Part 2: Linesearch methods for unconstrained optimization

Nick Gould (RAL)

minimize $\quad f(x)$

$x \in \mathbb{R}^{n}$

MSc course on nonlinear optimization

UNCONSTRAINED MINIMIZATION

minimize $f(x)$
$x \in \mathbb{R}^{n}$
where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- assume that $f \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary
\odot in practice very rare to be able to provide explicit minimizer
\odot iterative method: given starting "guess" x_{0}, generate sequence

$$
\left\{x_{k}\right\}, \quad k=1,2, \ldots
$$

- AIM: ensure that (a subsequence) has some favourable limiting properties:
- satisfies first-order necessary conditions
- satisfies second-order necessary conditions

Notation: $f_{k}=f\left(x_{k}\right), g_{k}=g\left(x_{k}\right), H_{k}=H\left(x_{k}\right)$.

LINESEARCH METHODS

\odot calculate a search direction p_{k} from x_{k}

- ensure that this direction is a descent direction, i.e.,

$$
g_{k}^{T} p_{k}<0 \text { if } g_{k} \neq 0
$$

so that, for small steps along p_{k}, the objective function
will be reduced
\odot calculate a suitable steplength $\alpha_{k}>0$ so that

$$
f\left(x_{k}+\alpha_{k} p_{k}\right)<f_{k}
$$

- computation of α_{k} is the linesearch-may itself be an iteration
\odot generic linesearch method:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

STEPS MIGHT BE TOO LONG

The objective function $f(x)=x^{2}$ and the iterates $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ generated by the descent directions $p_{k}=(-1)^{k+1}$ and steps $\alpha_{k}=$ $2+3 / 2^{k+1}$ from $x_{0}=2$

STEPS MIGHT BE TOO SHORT

The objective function $f(x)=x^{2}$ and the iterates $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ generated by the descent directions $p_{k}=-1$ and steps $\alpha_{k}=1 / 2^{k+1}$ from $x_{0}=2$
\odot in early days, pick α_{k} to minimize

$$
f\left(x_{k}+\alpha p_{k}\right)
$$

- exact linesearch-univariate minimization
- rather expensive and certainly not cost effective
- modern methods: inexact linesearch
\diamond ensure steps are neither too long nor too short
- try to pick "useful" initial stepsize for fast convergence
- best methods are either
- "backtracking- Armijo" or
- "Armijo-Goldstein"
based

BACKTRACKING LINESEARCH

Procedure to find the stepsize α_{k} :

$$
\begin{aligned}
& \text { Given } \alpha_{\text {init }}>0 \text { (e.g., } \alpha_{\text {init }}=1 \text {) } \\
& \text { let } \alpha^{(0)}=\alpha_{\text {init }} \text { and } l=0 \\
& \text { Until } f\left(x_{k}+\alpha^{(l)} p_{k} \text { " }<^{\prime \prime} f_{k}\right. \\
& \quad \text { set } \alpha^{(l+1)}=\tau \alpha^{(l)} \text {, where } \tau \in(0,1)\left(\text { e.g., } \tau=\frac{1}{2}\right) \\
& \text { and increase } l \text { by } 1 \\
& \text { Set } \alpha_{k}=\alpha^{(l)}
\end{aligned}
$$

- this prevents the step from getting too small ... but does not prevent too large steps relative to decrease in f
\odot need to tighten requirement

$$
f\left(x_{k}+\alpha^{(l)} p_{k}\right) "<" f_{k}
$$

ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

$$
f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+\alpha_{k} \beta g_{k}^{T} p_{k}
$$

for some $\beta \in(0,1)$ (e.g., $\beta=0.1$ or even $\beta=0.0001$)

BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize α_{k} :

Given $\alpha_{\text {init }}>0$ (e.g., $\alpha_{\text {init }}=1$)
let $\alpha^{(0)}=\alpha_{\text {init }}$ and $l=0$
Until $f\left(x_{k}+\alpha^{(l)} p_{k}\right) \leq f\left(x_{k}\right)+\alpha^{(l)} \beta g_{k}^{T} p_{k}$
set $\alpha^{(l+1)}=\tau \alpha^{(l)}$, where $\tau \in(0,1)$ (e.g., $\left.\tau=\frac{1}{2}\right)$
and increase l by 1
Set $\alpha_{k}=\alpha^{(l)}$

SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that $f \in C^{1}$, that $g(x)$ is Lipschitz continuous with Lipschitz constant $\gamma(x)$, that $\beta \in(0,1)$ and that p is a descent direction at x. Then the Armijo condition

$$
f(x+\alpha p) \leq f(x)+\alpha \beta g(x)^{T} p
$$

is satisfied for all $\alpha \in\left[0, \alpha_{\max (x)}\right]$, where

$$
\alpha_{\max }=\frac{2(\beta-1) g(x)^{T} p}{\gamma(x)\|p\|_{2}^{2}}
$$

PROOF OF THEOREM 2.1

Taylor's theorem (Theorem 1.1) +

$$
\alpha \leq \frac{2(\beta-1) g(x)^{T} p}{\gamma(x)\|p\|_{2}^{2}},
$$

\Longrightarrow

$$
\begin{aligned}
f(x+\alpha p) & \leq f(x)+\alpha g(x)^{T} p+\frac{1}{2} \gamma(x) \alpha^{2}\|p\|^{2} \\
& \leq f(x)+\alpha g(x)^{T} p+\alpha(\beta-1) g(x)^{T} p \\
& =f(x)+\alpha \beta g(x)^{T} p
\end{aligned}
$$

Corollary 2.2. Suppose that $f \in C^{1}$, that $g(x)$ is Lipschitz continuous with Lipschitz constant γ_{k} at x_{k}, that $\beta \in(0,1)$ and that p_{k} is a descent direction at x_{k}. Then the stepsize generated by the backtracking-Armijo linesearch terminates with

$$
\alpha_{k} \geq \min \left(\alpha_{\text {init }}, \frac{2 \tau(\beta-1) g_{k}^{T} p_{k}}{\gamma_{k}\left\|p_{k}\right\|_{2}^{2}}\right)
$$

PROOF OF COROLLARY 2.2

Theorem $2.1 \Longrightarrow$ linesearch will terminate as soon as $\alpha^{(l)} \leq \alpha_{\max }$.
2 cases to consider:

1. May be that $\alpha_{\text {init }}$ satisfies the Armijo condition $\Longrightarrow \alpha_{k}=\alpha_{\text {init }}$.
2. Otherwise, must be a last linesearch iteration (the l-th) for which

$$
\alpha^{(l)}>\alpha_{\max } \Longrightarrow \quad \alpha_{k} \geq \alpha^{(l+1)}=\tau \alpha^{(l)}>\tau \alpha_{\max }
$$

Combining these 2 cases gives required result.

Given an initial guess x_{0}, let $k=0$
Until convergence:
Find a descent direction p_{k} at x_{k}
Compute a stepsize α_{k} using a
\quad backtracking-Armijo linesearch along p_{k}
Set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on IR^{n}. Then, for the iterates generated by the Generic Linesearch Method, either

$$
g_{l}=0 \text { for some } l \geq 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0
$$

PROOF OF THEOREM 2.3

Suppose that $g_{k} \neq 0$ for all k and that $\lim _{k \rightarrow \infty} f_{k}>-\infty$. Armijo \Longrightarrow

$$
f_{k+1}-f_{k} \leq \alpha_{k} \beta p_{k}^{T} g_{k}
$$

for all $k \Longrightarrow$ summing over first j iterations

$$
f_{j+1}-f_{0} \leq \sum_{k=0}^{j} \alpha_{k} \beta p_{k}^{T} g_{k} .
$$

LHS bounded below by assumption \Longrightarrow RHS bounded below. Sum composed of -ve terms \Longrightarrow

$$
\lim _{k \rightarrow \infty} \alpha_{k}\left|p_{k}^{T} g_{k}\right|=0
$$

Let

$$
\mathcal{K}_{1} \stackrel{\text { def }}{=}\left\{k \left\lvert\, \alpha_{\text {init }}>\frac{2 \tau(\beta-1) g_{k}^{T} p_{k}}{\gamma\left\|p_{k}\right\|_{2}^{2}}\right.\right\} \& \mathcal{K}_{2} \stackrel{\text { def }}{=}\{1,2, \ldots\} \backslash \mathcal{K}_{1}
$$

where γ is the assumed uniform Lipschitz constant.

For $k \in \mathcal{K}_{1}$,

$$
\Longrightarrow \begin{array}{cc}
\alpha_{k} & \geq \frac{2 \tau(\beta-1) g_{k}^{T} p_{k}}{\gamma\left\|p_{k}\right\|_{2}^{2}} \\
\Longrightarrow & \alpha_{k} p_{k}^{T} g_{k} \leq \frac{2 \tau(\beta-1)}{\gamma}\left(\frac{g_{k}^{T} p_{k}}{\left\|p_{k}\right\|}\right)^{2}<0 \\
& \lim _{k \in \mathcal{K}_{1} \rightarrow \infty} \frac{\left|p_{k}^{T} g_{k}\right|}{\left\|p_{k}\right\|_{2}}=0 .
\end{array}
$$

For $k \in \mathcal{K}_{2}$,

$$
\alpha_{k} \geq \alpha_{\text {init }}
$$

\Longrightarrow

$$
\begin{equation*}
\lim _{k \in \mathcal{K}_{2} \rightarrow \infty}\left|p_{k}^{T} g_{k}\right|=0 \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives the required result.

EXAMPLES

Steepest-descent direction. $p_{k}=-g_{k}$

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0 \Longrightarrow \quad \lim _{k \rightarrow \infty} g_{k}=0
$$

Newton-like direction: $p_{k}=-B_{k}^{-1} g_{k}$

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0 \Longrightarrow \quad \lim _{k \rightarrow \infty} g_{k}=0
$$

provided B_{k} is uniformly positive definite

Conjugate-gradient direction: $p_{k}=$ any conjugate-gradient approximation to minimizer of $f_{k}+p^{T} g_{k}+\frac{1}{2} p^{T} B_{k} p \approx f\left(x_{k}+p\right)$

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0 \Longrightarrow \quad \lim _{k \rightarrow \infty} g_{k}=0
$$

provided B_{k} is uniformly positive definite

STEEPEST DESCENT EXAMPLE

Contours for the objective function $f(x, y)=10\left(y-x^{2}\right)^{2}+(x-1)^{2}$, and the iterates generated by the Generic Linesearch steepest-descent method

METHOD OF STEEPEST DESCENT (cont.)

- archetypical globally convergent method
- many other methods resort to steepest descent in bad cases
- not scale invariant
- convergence is usually very (very!) slow (linear)
- numerically often not convergent at all

NEWTON METHOD EXAMPLE

Contours for the objective function $f(x, y)=10\left(y-x^{2}\right)^{2}+(x-1)^{2}$, and the iterates generated by the Generic Linesearch Newton method

MORE GENERAL DESCENT METHODS (cont.)

- may be viewed as "scaled" steepest descent
- convergence is often faster than steepest descent
- can be made scale invariant for suitable B_{k}

