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f(x)
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UNCONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x)

where the objective function f : IRn −→ IR

� assume that f ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary



ITERATIVE METHODS

� in practice very rare to be able to provide explicit minimizer

� iterative method: given starting “guess” x0, generate sequence

{xk}, k = 1, 2, . . .

� AIM: ensure that (a subsequence) has some favourable limiting

properties:

� satisfies first-order necessary conditions

� satisfies second-order necessary conditions

Notation: fk = f(xk), gk = g(xk), Hk = H(xk).

LINESEARCH METHODS

� calculate a search direction pk from xk

� ensure that this direction is a descent direction, i.e.,

gT
k pk < 0 if gk 6= 0

so that, for small steps along pk, the objective function

will be reduced

� calculate a suitable steplength αk > 0 so that

f(xk + αkpk) < fk

� computation of αk is the linesearch—may itself be an iteration

� generic linesearch method:

xk+1 = xk + αkpk



STEPS MIGHT BE TOO LONG

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3f(x)

x

(x1,f(x1)

(x2,f(x2)

(x3,f(x3)

(x4,f(x4)(x5,f(x5)

The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk

generated by the descent directions pk = (−1)k+1 and steps αk =

2 + 3/2k+1 from x0 = 2

STEPS MIGHT BE TOO SHORT
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The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk

generated by the descent directions pk = −1 and steps αk = 1/2k+1

from x0 = 2



PRACTICAL LINESEARCH METHODS

� in early days, pick αk to minimize

f(xk + αpk)

� exact linesearch—univariate minimization

� rather expensive and certainly not cost effective

� modern methods: inexact linesearch

� ensure steps are neither too long nor too short

� try to pick “useful” initial stepsize for fast convergence

� best methods are either

. “backtracking- Armijo” or

. “Armijo-Goldstein”

based

BACKTRACKING LINESEARCH

Procedure to find the stepsize αk:

Given αinit > 0 (e.g., αinit = 1)

let α(0) = αinit and l = 0

Until f(xk + α(l)pk)“<”fk

set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1
2)

and increase l by 1

Set αk = α(l)

� this prevents the step from getting too small . . . but does not prevent

too large steps relative to decrease in f

� need to tighten requirement

f(xk + α(l)pk)“<”fk



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f , instead require

f(xk + αkpk) ≤ f(xk) + αkβgT
k pk

for some β ∈ (0, 1) (e.g., β = 0.1 or even β = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize αk:

Given αinit > 0 (e.g., αinit = 1)

let α(0) = αinit and l = 0

Until f(xk + α(l)pk) ≤ f(xk) + α(l)βgT
k pk

set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1
2)

and increase l by 1

Set αk = α(l)



SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f ∈ C1, that g(x) is Lipschitz con-

tinuous with Lipschitz constant γ(x), that β ∈ (0, 1) and that p is

a descent direction at x. Then the Armijo condition

f(x + αp) ≤ f(x) + αβg(x)Tp

is satisfied for all α ∈ [0, αmax(x)], where

αmax =
2(β − 1)g(x)Tp

γ(x)‖p‖2
2

PROOF OF THEOREM 2.1

Taylor’s theorem (Theorem 1.1) +

α ≤
2(β − 1)g(x)Tp

γ(x)‖p‖2
2

,

=⇒
f(x + αp) ≤ f(x) + αg(x)Tp + 1

2γ(x)α2‖p‖2

≤ f(x) + αg(x)Tp + α(β − 1)g(x)Tp

= f(x) + αβg(x)Tp



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f ∈ C1, that g(x) is Lipschitz con-

tinuous with Lipschitz constant γk at xk, that β ∈ (0, 1) and that

pk is a descent direction at xk. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with

αk ≥ min








αinit,

2τ (β − 1)gT
k pk

γk‖pk‖2
2









PROOF OF COROLLARY 2.2

Theorem 2.1 =⇒ linesearch will terminate as soon as α(l) ≤ αmax.

2 cases to consider:

1. May be that αinit satisfies the Armijo condition =⇒ αk = αinit.

2. Otherwise, must be a last linesearch iteration (the l-th) for which

α(l) > αmax =⇒ αk ≥ α(l+1) = τα(l) > ταmax

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess x0, let k = 0

Until convergence:

Find a descent direction pk at xk

Compute a stepsize αk using a

backtracking-Armijo linesearch along pk

Set xk+1 = xk + αkpk, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f ∈ C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0.



PROOF OF THEOREM 2.3

Suppose that gk 6= 0 for all k and that lim
k→∞

fk > −∞. Armijo =⇒

fk+1 − fk ≤ αkβpT
k gk

for all k =⇒ summing over first j iterations

fj+1 − f0 ≤
j

∑

k=0
αkβpT

k gk.

LHS bounded below by assumption =⇒ RHS bounded below. Sum

composed of -ve terms =⇒

lim
k→∞

αk|p
T
k gk| = 0

Let

K1
def=















k | αinit >
2τ (β − 1)gT

k pk

γ‖pk‖2
2















& K2
def= {1, 2, . . .} \ K1

where γ is the assumed uniform Lipschitz constant.

For k ∈ K1,

αk ≥
2τ (β − 1)gT

k pk

γ‖pk‖2
2

=⇒

αkp
T
k gk ≤

2τ (β − 1)

γ









gT
k pk

‖pk‖









2

< 0

=⇒

lim
k∈K1→∞

|pT
k gk|

‖pk‖2

= 0. (1)

For k ∈ K2,

αk ≥ αinit

=⇒

lim
k∈K2→∞

|pT
k gk| = 0. (2)

Combining (1) and (2) gives the required result.



EXAMPLES

Steepest-descent direction. pk = −gk

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0 =⇒ lim
k→∞

gk = 0

Newton-like direction: pk = −B−1
k gk

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0 =⇒ lim
k→∞

gk = 0

provided Bk is uniformly positive definite

Conjugate-gradient direction: pk = any conjugate-gradient

approximation to minimizer of fk + pTgk + 1
2p

TBkp ≈ f(xk + p)

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0 =⇒ lim
k→∞

gk = 0

provided Bk is uniformly positive definite

STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2,

and the iterates generated by the Generic Linesearch steepest-descent

method



METHOD OF STEEPEST DESCENT (cont.)

� archetypical globally convergent method

� many other methods resort to steepest descent in bad cases

� not scale invariant

� convergence is usually very (very!) slow (linear)

� numerically often not convergent at all

NEWTON METHOD EXAMPLE
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Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2,

and the iterates generated by the Generic Linesearch Newton method



MORE GENERAL DESCENT METHODS (cont.)

� may be viewed as “scaled” steepest descent

� convergence is often faster than steepest descent

� can be made scale invariant for suitable Bk


