# Part 3: Trust-region methods for unconstrained optimization 

Nick Gould (RAL)

minimize $\quad f(x)$<br>$x \in \mathbb{R}^{n}$

MSc course on nonlinear optimization

## UNCONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- assume that $f \in C^{1}$ (sometimes $C^{2}$ ) and Lipschitz
$\odot$ often in practice this assumption violated, but not necessary


## LINESEARCH VS TRUST-REGION METHODS

- Linesearch methods
- pick descent direction $p_{k}$
- pick stepsize $\alpha_{k}$ to "reduce" $f\left(x_{k}+\alpha p_{k}\right)$
- $x_{k+1}=x_{k}+\alpha_{k} p_{k}$
- Trust-region methods
- pick step $s_{k}$ to reduce "model" of $f\left(x_{k}+s\right)$
$\bullet$ accept $x_{k+1}=x_{k}+s_{k}$ if decrease in model inherited by $f\left(x_{k}+s_{k}\right)$
- otherwise set $x_{k+1}=x_{k}$, "refine" model


## TRUST-REGION MODEL PROBLEM

Model $f\left(x_{k}+s\right)$ by:

- linear model

$$
m_{k}^{L}(s)=f_{k}+s^{T} g_{k}
$$

- quadratic model - symmetric $B_{k}$

$$
m_{k}^{Q}(s)=f_{k}+s^{T} g_{k}+\frac{1}{2} s^{T} B_{k} s
$$

## Major difficulties:

- models may not resemble $f\left(x_{k}+s\right)$ if $s$ is large
- models may be unbounded from below
- linear model - always unless $g_{k}=0$
$\bullet$ quadratic model - always if $B_{k}$ is indefinite, possibly if $B_{k}$ is only positive semi-definite


## THE TRUST REGION

Prevent model $m_{k}(s)$ from unboundedness by imposing a trust-region constraint

$$
\|s\| \leq \Delta_{k}
$$

for some "suitable" scalar radius $\Delta_{k}>0$
$\Longrightarrow$ trust-region subproblem

```
approx minimize m}\mp@subsup{m}{k}{(s) subject to |s|\leq刦 \(s \in \mathbb{R}^{n}\)
```

- in theory does not depend on norm $\|\cdot\|$
$\odot$ in practice it might!


## OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model

$$
m_{k}(s)=m_{k}^{Q}(s)=f_{k}+s^{T} g_{k}+\frac{1}{2} s^{T} B_{k} s
$$

and the $\ell_{2}$-trust region norm $\|\cdot\|=\|\cdot\|_{2}$
Note:

- $B_{k}=H_{k}$ is allowed
- analysis for other trust-region norms simply adds extra constants in following results


## BASIC TRUST-REGION METHOD

Given $k=0, \Delta_{0}>0$ and $x_{0}$, until "convergence" do:
Build the second-order model $m(s)$ of $f\left(x_{k}+s\right)$.
"Solve" the trust-region subproblem to find $s_{k}$
for which $m\left(s_{k}\right)$ " $<$ " $f_{k}$ and $\left\|s_{k}\right\| \leq \Delta_{k}$, and define

$$
\rho_{k}=\frac{f_{k}-f\left(x_{k}+s_{k}\right)}{f_{k}-m_{k}\left(s_{k}\right)} .
$$

If $\rho_{k} \geq \eta_{v}$ [very successful]
set $x_{k+1}=x_{k}+s_{k}$ and $\Delta_{k+1}=\gamma_{i} \Delta_{k}$ $\gamma_{i} \geq 1$
Otherwise if $\rho_{k} \geq \eta_{s}$ then [successful] $0<\eta_{s} \leq \eta_{v}<1$ set $x_{k+1}=x_{k}+s_{k}$ and $\Delta_{k+1}=\Delta_{k}$
Otherwise [unsuccessful]
set $x_{k+1}=x_{k}$ and $\Delta_{k+1}=\gamma_{d} \Delta_{k} \quad 0<\gamma_{d}<1$
Increase $k$ by 1

## "SOLVE" THE TRUST REGION SUBPROBLEM?

At the very least

- aim to achieve as much reduction in the model as would an iteration of steepest descent
- Cauchy point: $s_{k}^{\mathrm{C}}=-\alpha_{k}^{\mathrm{C}} g_{k}$ where

$$
\begin{aligned}
\alpha_{k}^{\mathrm{C}} & =\arg \operatorname{\operatorname {min}} m_{k}\left(-\alpha g_{k}\right) \text { subject to } \alpha\left\|g_{k}\right\| \leq \Delta_{k} \\
& =\underset{0<\alpha \leq \Delta_{k}\| \| g_{k} \|}{\arg \min } m_{k}\left(-\alpha g_{k}\right)
\end{aligned}
$$

- minimize quadratic on line segment $\Longrightarrow$ very easy!
- require that

$$
m_{k}\left(s_{k}\right) \leq m_{k}\left(s_{k}^{\mathrm{C}}\right) \text { and }\left\|s_{k}\right\| \leq \Delta_{k}
$$

$\odot$ in practice, hope to do far better than this

## ACHIEVABLE MODEL DECREASE

Theorem 3.1. If $m_{k}(s)$ is the second-order model and $s_{k}^{\mathrm{C}}$ is its Cauchy point within the trust-region $\|s\| \leq \Delta_{k}$,

$$
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right) \geq \frac{1}{2}\left\|g_{k}\right\| \min \left[\frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}, \Delta_{k}\right] .
$$

## PROOF OF THEOREM 3.1

$$
m_{k}\left(-\alpha g_{k}\right)=f_{k}-\alpha\left\|g_{k}\right\|^{2}+\frac{1}{2} \alpha^{2} g_{k}^{T} B_{k} g_{k} .
$$

Result immediate if $g_{k}=0$.
Otherwise, 3 possibilities
(i) curvature $g_{k}^{T} B_{k} g_{k} \leq 0 \Longrightarrow m_{k}\left(-\alpha g_{k}\right)$ unbounded from below as $\alpha$ increases $\Longrightarrow$ Cauchy point occurs on the trust-region boundary.
(ii) curvature $g_{k}^{T} B_{k} g_{k}>0 \&$ minimizer $m_{k}\left(-\alpha g_{k}\right)$ occurs at or beyond the trust-region boundary $\Longrightarrow$ Cauchy point occurs on the trustregion boundary.
(iii) the curvature $g_{k}^{T} B_{k} g_{k}>0 \&$ minimizer $m_{k}\left(-\alpha g_{k}\right)$, and hence Cauchy point, occurs before trust-region is reached.

Consider each case in turn;

Case (i)
$g_{k}^{T} B_{k} g_{k} \leq 0 \& \alpha \geq 0 \Longrightarrow$

$$
\begin{equation*}
m_{k}\left(-\alpha g_{k}\right)=f_{k}-\alpha\left\|g_{k}\right\|^{2}+\frac{1}{2} \alpha^{2} g_{k}^{T} B_{k} g_{k} \leq f_{k}-\alpha\left\|g_{k}\right\|^{2} \tag{1}
\end{equation*}
$$

Cauchy point lies on boundary of the trust region $\Longrightarrow$

$$
\begin{equation*}
\alpha_{k}^{\mathrm{C}}=\frac{\Delta_{k}}{\left\|g_{k}\right\|} . \tag{2}
\end{equation*}
$$

$(1)+(2) \Longrightarrow$

$$
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right) \geq\left\|g_{k}\right\|^{2} \frac{\Delta_{k}}{\left\|g_{k}\right\|}=\left\|g_{k}\right\| \Delta_{k} \geq \frac{1}{2}\left\|g_{k}\right\| \Delta_{k}
$$

Case (ii)

$$
\begin{equation*}
\alpha_{k}^{*} \xlongequal{\text { def }} \arg \min m_{k}\left(-\alpha g_{k}\right) \equiv f_{k}-\alpha\left\|g_{k}\right\|^{2}+\frac{1}{2} \alpha^{2} g_{k}^{T} B_{k} g_{k} \tag{3}
\end{equation*}
$$

$\Longrightarrow$

$$
\begin{equation*}
\alpha_{k}^{*}=\frac{\left\|g_{k}\right\|^{2}}{g_{k}^{T} B_{k} g_{k}} \geq \alpha_{k}^{\mathrm{C}}=\frac{\Delta_{k}}{\left\|g_{k}\right\|} \tag{4}
\end{equation*}
$$

$\Longrightarrow$

$$
\begin{equation*}
\alpha_{k}^{\mathrm{C}} g_{k}^{T} B_{k} g_{k} \leq\left\|g_{k}\right\|^{2} \tag{5}
\end{equation*}
$$

$(3)+(4)+(5) \Longrightarrow$

$$
\begin{aligned}
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right) & =\alpha_{k}^{\mathrm{C}}\left\|g_{k}\right\|^{2}-\frac{1}{2}\left[\alpha_{k}^{\mathrm{C}}\right]^{2} g_{k}^{T} B_{k} g_{k} \geq \frac{1}{2} \alpha_{k}^{\mathrm{C}}\left\|g_{k}\right\|^{2} \\
& =\frac{1}{2}\left\|g_{k}\right\|^{2} \frac{\Delta_{k}}{\left\|g_{k}\right\|}=\frac{1}{2}\left\|g_{k}\right\| \Delta_{k} .
\end{aligned}
$$

Case (iii)

$$
\Longrightarrow
$$

$$
\begin{aligned}
\alpha_{k}^{\mathrm{C}} & =\alpha_{k}^{*}=\frac{\left\|g_{k}\right\|^{2}}{g_{k}^{T} B_{k} g_{k}} \\
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right) & =\alpha_{k}^{*}\left\|g_{k}\right\|^{2}+\frac{1}{2}\left(\alpha_{k}^{*}\right)^{2} g_{k}^{T} B_{k} g_{k} \\
& =\frac{\left\|g_{k}\right\|^{4}}{g_{k}^{T} B_{k} g_{k}}-\frac{1}{2} \frac{\left\|g_{k}\right\|^{4}}{g_{k}^{T} B_{k} g_{k}} \\
& =\frac{1}{2} \frac{\left\|g_{k}\right\|^{4}}{g_{k}^{T} B_{k} g_{k}} \\
& \geq \frac{1}{2} \frac{\left\|g_{k}\right\|^{2}}{1+\left\|B_{k}\right\|},
\end{aligned}
$$

where

$$
\left|g_{k}^{T} B_{k} g_{k}\right| \leq\left\|g_{k}\right\|^{2}\left\|B_{k}\right\| \leq\left\|g_{k}\right\|^{2}\left(1+\left\|B_{k}\right\|\right)
$$

because of the Cauchy-Schwarz inequality.

Corollary 3.2. If $m_{k}(s)$ is the second-order model, and $s_{k}$ is an improvement on the Cauchy point within the trust-region $\|s\| \leq$ $\Delta_{k}$,

$$
f_{k}-m_{k}\left(s_{k}\right) \geq \frac{1}{2}\left\|g_{k}\right\| \min \left[\frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}, \Delta_{k}\right] .
$$

## DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 3.3. Suppose that $f \in C^{2}$, and that the true and model Hessians satisfy the bounds $\|H(x)\| \leq \kappa_{h}$ for all $x$ and $\left\|B_{k}\right\| \leq \kappa_{b}$ for all $k$ and some $\kappa_{h} \geq 1$ and $\kappa_{b} \geq 0$. Then

$$
\left|f\left(x_{k}+s_{k}\right)-m_{k}\left(s_{k}\right)\right| \leq \kappa_{d} \Delta_{k}^{2},
$$

where $\kappa_{d}=\frac{1}{2}\left(\kappa_{h}+\kappa_{b}\right)$, for all $k$.

## PROOF OF LEMMA 3.3

Mean value theorem $\Longrightarrow$

$$
f\left(x_{k}+s_{k}\right)=f\left(x_{k}\right)+s_{k}^{T} \nabla_{x} f\left(x_{k}\right)+\frac{1}{2} s_{k}^{T} \nabla_{x x} f\left(\xi_{k}\right) s_{k}
$$

for some $\xi_{k} \in\left[x_{k}, x_{k}+s_{k}\right]$. Thus

$$
\begin{aligned}
\left|f\left(x_{k}+s_{k}\right)-m_{k}\left(s_{k}\right)\right| & =\frac{1}{2}\left|s_{k}^{T} H\left(\xi_{k}\right) s_{k}-s_{k}^{T} B_{k} s_{k}\right| \leq \frac{1}{2}\left|s_{k}^{T} H\left(\xi_{k}\right) s_{k}\right|+\frac{1}{2}\left|s_{k}^{T} B_{k} s_{k}\right| \\
& \leq \frac{1}{2}\left(\kappa_{h}+\kappa_{b}\right)\left\|s_{k}\right\|^{2} \leq \kappa_{d} \Delta_{k}^{2}
\end{aligned}
$$

using the triangle and Cauchy-Schwarz inequalities.

## ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 3.4. Suppose that $f \in C^{2}$, that the true and model Hessians satisfy the bounds $\left\|H_{k}\right\| \leq \kappa_{h}$ and $\left\|B_{k}\right\| \leq \kappa_{b}$ for all $k$ and some $\kappa_{h} \geq 1$ and $\kappa_{b} \geq 0$, and that $\kappa_{d}=\frac{1}{2}\left(\kappa_{h}+\kappa_{b}\right)$. Suppose furthermore that $g_{k} \neq 0$ and that

$$
\Delta_{k} \leq\left\|g_{k}\right\| \min \left(\frac{1}{\kappa_{h}+\kappa_{b}}, \frac{\left(1-\eta_{v}\right)}{2 \kappa_{d}}\right) .
$$

Then iteration $k$ is very successful and

$$
\Delta_{k+1} \geq \Delta_{k} .
$$

## PROOF OF LEMMA 3.4

By definition,

$$
1+\left\|B_{k}\right\| \leq \kappa_{h}+\kappa_{b}
$$

+ first bound on $\Delta_{k} \Longrightarrow$

$$
\Delta_{k} \leq \frac{\left\|g_{k}\right\|}{\kappa_{h}+\kappa_{b}} \leq \frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|} .
$$

Corollary $3.2 \Longrightarrow$

$$
f_{k}-m_{k}\left(s_{k}\right) \geq \frac{1}{2}\left\|g_{k}\right\| \min \left[\frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}, \Delta_{k}\right]=\frac{1}{2}\left\|g_{k}\right\| \Delta_{k} .
$$

+ Lemma $3.3+$ second bound on $\Delta_{k} \Longrightarrow$

$$
\left|\rho_{k}-1\right|=\left|\frac{f\left(x_{k}+s_{k}\right)-m_{k}\left(s_{k}\right)}{f_{k}-m_{k}\left(s_{k}\right)}\right| \leq 2 \frac{\kappa_{d} \Delta_{k}^{2}}{\left\|g_{k}\right\| \Delta_{k}}=2 \frac{\kappa_{d} \Delta_{k}}{\left\|g_{k}\right\|} \leq 1-\eta_{v} .
$$

$\Longrightarrow \rho_{k} \geq \eta_{v} \Longrightarrow$ iteration is very successful.

## RADIUS WON'T SHRINK TO ZERO AT NON-OPTIMAL POINTS

Lemma 3.5. Suppose that $f \in C^{2}$, that the true and model Hessians satisfy the bounds $\left\|H_{k}\right\| \leq \kappa_{h}$ and $\left\|B_{k}\right\| \leq \kappa_{b}$ for all $k$ and some $\kappa_{h} \geq 1$ and $\kappa_{b} \geq 0$, and that $\kappa_{d}=\frac{1}{2}\left(\kappa_{h}+\kappa_{b}\right)$. Suppose furthermore that there exists a constant $\epsilon>0$ such that $\left\|g_{k}\right\| \geq \epsilon$ for all $k$. Then

$$
\Delta_{k} \geq \kappa_{\epsilon} \stackrel{\text { def }}{=} \epsilon \gamma_{d} \min \left(\frac{1}{\kappa_{h}+\kappa_{b}}, \frac{\left(1-\eta_{v}\right)}{2 \kappa_{d}}\right)
$$

for all $k$.

## PROOF OF LEMMA 3.5

Suppose otherwise that iteration $k$ is first for which

$$
\Delta_{k+1} \leq \kappa_{\epsilon} .
$$

$\Delta_{k}>\Delta_{k+1} \Longrightarrow$ iteration $k$ unsuccessful $\Longrightarrow \gamma_{d} \Delta_{k} \leq \Delta_{k+1}$. Hence

$$
\begin{aligned}
\Delta_{k} & \leq \epsilon \min \left(\frac{1}{\kappa_{h}+\kappa_{b}}, \frac{\left(1-\eta_{v}\right)}{2 \kappa_{d}}\right) \\
& \leq\left\|g_{k}\right\| \min \left(\frac{1}{\kappa_{h}+\kappa_{b}}, \frac{\left(1-\eta_{v}\right)}{2 \kappa_{d}}\right)
\end{aligned}
$$

But this contradicts assertion of Lemma 3.4 that iteration $k$ must be very successful.

## POSSIBLE FINITE TERMINATION

Lemma 3.6. Suppose that $f \in C^{2}$, and that both the true and model Hessians remain bounded for all $k$. Suppose furthermore that there are only finitely many successful iterations. Then $x_{k}=x_{*}$ for all sufficiently large $k$ and $g\left(x_{*}\right)=0$.

## PROOF OF LEMMA 3.6

$$
x_{k_{0}+j}=x_{k_{0}+1}=x_{*}
$$

for all $j>0$, where $k_{0}$ is index of last successful iterate.
All iterations are unsuccessful for sufficiently large $k \Longrightarrow\left\{\Delta_{k}\right\} \longrightarrow 0$

+ Lemma 3.4 then implies that if $\left\|g_{k_{0}+1}\right\|>0$ there must be a successful iteration of index larger than $k_{0}$, which is impossible $\Longrightarrow\left\|g_{k_{0}+1}\right\|=0$.


## GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 3.7. Suppose that $f \in C^{2}$, and that both the true and model Hessians remain bounded for all $k$. Then either

$$
g_{l}=0 \text { for some } l \geq 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0
$$

## PROOF OF THEOREM 3.7

Let $\mathcal{S}$ be the index set of successful iterations. Lemma $3.6 \Longrightarrow$ true Theorem 3.7 when $|\mathcal{S}|$ finite.
So consider $|\mathcal{S}|=\infty$, and suppose $f_{k}$ bounded below and

$$
\begin{equation*}
\left\|g_{k}\right\| \geq \epsilon \tag{6}
\end{equation*}
$$

for some $\epsilon>0$ and all $k$, and consider some $k \in \mathcal{S}$.

+ Corollary 3.2, Lemma 3.5, and the assumption (6) $\Longrightarrow$

$$
f_{k}-f_{k+1} \geq \eta_{s}\left[f_{k}-m_{k}\left(s_{k}\right)\right] \geq \delta_{\epsilon} \stackrel{\text { def }}{=} \frac{1}{2} \eta_{s} \epsilon \min \left[\frac{\epsilon}{1+\kappa_{b}}, \kappa_{\epsilon}\right] .
$$

$\Longrightarrow$

$$
f_{0}-f_{k+1}=\sum_{\substack{j=0 \\ j \in \mathcal{S}}}^{k}\left[f_{j}-f_{j+1}\right] \geq \sigma_{k} \delta_{\epsilon},
$$

where $\sigma_{k}$ is the number of successful iterations up to iteration $k$. But

$$
\lim _{k \rightarrow \infty} \sigma_{k}=+\infty
$$

$\Longrightarrow f_{k}$ unbounded below $\Longrightarrow$ a subsequence of the $\left\|g_{k}\right\| \longrightarrow 0$

## GLOBAL CONVERGENCE

Theorem 3.8. Suppose that $f \in C^{2}$, and that both the true and model Hessians remain bounded for all $k$. Then either

$$
g_{l}=0 \text { for some } l \geq 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} g_{k}=0
$$

## II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize $q(s) \equiv s^{T} g+\frac{1}{2} s^{T} B s$ subject to $\|s\| \leq \Delta$ $s \in \mathbb{R}^{n}$

AIM: find $s_{*}$ so that

$$
q\left(s_{*}\right) \leq q\left(s^{\mathrm{C}}\right) \text { and }\left\|s_{*}\right\| \leq \Delta
$$

Might solve
$\odot$ exactly $\Longrightarrow$ Newton-like method
$\odot$ approximately $\Longrightarrow$ steepest descent/conjugate gradients

## THE $\ell_{2}$-NORM TRUST-REGION SUBPROBLEM

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} q(s) \equiv s^{T} g+\frac{1}{2} s^{T} B s \text { subject to }\|s\|_{2} \leq \Delta
$$

## Solution characterisation result:

Theorem 3.9. Any global minimizer $s_{*}$ of $q(s)$ subject to $\|s\|_{2} \leq$ $\Delta$ satisfies the equation

$$
\left(B+\lambda_{*} I\right) s_{*}=-g,
$$

where $B+\lambda_{*} I$ is positive semi-definite, $\lambda_{*} \geq 0$ and $\lambda_{*}\left(\left\|s_{*}\right\|_{2}-\Delta\right)=$ 0 . If $B+\lambda_{*} I$ is positive definite, $s_{*}$ is unique.

## PROOF OF THEOREM 3.9

Problem equivalent to minimizing $q(s)$ subject to $\frac{1}{2} \Delta^{2}-\frac{1}{2} s^{T} s \geq 0$. Theorem $1.9 \Longrightarrow$

$$
\begin{equation*}
g+B s_{*}=-\lambda_{*} s_{*} \tag{7}
\end{equation*}
$$

for some Lagrange multiplier $\lambda_{*} \geq 0$ for which either $\lambda_{*}=0$ or $\left\|s_{*}\right\|_{2}=$ $\Delta$ (or both). It remains to show $B+\lambda_{*} I$ is positive semi-definite.

If $s_{*}$ lies in the interior of the trust-region, $\lambda_{*}=0$, and Theorem 1.10 $\Longrightarrow B+\lambda_{*} I=B$ is positive semi-definite.

If $\left\|s_{*}\right\|_{2}=\Delta$ and $\lambda_{*}=0$, Theorem $1.10 \Longrightarrow v^{T} B v \geq 0$ for all $v \in \mathcal{N}_{+}=\left\{v \mid s_{*}^{T} v \geq 0\right\}$. If $v \notin \mathcal{N}_{+} \Longrightarrow-v \in \mathcal{N}_{+} \Longrightarrow v^{T} B v \geq 0$ for all $v$.
Only remaining case is where $\left\|s_{*}\right\|_{2}=\Delta$ and $\lambda_{*}>0$. Theorem 1.10 $\Longrightarrow v^{T}\left(B+\lambda_{*} I\right) v \geq 0$ for all $v \in \mathcal{N}_{+}=\left\{v \mid s_{*}^{T} v=0\right\} \Longrightarrow$ remains to consider $v^{T} B v$ when $s_{*}^{T} v \neq 0$.


Figure 3.1: Construction of "missing" directions of positive curvature.

Let $s$ be any point on the boundary $\delta R$ of the trust-region $R$, and let $w=s-s_{*}$. Then

$$
\begin{equation*}
-w^{T} s_{*}=\left(s_{*}-s\right)^{T} s_{*}=\frac{1}{2}\left(s_{*}-s\right)^{T}\left(s_{*}-s\right)=\frac{1}{2} w^{T} w \tag{8}
\end{equation*}
$$

since $\|s\|_{2}=\Delta=\left\|s_{*}\right\|_{2} .(7)+(8) \Longrightarrow$

$$
\begin{align*}
q(s)-q\left(s_{*}\right) & =w^{T}\left(g+B s_{*}\right)+\frac{1}{2} w^{T} B w \\
& =-\lambda_{*} w^{T} s_{*}+\frac{1}{2} w^{T} B w=\frac{1}{2} w^{T}\left(B+\lambda_{*} I\right) w, \tag{9}
\end{align*}
$$

$\Longrightarrow w^{T}\left(B+\lambda_{*} I\right) w \geq 0$ since $s_{*}$ is a global minimizer. But

$$
s=s_{*}-2 \frac{s_{*}^{T} v}{v^{T} v} v \in \delta R
$$

$\Longrightarrow$ (for this $s$ ) $w \| v \Longrightarrow v^{T}\left(B+\lambda_{*} I\right) v \geq 0$.
When $B+\lambda_{*} I$ is positive definite, $s_{*}=-\left(B+\lambda_{*} I\right)^{-1} g$. If $s_{*} \in \delta R$ and $s \in R$, (8) and (9) become $-w^{T} s_{*} \geq \frac{1}{2} w^{T} w$ and $q(s) \geq q\left(s_{*}\right)+$ $\frac{1}{2} w^{T}\left(B+\lambda_{*} I\right) w$ respectively. Hence, $q(s)>q\left(s_{*}\right)$ for any $s \neq s_{*}$. If $s_{*}$ is interior, $\lambda_{*}=0, B$ is positive definite, and thus $s_{*}$ is the unique unconstrained minimizer of $q(s)$.

## ALGORITHMS FOR THE $\ell_{2}$-NORM SUBPROBLEM

Two cases:

- $B$ positive-semi definite and $B s=-g$ satisfies $\|s\|_{2} \leq \Delta \Longrightarrow$ $s_{*}=s$
- $B$ indefinite or $B s=-g$ satisfies $\|s\|_{2}>\Delta$ In this case
$\diamond\left(B+\lambda_{*} I\right) s_{*}=-g$ and $s_{*}^{T} s_{*}=\Delta^{2}$
- nonlinear (quadratic) system in $s$ and $\lambda$
- concentrate on this


## EQUALITY CONSTRAINED $\ell_{2}$-NORM SUBPROBLEM

Suppose $B$ has spectral decomposition

$$
B=U^{T} \Lambda U
$$

- $U$ eigenvectors
- $\Lambda$ diagonal eigenvalues: $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$

Require $B+\lambda I$ positive semi-definite $\Longrightarrow \lambda \geq-\lambda_{1}$
Define

$$
s(\lambda)=-(B+\lambda I)^{-1} g
$$

Require

$$
\psi(\lambda) \stackrel{\text { def }}{=}\|s(\lambda)\|_{2}^{2}=\Delta^{2}
$$

Note

$$
\left(\gamma_{i}=e_{i}^{T} U g\right)
$$

$$
\psi(\lambda)=\left\|U^{T}(\Lambda+\lambda I)^{-1} U g\right\|_{2}^{2}=\sum_{i=1}^{n} \frac{\gamma_{i}^{2}}{\left(\lambda_{i}+\lambda\right)^{2}}
$$



## NONCONVEX EXAMPLE

$$
\begin{aligned}
& g=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

## THE "HARD" CASE



## SUMMARY

For indefinite $B$,
Hard case occurs when $g$ orthogonal to eigenvector $u_{1}$ for most negative eigenvalue $\lambda_{1}$

- OK if radius is radius small enough
- No "obvious" solution to equations ... but
solution is actually of the form

$$
s_{\lim }+\sigma u_{1}
$$

where

$$
\begin{aligned}
& \bullet s_{\lim }=\lim _{\lambda}{ }_{+-\lambda_{1}} s(\lambda) \\
& \bullet\left\|s_{\lim }+\sigma u_{1}\right\|_{2}=\Delta
\end{aligned}
$$

HOW TO SOLVE $\|\mathrm{s}(\lambda)\|_{2}=\Delta$

## DON'T!!

Solve instead the secular equation

$$
\phi(\lambda) \stackrel{\text { def }}{=} \frac{1}{\|s(\lambda)\|_{2}}-\frac{1}{\Delta}=0
$$

- no poles
- smallest at eigenvalues (except in hard case!)
$\odot$ analytic function $\Longrightarrow$ ideal for Newton
- global convergent (ultimately quadratic rate except in hard case)
$\odot$ need to safeguard to protect Newton from the hard \& interior solution cases


## THE SECULAR EQUATION



NEWTON'S METHOD FOR SECULAR EQUATION
Newton correction at $\lambda$ is $-\phi(\lambda) / \phi^{\prime}(\lambda)$. Differentiating

$$
\begin{gathered}
\phi(\lambda)=\frac{1}{\|s(\lambda)\|_{2}}-\frac{1}{\Delta}=\frac{1}{\left(s^{T}(\lambda) s(\lambda)\right)^{\frac{1}{2}}}-\frac{1}{\Delta} \Longrightarrow \\
\phi^{\prime}(\lambda)=-\frac{s^{T}(\lambda) \nabla_{\lambda} s(\lambda)}{\left(s^{T}(\lambda) s(\lambda)\right)^{\frac{3}{2}}}=-\frac{s^{T}(\lambda) \nabla_{\lambda} s(\lambda)}{\|s(\lambda)\|_{2}^{3}} .
\end{gathered}
$$

Differentiating the defining equation

$$
(B+\lambda I) s(\lambda)=-g \Longrightarrow \quad(B+\lambda I) \nabla_{\lambda} s(\lambda)+s(\lambda)=0 .
$$

Notice that, rather than $\nabla_{\lambda} s(\lambda)$, merely

$$
s^{T}(\lambda) \nabla_{\lambda} s(\lambda)=-s^{T}(\lambda)(B+\lambda I)(\lambda)^{-1} s(\lambda)
$$

required for $\phi^{\prime}(\lambda)$. Given the factorization $B+\lambda I=L(\lambda) L^{T}(\lambda) \Longrightarrow$

$$
\begin{aligned}
s^{T}(\lambda)(B+\lambda I)^{-1} s(\lambda) & =s^{T}(\lambda) L^{-T}(\lambda) L^{-1}(\lambda) s(\lambda) \\
& =\left(L^{-1}(\lambda) s(\lambda)\right)^{T}\left(L^{-1}(\lambda) s(\lambda)\right)=\|w(\lambda)\|_{2}^{2}
\end{aligned}
$$

where $L(\lambda) w(\lambda)=s(\lambda)$.

NEWTON'S METHOD \& THE SECULAR EQUATION

Let $\lambda>-\lambda_{1}$ and $\Delta>0$ be given
Until "convergence" do:
Factorize $B+\lambda I=L L^{T}$
Solve $L L^{T} s=-g$
Solve $L w=s$
Replace $\lambda$ by

$$
\lambda+\left(\frac{\|s\|_{2}-\Delta}{\Delta}\right)\left(\frac{\|s\|_{2}^{2}}{\|w\|_{2}^{2}}\right)
$$

## SOLVING THE LARGE-SCALE PROBLEM

- when $n$ is large, factorization may be impossible
- may instead try to use an iterative method to approximate
- steepest descent leads to the Cauchy point
- obvious generalization: conjugate gradients ... but
- what about the trust region?
- what about negative curvature?


## CONJUGATE GRADIENTS TO "MINIMIZE" $\mathrm{q}(\mathrm{s})$

Given $s^{0}=0$, set $g^{0}=g, d^{0}=-g$ and $i=0$
Until $g^{i}$ "small" or breakdown, iterate
$\alpha^{i}=\left\|g^{i}\right\|_{2}^{2} / d^{i T} B d^{i}$
$s^{i+1}=s^{i}+\alpha^{i} d^{i}$
$g^{i+1}=g^{i}+\alpha^{i} B d^{i} \quad\left(\equiv g+B s^{i+1}\right)$
$\beta^{i}=\left\|g^{i+1}\right\|_{2}^{2} /\left\|g^{i}\right\|_{2}^{2}$
$d^{i+1}=-g^{i+1}+\beta^{i} d^{i}$
and increase $i$ by 1

## CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 3.10. Suppose that the conjugate gradient method is applied to minimize $q(s)$ starting from $s^{0}=0$, and that $d^{i T} B d^{i}>0$ for $0 \leq i \leq k$. Then the iterates $s^{j}$ satisfy the inequalities

$$
\left\|s^{j}\right\|_{2}<\left\|s^{j+1}\right\|_{2}
$$

for $0 \leq j \leq k-1$.

## TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration $i$ if

1. $d^{i T} B d^{i} \leq 0 \Longrightarrow$ problem unbounded along $d^{i}$
2. $\left\|s^{i}+\alpha^{i} d^{i}\right\|_{2}>\Delta \Longrightarrow$ solution on trust-region boundary

In both cases, stop with $s_{*}=s^{i}+\alpha^{\mathrm{B}} d^{i}$, where $\alpha^{\mathrm{B}}$ chosen as positive root of

$$
\left\|s^{i}+\alpha^{\mathrm{B}} d^{i}\right\|_{2}=\Delta
$$

Crucially

$$
q\left(s_{*}\right) \leq q\left(s^{C}\right) \text { and }\left\|s_{*}\right\|_{2} \leq \Delta
$$

$\Longrightarrow \mathrm{TR}$ algorithm converges to a first-order critical point

## HOW GOOD IS TRUNCATED C.G.?

In the convex case ... very good

Theorem 3.11. Suppose that the truncated conjugate gradient method is applied to minimize $q(s)$ and that $B$ is positive definite. Then the computed and actual solutions to the problem, $s_{*}$ and $s_{*}^{\mathrm{M}}$, satisfy the bound

$$
q\left(s_{*}\right) \leq \frac{1}{2} q\left(s_{*}^{M}\right)
$$

In the non-convex case ... maybe poor
$\odot$ e.g., if $g=0$ and $B$ is indefinite $\Longrightarrow q\left(s_{*}\right)=0$

- can use Lanczos method to continue around trust-region boundary if necessary

