $\odot\,$ ensure that this direction is a **descent direction**, i.e.,

$$g_k^T p_k < 0$$
 if $g_k \neq 0$

so that, for small steps along p_k , the objective function will be reduced

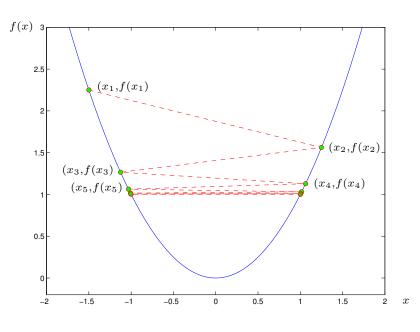
 \odot calculate a suitable **steplength** $\alpha_k > 0$ so that

$$f(x_k + \alpha_k p_k) < f_k$$

- \odot computation of α_k is the **linesearch**—may itself be an iteration
- $\odot\,$ generic lines earch method:

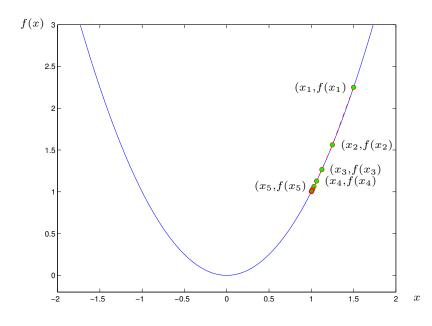
$$x_{k+1} = x_k + \alpha_k p_k$$

STEPS MIGHT BE TOO LONG



The objective function $f(x) = x^2$ and the iterates $x_{k+1} = x_k + \alpha_k p_k$ generated by the descent directions $p_k = (-1)^{k+1}$ and steps $\alpha_k = 2 + 3/2^{k+1}$ from $x_0 = 2$

STEPS MIGHT BE TOO SHORT



The objective function $f(x) = x^2$ and the iterates $x_{k+1} = x_k + \alpha_k p_k$ generated by the descent directions $p_k = -1$ and steps $\alpha_k = 1/2^{k+1}$ from $x_0 = 2$

PRACTICAL LINESEARCH METHODS

 \odot in early days, pick α_k to minimize

$$f(x_k + \alpha p_k)$$

- ◇ **exact** linesearch—univariate minimization
- $\diamond\,$ rather expensive and certainly not cost effective
- \odot modern methods: **inexact** linesearch
 - $\diamond\,$ ensure steps are neither too long nor too short
 - $\diamond\,$ try to pick "useful" initial stepsize for fast convergence
 - $\diamond\,$ best methods are either
 - ▷ "backtracking- Armijo" or
 - ▷ "Armijo-Goldstein"

based

BACKTRACKING LINESEARCH

Procedure to find the stepsize α_k :

Given $\alpha_{\text{init}} > 0$ (e.g., $\alpha_{\text{init}} = 1$) let $\alpha^{(0)} = \alpha_{\text{init}}$ and l = 0Until $f(x_k + \alpha^{(l)}p_k)$ "<" f_k set $\alpha^{(l+1)} = \tau \alpha^{(l)}$, where $\tau \in (0, 1)$ (e.g., $\tau = \frac{1}{2}$) and increase l by 1 Set $\alpha_k = \alpha^{(l)}$

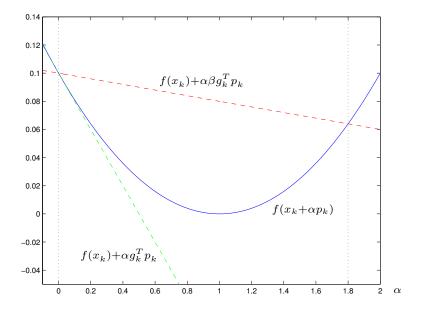
- $\odot\,$ this prevents the step from getting too small . . . but does not prevent too large steps relative to decrease in f
- \odot need to tighten requirement

$$f(x_k + \alpha^{(l)}p_k) "<" f_k$$

ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

 $f(x_k + \alpha_k p_k) \leq f(x_k) + \alpha_k \beta g_k^T p_k$ for some $\beta \in (0, 1)$ (e.g., $\beta = 0.1$ or even $\beta = 0.0001$)



BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize α_k :

$$\begin{split} & \text{Given } \alpha_{\text{init}} > 0 \text{ (e.g., } \alpha_{\text{init}} = 1) \\ & \text{let } \alpha^{(0)} = \alpha_{\text{init}} \text{ and } l = 0 \\ & \text{Until } f(x_k + \alpha^{(l)} p_k) \leq f(x_k) + \alpha^{(l)} \beta g_k^T p_k \\ & \text{set } \alpha^{(l+1)} = \tau \alpha^{(l)}, \text{ where } \tau \in (0, 1) \text{ (e.g., } \tau = \frac{1}{2}) \\ & \text{and increase } l \text{ by } 1 \\ & \text{Set } \alpha_k = \alpha^{(l)} \end{split}$$

SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that $f \in C^1$, that g(x) is Lipschitz continuous with Lipschitz constant $\gamma(x)$, that $\beta \in (0, 1)$ and that p is a descent direction at x. Then the Armijo condition

$$f(x + \alpha p) \le f(x) + \alpha \beta g(x)^T p$$

is satisfied for all $\alpha \in [0, \alpha_{\max(x)}]$, where

$$\alpha_{\max} = \frac{2(\beta - 1)g(x)^T p}{\gamma(x) \|p\|_2^2}$$

PROOF OF THEOREM 2.1

Taylor's theorem (Theorem 1.1) +

$$\begin{split} \alpha &\leq \frac{2(\beta-1)g(x)^T p}{\gamma(x) \|p\|_2^2}, \\ f(x+\alpha p) &\leq f(x) + \alpha g(x)^T p + \frac{1}{2}\gamma(x)\alpha^2 \|p\|^2 \\ &\leq f(x) + \alpha g(x)^T p + \alpha(\beta-1)g(x)^T p \\ &= f(x) + \alpha\beta g(x)^T p \end{split}$$

THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that $f \in C^1$, that g(x) is Lipschitz continuous with Lipschitz constant γ_k at x_k , that $\beta \in (0, 1)$ and that p_k is a descent direction at x_k . Then the stepsize generated by the backtracking-Armijo linesearch terminates with

$$\alpha_k \ge \min\left(\alpha_{\text{init}}, \frac{2\tau(\beta - 1)g_k^T p_k}{\gamma_k \|p_k\|_2^2}\right)$$

PROOF OF COROLLARY 2.2

Theorem 2.1 \implies linesearch will terminate as soon as $\alpha^{(l)} \leq \alpha_{\max}$. 2 cases to consider:

- 1. May be that α_{init} satisfies the Armijo condition $\implies \alpha_k = \alpha_{\text{init}}$.
- 2. Otherwise, must be a last linesearch iteration (the l-th) for which

$$\alpha^{(l)} > \alpha_{\max} \implies \alpha_k \ge \alpha^{(l+1)} = \tau \alpha^{(l)} > \tau \alpha_{\max}$$

Combining these 2 cases gives required result.

GENERIC LINESEARCH METHOD

Given an initial guess x_0 , let k = 0Until convergence: Find a descent direction p_k at x_k Compute a stepsize α_k using a backtracking-Armijo linesearch along p_k Set $x_{k+1} = x_k + \alpha_k p_k$, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that $f \in C^1$ and that g is Lipschitz continuous on \mathbb{IR}^n . Then, for the iterates generated by the Generic Linesearch Method,

either

 $g_l = 0$ for some $l \ge 0$

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k \to \infty} \min\left(|p_k^T g_k|, |p_k^T g_k| / ||p_k||_2 \right) = 0.$$

PROOF OF THEOREM 2.3

Suppose that $g_k \neq 0$ for all k and that $\lim_{k \to \infty} f_k > -\infty$. Armijo \Longrightarrow

$$f_{k+1} - f_k \le \alpha_k \beta p_k^T g_k$$

for all $k \implies$ summing over first j iterations

$$f_{j+1} - f_0 \le \sum_{k=0}^j \alpha_k \beta p_k^T g_k.$$

LHS bounded below by assumption \implies RHS bounded below. Sum composed of -ve terms \implies

$$\lim_{k \to \infty} \alpha_k |p_k^T g_k| = 0$$

Let

 \Longrightarrow

$$\mathcal{K}_1 \stackrel{\text{def}}{=} \left\{ k \mid \alpha_{\text{init}} > \frac{2\tau(\beta - 1)g_k^T p_k}{\gamma \|p_k\|_2^2} \right\} \& \mathcal{K}_2 \stackrel{\text{def}}{=} \{1, 2, \ldots\} \setminus \mathcal{K}_1$$

where γ is the assumed uniform Lipschitz constant.

For $k \in \mathcal{K}_{1}$, $\alpha_{k} \geq \frac{2\tau(\beta - 1)g_{k}^{T}p_{k}}{\gamma \|p_{k}\|_{2}^{2}}$ \Rightarrow $\alpha_{k}p_{k}^{T}g_{k} \leq \frac{2\tau(\beta - 1)}{\gamma} \left(\frac{g_{k}^{T}p_{k}}{\|p_{k}\|}\right)^{2} < 0$ \Rightarrow $\lim_{k \in \mathcal{K}_{1} \to \infty} \frac{|p_{k}^{T}g_{k}|}{\|p_{k}\|_{2}} = 0.$ (1)
For $k \in \mathcal{K}_{2}$, $\alpha_{k} \geq \alpha_{\text{init}}$

$$\lim_{k \in \mathcal{K}_2 \to \infty} |p_k^T g_k| = 0.$$
⁽²⁾

Combining (1) and (2) gives the required result.

EXAMPLES

Steepest-descent direction. $p_k = -g_k$

$$\lim_{k \to \infty} \min\left(|p_k^T g_k|, |p_k^T g_k| / \|p_k\|_2\right) = 0 \implies \lim_{k \to \infty} g_k = 0$$

Newton-like direction: $p_k = -B_k^{-1}g_k$ $\lim_{k \to \infty} \min\left(|p_k^T g_k|, |p_k^T g_k|/||p_k||_2\right) = 0 \implies \lim_{k \to \infty} g_k = 0$

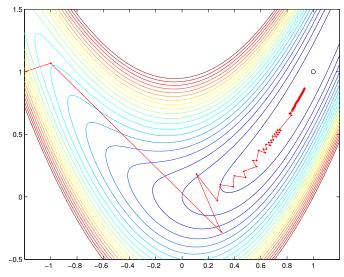
provided B_k is uniformly positive definite

Conjugate-gradient direction: p_k = any conjugate-gradient approximation to minimizer of $f_k + p^T g_k + \frac{1}{2} p^T B_k p \approx f(x_k + p)$

$$\lim_{k \to \infty} \min\left(|p_k^T g_k|, |p_k^T g_k| / \|p_k\|_2\right) = 0 \implies \lim_{k \to \infty} g_k = 0$$

provided B_k is uniformly positive definite

STEEPEST DESCENT EXAMPLE

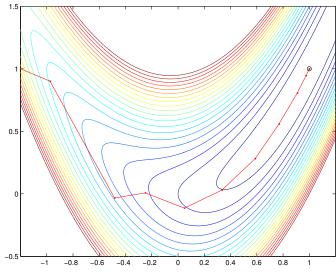


Contours for the objective function $f(x,y) = 10(y-x^2)^2 + (x-1)^2$, and the iterates generated by the Generic Linesearch steepest-descent method

METHOD OF STEEPEST DESCENT (cont.)

- \odot archetypical globally convergent method
- $\odot\,$ many other methods resort to steepest descent in bad cases
- $\odot\,$ not scale invariant
- \odot convergence is usually very (very!) slow (linear)
- $\odot\,$ numerically often not convergent at all

NEWTON METHOD EXAMPLE



Contours for the objective function $f(x,y) = 10(y-x^2)^2 + (x-1)^2$, and the iterates generated by the Generic Linesearch Newton method

MORE GENERAL DESCENT METHODS (cont.)

- $\odot\,$ may be viewed as "scaled" steepest descent
- $\odot\,$ convergence is often faster than steepest descent
- $\odot~$ can be made scale invariant for suitable B_k