Part 2: Linesearch methods for unconstrained optimization

Nick Gould (RAL)

 $\text{minimize} \quad f(x) \\
 x \in \mathbb{R}^n$

MSc course on nonlinear optimization

ITERATIVE METHODS

- \odot in practice very rare to be able to provide explicit minimizer
- \odot iterative method: given starting "guess" x_0 , generate sequence

$$\{x_k\}, k = 1, 2, \dots$$

- AIM: ensure that (a subsequence) has some favourable limiting properties:
- \diamond satisfies first-order necessary conditions
- $\diamond\,$ satisfies second-order necessary conditions

Notation:
$$f_k = f(x_k), g_k = g(x_k), H_k = H(x_k).$$

UNCONSTRAINED MINIMIZATION

 $\text{minimize } f(x) \\
 x \in \mathbb{R}^n$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

- \odot assume that $f\in C^1$ (sometimes $C^2)$ and Lipschitz
- \odot often in practice this assumption violated, but not necessary

LINESEARCH METHODS

- \odot calculate a **search direction** p_k from x_k
- o ensure that this direction is a descent direction, i.e.,

$$g_k^T p_k < 0 \text{ if } g_k \neq 0$$

so that, for small steps along p_k , the objective function **will** be reduced

 \odot calculate a suitable **steplength** $\alpha_k > 0$ so that

$$f(x_k + \alpha_k p_k) < f_k$$

- \circ computation of α_k is the **linesearch**—may itself be an iteration
- $\odot\,$ generic linesearch method:

$$x_{k+1} = x_k + \alpha_k p_k$$

STEPS MIGHT BE TOO LONG

The objective function $f(x)=x^2$ and the iterates $x_{k+1}=x_k+\alpha_k p_k$ generated by the descent directions $p_k=(-1)^{k+1}$ and steps $\alpha_k=2+3/2^{k+1}$ from $x_0=2$

PRACTICAL LINESEARCH METHODS

 \odot in early days, pick α_k to minimize

$$f(x_k + \alpha p_k)$$

- exact linesearch—univariate minimization
- rather expensive and certainly not cost effective
- o modern methods: inexact linesearch
- $\diamond\,$ ensure steps are neither too long nor too short
- $\diamond\,$ try to pick "useful" initial stepsize for fast convergence
- best methods are either
- ▷ "backtracking- Armijo" or
- ⋄ "Armijo-Goldstein"

based

STEPS MIGHT BE TOO SHORT

The objective function $f(x)=x^2$ and the iterates $x_{k+1}=x_k+\alpha_k p_k$ generated by the descent directions $p_k=-1$ and steps $\alpha_k=1/2^{k+1}$ from $x_0=2$

BACKTRACKING LINESEARCH

Procedure to find the stepsize α_k :

Given
$$\alpha_{\text{init}} > 0$$
 (e.g., $\alpha_{\text{init}} = 1$)
let $\alpha^{(0)} = \alpha_{\text{init}}$ and $l = 0$
Until $f(x_k + \alpha^{(l)}p_k)$ "<" f_k
set $\alpha^{(l+1)} = \tau\alpha^{(l)}$, where $\tau \in (0,1)$ (e.g., $\tau = \frac{1}{2}$)
and increase l by 1
Set $\alpha_k = \alpha^{(l)}$

- $\odot~$ this prevents the step from getting too small . . . but does not prevent too large steps relative to decrease in f
- o need to tighten requirement

$$f(x_k + \alpha^{(l)}p_k) "<" f_k$$

ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

$$f(x_k + \alpha_k p_k) \le f(x_k) + \alpha_k \beta g_k^T p_k$$

for some
$$\beta \in (0, 1)$$
 (e.g., $\beta = 0.1$ or even $\beta = 0.0001$)

SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that $f \in C^1$, that g(x) is Lipschitz continuous with Lipschitz constant $\gamma(x)$, that $\beta \in (0,1)$ and that p is a descent direction at x. Then the Armijo condition

$$f(x + \alpha p) \leq f(x) + \alpha \beta g(x)^T p$$

is satisfied for all $\alpha \in [0, \alpha_{\max(x)}]$, where

$$\kappa_{\text{max}} = \frac{2(\beta - 1)g(x)^T p}{\gamma(x) \|p\|_2^2}$$

BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize α_k :

Given
$$\alpha_{\text{init}} > 0$$
 (e.g., $\alpha_{\text{init}} = 1$)
let $\alpha^{(0)} = \alpha_{\text{init}}$ and $l = 0$
Until $f(x_k + \alpha^{(l)}p_k) \le f(x_k) + \alpha^{(l)}\beta g_k^T p_k$
set $\alpha^{(l+1)} = \tau \alpha^{(l)}$, where $\tau \in (0, 1)$ (e.g., $\tau = \frac{1}{2}$)
and increase l by 1
Set $\alpha_k = \alpha^{(l)}$

PROOF OF THEOREM 2.1

Taylor's theorem (Theorem 1.1) +

$$\alpha \le \frac{2(\beta - 1)g(x)^T p}{\gamma(x) \|p\|_2^2},$$

$$f(x + \alpha p) \le f(x) + \alpha g(x)^T p + \frac{1}{2} \gamma(x) \alpha^2 \|p\|^2$$

$$\le f(x) + \alpha g(x)^T p + \alpha (\beta - 1) g(x)^T p$$

$$= f(x) + \alpha \beta g(x)^T p$$

 \downarrow

THE ARMIJO LINESEARCH TERMINATES

backtracking-Armijo linesearch terminates with p_k is a descent direction at x_k . Then the stepsize generated by the tinuous with Lipschitz constant γ_k at x_k , that $\beta \in (0,1)$ and that Corollary 2.2. Suppose that $f \in C^1$, that g(x) is Lipschitz con-

$$\alpha_k \ge \min\left(\alpha_{\text{init}}, \frac{2\tau(\beta-1)g_k^T p_k}{\gamma_k ||p_k||_2^2}\right)$$

GENERIC LINESEARCH METHOD

Given an initial guess x_0 , let k=0

Set $x_{k+1} = x_k + \alpha_k p_k$, and increase k by 1

Until convergence:

Find a descent direction p_k at x_k

Compute a stepsize α_k using a

backtracking-Armijo linesearch along p_k

PROOF OF COROLLARY 2.2

Theorem 2.1 \Longrightarrow linesearch will terminate as soon as $\alpha^{(l)} \le \alpha_{\text{max}}$.

- 2 cases to consider:
- 1. May be that α_{init} satisfies the Armijo condition $\Longrightarrow \alpha_k = \alpha_{\mathrm{init}}$
- 2. Otherwise, must be a last linesearch iteration (the *l*-th) for which

$$\alpha^{(l)} > \alpha_{\max} \implies \alpha_k \ge \alpha^{(l+1)} = \tau \alpha^{(l)} > \tau \alpha_{\max}$$

Combining these 2 cases gives required result.

GLOBAL CONVERGENCE THEOREM

tinuous on \mathbb{R}^n . Then, for the iterates generated by the Generic Linesearch Method, **Theorem 2.3.** Suppose that $f \in C^1$ and that g is Lipschitz con-

either

$$g_l = 0$$
 for some $l \ge 0$

S.

$$\lim_{k \to \infty} f_k = -\infty$$

Or.

$$\lim_{k\to\infty}\min\left(|p_k^Tg_k|,|p_k^Tg_k|/||p_k||_2\right)=0.$$

PROOF OF THEOREM 2.3

Suppose that $g_k \neq 0$ for all k and that $\lim_{k \to \infty} f_k > -\infty$. Armijo \Longrightarrow

$$f_{k+1} - f_k \le \alpha_k \beta p_k^T g_k$$

for all $k \Longrightarrow$ summing over first j iterations

$$f_{j+1} - f_0 \le \sum_{k=0}^{j} \alpha_k \beta p_k^T g_k$$

LHS bounded below by assumption \Longrightarrow RHS bounded below. Sum composed of -ve terms \Longrightarrow

$$\lim_{k \to \infty} \alpha_k | p_k^T g_k | = 0$$

Let

$$\mathcal{K}_1 \stackrel{\text{def}}{=} \left\{ k \mid \alpha_{ ext{init}} > \frac{2\tau(\beta - 1)g_k^T p_k}{\gamma \|p_k\|_2^2} \right\} \& \mathcal{K}_2 \stackrel{\text{def}}{=} \{1, 2, \ldots\} \setminus \mathcal{K}_1$$

where γ is the assumed uniform Lipschitz constant.

EXAMPLES

Steepest-descent direction. $p_k = -g_k$

$$\lim_{k\to\infty} \min\left(|p_k^T g_k|,|p_k^T g_k|/\|p_k\|_2\right) = 0 \implies \lim_{k\to\infty} g_k = 0$$

Newton-like direction: $p_k = -B_k^{-1}g_k$

$$\lim_{k \to \infty} \min \left(|p_k^T g_k|, |p_k^T g_k| / ||p_k||_2 \right) = 0 \implies \lim_{k \to \infty} g_k = 0$$

provided B_k is uniformly positive definite

Conjugate-gradient direction: $p_k = \text{any conjugate-gradient}$ approximation to minimizer of $f_k + p^T g_k + \frac{1}{2} p^T B_k p \approx f(x_k + p)$

$$\lim_{k \to \infty} \min \left(|p_k^T g_k|, |p_k^T g_k| / ||p_k||_2 \right) = 0 \implies \lim_{k \to \infty} g_k = 0$$

provided B_k is uniformly positive definite

For $k \in \mathcal{K}_1$,

$$\alpha_k \ge \frac{2\tau(\beta - 1)g_k^T p_k}{\gamma \|p_k\|_2^2}$$

$$\Rightarrow \alpha_k p_k^T g_k \le \frac{2\tau(\beta - 1)}{\gamma} \left(\frac{g_k^T p_k}{\|p_k\|}\right)^2 < 0$$

$$\Rightarrow \lim_{k \in \mathcal{K}_1 \to \infty} \frac{|p_k^T g_k|}{\|p_k\|_2} = 0.$$

1

For $k \in \mathcal{K}_2$,

$$lpha_k \geq lpha_{ ext{init}}$$
 $\lim_{k \in \mathcal{K}_2 o \infty} |p_k^T g_k| = 0.$

2

Combining (1) and (2) gives the required result.

STEEPEST DESCENT EXAMPLE

Contours for the objective function $f(x,y) = 10(y-x^2)^2 + (x-1)^2$, and the iterates generated by the Generic Linesearch steepest-descent method

METHOD OF STEEPEST DESCENT (cont.)

- \odot archetypical globally convergent method
- \circ many other methods resort to steepest descent in bad cases
- o not scale invariant
- \odot convergence is usually very (very!) slow (linear)
- $\odot\,$ numerically often not convergent at all

MORE GENERAL DESCENT METHODS (cont.)

- \odot may be viewed as "scaled" steepest descent
- \odot convergence is often faster than steepest descent
- \odot can be made scale invariant for suitable B_k

NEWTON METHOD EXAMPLE

Contours for the objective function $f(x,y)=10(y-x^2)^2+(x-1)^2$, and the iterates generated by the Generic Linesearch Newton method