Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
r€IR"

MSec course on nonlinear optimization

ITERATIVE METHODS

® in practice very rare to be able to provide explicit minimizer
© iterative method: given starting “guess” x(, generate sequence
{zx}, k=1,2,...
© ATM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fr = f(xr), gr = g(@r), Hr = H(xy).

UNCONSTRAINED MINIMIZATION

minimize f(z)
z€R"

where the objective function f:IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

LINESEARCH METHODS

© calculate a search direction py from x;
© ensure that this direction is a descent direction, i.e.,
gip, <0 if g £0

so that, for small steps along pg, the objective function
will be reduced

o calculate a suitable steplength «y > 0 so that

J(@p + aupr) < fr
© computation of ay is the linesearch—may itself be an iteration
© generic linesearch method:

Tp41 = Tk + O4Pk



STEPS MIGHT BE TOO LONG
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The objective function f(z) = 22 and the iterates zy,1 = 71 + arpp
generated by the descent directions pp = (—1)"! and steps oy, =
2 +3/2M1 from x = 2

PRACTICAL LINESEARCH METHODS

© in early days, pick ay to minimize

[y + apr)
o exact linesearch—univariate minimization

o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”

based

STEPS MIGHT BE TOO SHORT
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The objective function f(z) = 22 and the iterates z3,1 = x5 + arpp
generated by the descent directions py = —1 and steps ay = 1/2F+!
from xg = 2

BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given ajpip > 0 (e.g., apit = 1)
let ¥ = ;¢ and 1 =0
Until f(zy, + aWp)“<” fi

) = 7o) where 7 € (0,1) (e.g., 7 = 1)

set av
and increase [ by 1

Set ay = alV)

© this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

flap+aVpp) < fi



ARMIJO CONDITION BACKTRACKING-ARMIJO LINESEARCH
In order to prevent large steps relative to decrease in f, instead require
flay+ awpy) < flg) + anByipy

for some 8 € (0,1) (e.g., 8 =0.1 or even 5 = 0.0001)

Procedure to find the stepsize a;:

Given ajpit > 0 (e.g., ajpip = 1)

let o0 = Qjpit and [ =0

Until f(a;, +alpy) < flay) + ol Bglp,
set o) = 70 where 7 € (0,1) (e.g., 7= 1)
and increase [ by 1

ST | COSETCT &

Set ap = alV)

f(zr+apk)
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f@)+agip,
SATISFYING THE ARMIJO CONDITION PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +
Theorem 2.1. Suppose that f € O, that g(z) is Lipschitz con- o < 2(8 — 1)g(x)'p
tinuous with Lipschitz constant y(x), that 8 € (0,1) and that p is v(@)lpll3

a descent direction at . Then the Armijo condition
_ @) + ag(@)"p + (@) |p|

<
fla +ap) < f(z) + apg(a)"p < flz)+ o@@vﬂﬁ a(f —1)g(z)"p
is satisfied for all o € [0, Qpax(z)], Where = flz)+ aBg(z)'p
2(8 = 1)g(z)"p
(@)lpll3
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THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C1, that g(z) is Lipschitz con-
tinuous with Lipschitz constant 7y at xy, that 8 € (0,1) and that
P 18 a descent direction at x;. Then the stepsize generated by the
backtracking-Armijo linesearch terminates with

27(6 — 1)gi pr

@k Z 0 | Qinity 1 12

GENERIC LINESEARCH METHOD

Given an initial guess xg, let k =0
Until convergence:
Find a descent direction p; at xj
Compute a stepsize oy using a
backtracking-Armijo linesearch along py
Set x41 = Tk + appk, and increase k by 1

PROOF OF COROLLARY 2.2

Theorem 2.1 = linesearch will terminate as soon as a!) < ayax.
2 cases to consider:

1. May be that ajyis satisfies the Armijo condition = o = oyt
2. Otherwise, must be a last linesearch iteration (the I-th) for which

aD > apae = a > o™ =700 > ranmax

Combining these 2 cases gives required result.

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C* and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method,

either
g =0 for some [ >0
or
Jim_ fiy = —o0
or

) _@WS_\__E__MV =0.

lim min (|p} g,

k—o00




PROOF OF THEOREM 2.3
Suppose that g, # 0 for all k£ and that lim fr > —oco. Armijo =

k—o0
T
\\?I — fr < .BpL 9,

for all K = summing over first j iterations

J
b.i —f < \Wo Q»Q@MS@.

LHS bounded below by assumption => RHS bounded below. Sum
composed of -ve terms =

lim osa_@wmw_ =0

k—o0

Let
27(8 — 1)gipr
V]Ipel3

where 7y is the assumed uniform Lipschitz constant.

Ky 3k | agyig > & K12, 3\ Ky

EXAMPLES

Steepest-descent direction. py = —gy

lim min (|pf g, [prgel/[pille) =0 = lim g, =0

k—o00 k—o0

Newton-like direction: p, = —Bj g,

lim min (|pf g, [prgel/Ipille) =0 = lim g, =0

k—o00 k—o0

provided By, is uniformly positive definite

Conjugate-gradient direction: p, = any conjugate-gradient
approximation to minimizer of f, + p’ g, + ip? Bip ~ f(x). + p)
. . T T .
Jim min ([pgg,l, [pEgel /Ipill) = 0 = lim g, =0

provided By, is uniformly positive definite

For k € Ky,
27(8 — V)gipi

oy > 5
YIpl3
- 27(3 — 1) (¢Fpr)
e — hm%wv <0
. ¥ okl
T
T /S (1)
keki=oo ||py [l
For k € ICs,
ar 2 Qipit
=
pelim Ipi gl = 0. (2)

Combining (1) and (2) gives the required result.

STEEPEST DESCENT EXAMPLE

°
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Contours for the objective function f(z,y) = 10(y — 22)? + (z — 1),
and the iterates generated by the Generic Linesearch steepest-descent
method



METHOD OF STEEPEST DESCENT (cont.)

® archetypical globally convergent method

© many other methods resort to steepest descent in bad cases
© not scale invariant

® convergence is usually very (very!) slow (linear)

© numerically often not convergent at all

MORE GENERAL DESCENT METHODS (cont.)

© may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable By,

NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)? + (z — 1)2,
and the iterates generated by the Generic Linesearch Newton method



