## Part 3: Trust-region methods for unconstrained optimization

Nick Gould (RAL)

$$\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathbb{R}^n
\end{array}$$

MSc course on nonlinear optimization

#### UNCONSTRAINED MINIMIZATION

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$$

where the **objective function**  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ 

- $\circ$  assume that  $f \in C^1$  (sometimes  $C^2$ ) and Lipschitz
- $\odot\,$  often in practice this assumption violated, but not necessary

#### LINESEARCH VS TRUST-REGION METHODS

#### Linesearch methods

- $\diamond$  pick descent direction  $p_k$
- $\diamond$  pick stepsize  $\alpha_k$  to "reduce"  $f(x_k + \alpha p_k)$
- $\diamond x_{k+1} = x_k + \alpha_k p_k$

## • Trust-region methods

- $\diamond$  pick step  $s_k$  to reduce "model" of  $f(x_k + s)$
- $\diamond$  accept  $x_{k+1} = x_k + s_k$  if decrease in model inherited by  $f(x_k + s_k)$
- $\diamond$  otherwise set  $x_{k+1} = x_k$ , "refine" model

#### TRUST-REGION MODEL PROBLEM

Model  $f(x_k + s)$  by:

⊙ linear model

$$m_k^L(s) = f_k + s^T g_k$$

 $\odot$  quadratic model — symmetric  $B_k$ 

$$m_k^Q(s) = f_k + s^T g_k + \frac{1}{2} s^T B_k s$$

## Major difficulties:

- $\circ$  models may not resemble  $f(x_k + s)$  if s is large
- $\odot\,$  models may be unbounded from below
  - $\diamond$  linear model always unless  $g_k = 0$
  - $\diamond$  quadratic model always if  $B_k$  is indefinite, possibly if  $B_k$  is only positive semi-definite

#### THE TRUST REGION

Prevent model  $m_k(s)$  from unboundedness by imposing a **trust-region** constraint

$$||s|| \le \Delta_k$$

for some "suitable" scalar **radius**  $\Delta_k > 0$ 

## $\implies$ trust-region subproblem

approx minimize  $m_k(s)$  subject to  $||s|| \leq \Delta_k$ 

- $\odot$  in theory does not depend on norm  $\|\cdot\|$
- o in practice it might!

#### **OUR MODEL**

For simplicity, concentrate on the second-order (Newton-like) model

$$m_k(s) = m_k^Q(s) = f_k + s^T g_k + \frac{1}{2} s^T B_k s$$

and the  $\ell_2$ -trust region norm  $\|\cdot\| = \|\cdot\|_2$ 

Note:

- $\circ$   $B_k = H_k$  is allowed
- $\odot$  analysis for other trust-region norms simply adds extra constants in following results

#### BASIC TRUST-REGION METHOD

Given k = 0,  $\Delta_0 > 0$  and  $x_0$ , until "convergence" do: Build the second-order model m(s) of  $f(x_k + s)$ . "Solve" the trust-region subproblem to find  $s_k$ for which  $m(s_k)$  "<"  $f_k$  and  $||s_k|| \leq \Delta_k$ , and define

$$\rho_k = \frac{f_k - f(x_k + s_k)}{f_k - m_k(s_k)}.$$

If 
$$\rho_k \geq \eta_v$$
 [very successful]  $0 < \eta_v < 1$  set  $x_{k+1} = x_k + s_k$  and  $\Delta_{k+1} = \gamma_i \Delta_k$   $\gamma_i \geq 1$  Otherwise if  $\rho_k \geq \eta_s$  then [successful]  $0 < \eta_s \leq \eta_v < 1$  set  $x_{k+1} = x_k + s_k$  and  $\Delta_{k+1} = \Delta_k$  Otherwise [unsuccessful] set  $x_{k+1} = x_k$  and  $\Delta_{k+1} = \gamma_d \Delta_k$   $0 < \gamma_d < 1$  Increase  $k$  by 1

#### "SOLVE" THE TRUST REGION SUBPROBLEM?

At the very least

- $\odot$  aim to achieve as much reduction in the model as would an iteration of steepest descent
- $\begin{array}{ll} \odot \ \, \textbf{Cauchy point} \colon s_k^{\text{\tiny C}} = -\alpha_k^{\text{\tiny C}} g_k \ \, \text{where} \\ \\ \alpha_k^{\text{\tiny C}} = \ \, \arg\min_{\alpha>0} m_k(-\alpha g_k) \ \, \text{subject to} \ \, \alpha \|g_k\| \leq \Delta_k \\ \\ = \ \, \arg\min_{0<\alpha \leq \Delta_k/\|g_k\|} m_k(-\alpha g_k) \\ \\ \end{array}$ 
  - $\diamond$  minimize quadratic on line segment  $\Longrightarrow$  very easy!
- $\circ$  require that

$$m_k(s_k) \le m_k(s_k^{\text{C}})$$
 and  $||s_k|| \le \Delta_k$ 

 $\odot$  in practice, hope to do far better than this

#### ACHIEVABLE MODEL DECREASE

**Theorem 3.1.** If  $m_k(s)$  is the second-order model and  $s_k^{\text{c}}$  is its Cauchy point within the trust-region  $||s|| \leq \Delta_k$ ,

$$f_k - m_k(s_k^{\scriptscriptstyle ext{C}}) \ge \frac{1}{2} \|g_k\| \min \left[ \frac{\|g_k\|}{1 + \|B_k\|}, \Delta_k \right].$$

#### PROOF OF THEOREM 3.1

$$m_k(-\alpha g_k) = f_k - \alpha ||g_k||^2 + \frac{1}{2}\alpha^2 g_k^T B_k g_k.$$

Result immediate if  $g_k = 0$ .

Otherwise, 3 possibilities

- (i) curvature  $g_k^T B_k g_k \leq 0 \Longrightarrow m_k(-\alpha g_k)$  unbounded from below as  $\alpha$  increases  $\Longrightarrow$  Cauchy point occurs on the trust-region boundary.
- (ii) curvature  $g_k^T B_k g_k > 0$  & minimizer  $m_k(-\alpha g_k)$  occurs at or beyond the trust-region boundary  $\Longrightarrow$  Cauchy point occurs on the trust-region boundary.
- (iii) the curvature  $g_k^T B_k g_k > 0$  & minimizer  $m_k(-\alpha g_k)$ , and hence Cauchy point, occurs before trust-region is reached.

Consider each case in turn;

## Case (i)

$$g_k^T B_k g_k \le 0 \& \alpha \ge 0 \Longrightarrow$$

$$m_k(-\alpha g_k) = f_k - \alpha \|g_k\|^2 + \frac{1}{2}\alpha^2 g_k^T B_k g_k \le f_k - \alpha \|g_k\|^2$$
 (1)

Cauchy point lies on boundary of the trust region  $\Longrightarrow$ 

$$\alpha_k^{\rm C} = \frac{\Delta_k}{\|g_k\|}.\tag{2}$$

$$(1) + (2) \Longrightarrow$$

$$|f_k - m_k(s_k^c)| \ge ||g_k||^2 \frac{\Delta_k}{||g_k||} = ||g_k|| \Delta_k \ge \frac{1}{2} ||g_k|| \Delta_k.$$

## Case (ii)

$$\alpha_k^* \stackrel{\text{def}}{=} \arg \min \ m_k(-\alpha g_k) \equiv f_k - \alpha \|g_k\|^2 + \frac{1}{2}\alpha^2 g_k^T B_k g_k$$
 (3)

$$\Longrightarrow$$

$$\alpha_k^* = \frac{\|g_k\|^2}{q_k^T B_k q_k} \ge \alpha_k^{\text{C}} = \frac{\Delta_k}{\|g_k\|} \tag{4}$$

$$\Longrightarrow$$

$$\alpha_k^{\mathsf{C}} g_k^T B_k g_k \le \|g_k\|^2. \tag{5}$$

$$(3) + (4) + (5) \Longrightarrow$$

$$\begin{split} f_k - m_k(s_k^{\text{\tiny C}}) &= \alpha_k^{\text{\tiny C}} \|g_k\|^2 - \frac{1}{2} [\alpha_k^{\text{\tiny C}}]^2 g_k^T B_k g_k \geq \frac{1}{2} \alpha_k^{\text{\tiny C}} \|g_k\|^2 \\ &= \frac{1}{2} \|g_k\|^2 \frac{\Delta_k}{\|g_k\|} = \frac{1}{2} \|g_k\| \Delta_k. \end{split}$$

Case (iii)

$$\alpha_{k}^{\text{C}} = \alpha_{k}^{*} = \frac{\|g_{k}\|^{2}}{g_{k}^{T}B_{k}g_{k}}$$

$$\Rightarrow f_{k} - m_{k}(s_{k}^{\text{C}}) = \alpha_{k}^{*}\|g_{k}\|^{2} + \frac{1}{2}(\alpha_{k}^{*})^{2}g_{k}^{T}B_{k}g_{k}$$

$$= \frac{\|g_{k}\|^{4}}{g_{k}^{T}B_{k}g_{k}} - \frac{1}{2}\frac{\|g_{k}\|^{4}}{g_{k}^{T}B_{k}g_{k}}$$

$$= \frac{1}{2}\frac{\|g_{k}\|^{4}}{g_{k}^{T}B_{k}g_{k}}$$

$$\geq \frac{1}{2}\frac{\|g_{k}\|^{2}}{1 + \|B_{k}\|},$$

where

$$|g_k^T B_k g_k| \le ||g_k||^2 ||B_k|| \le ||g_k||^2 (1 + ||B_k||)$$

because of the Cauchy-Schwarz inequality.

Corollary 3.2. If  $m_k(s)$  is the second-order model, and  $s_k$  is an improvement on the Cauchy point within the trust-region  $||s|| \le \Delta_k$ ,

$$f_k - m_k(s_k) \ge \frac{1}{2} ||g_k|| \min \left[ \frac{||g_k||}{1 + ||B_k||}, \Delta_k \right].$$

#### DIFFERENCE BETWEEN MODEL AND FUNCTION

**Lemma 3.3.** Suppose that  $f \in C^2$ , and that the true and model Hessians satisfy the bounds  $||H(x)|| \le \kappa_h$  for all x and  $||B_k|| \le \kappa_b$  for all k and some  $\kappa_h \ge 1$  and  $\kappa_b \ge 0$ . Then

$$|f(x_k + s_k) - m_k(s_k)| \le \kappa_d \Delta_k^2,$$

where  $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$ , for all k.

#### PROOF OF LEMMA 3.3

Mean value theorem  $\Longrightarrow$ 

$$f(x_k + s_k) = f(x_k) + s_k^T \nabla_x f(x_k) + \frac{1}{2} s_k^T \nabla_{xx} f(\xi_k) s_k$$

for some  $\xi_k \in [x_k, x_k + s_k]$ . Thus

$$|f(x_k + s_k) - m_k(s_k)| = \frac{1}{2} |s_k^T H(\xi_k) s_k - s_k^T B_k s_k| \le \frac{1}{2} |s_k^T H(\xi_k) s_k| + \frac{1}{2} |s_k^T B_k s_k| \le \frac{1}{2} (\kappa_h + \kappa_b) ||s_k||^2 \le \kappa_d \Delta_k^2$$

using the triangle and Cauchy-Schwarz inequalities.

#### ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

**Lemma 3.4.** Suppose that  $f \in C^2$ , that the true and model Hessians satisfy the bounds  $||H_k|| \le \kappa_h$  and  $||B_k|| \le \kappa_b$  for all k and some  $\kappa_h \ge 1$  and  $\kappa_b \ge 0$ , and that  $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$ . Suppose furthermore that  $g_k \ne 0$  and that

$$\Delta_k \le \|g_k\| \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d}\right).$$

Then iteration k is very successful and

$$\Delta_{k+1} \geq \Delta_k$$
.

#### PROOF OF LEMMA 3.4

By definition,

$$1 + \|B_k\| \le \kappa_h + \kappa_b$$

+ first bound on  $\Delta_k \Longrightarrow$ 

$$\Delta_k \le \frac{\|g_k\|}{\kappa_h + \kappa_b} \le \frac{\|g_k\|}{1 + \|B_k\|}.$$

Corollary  $3.2 \Longrightarrow$ 

$$f_k - m_k(s_k) \ge \frac{1}{2} ||g_k|| \min \left[ \frac{||g_k||}{1 + ||B_k||}, \Delta_k \right] = \frac{1}{2} ||g_k|| \Delta_k.$$

+ Lemma 3.3 + second bound on  $\Delta_k \Longrightarrow$ 

$$|\rho_k - 1| = \left| \frac{f(x_k + s_k) - m_k(s_k)}{f_k - m_k(s_k)} \right| \le 2 \frac{\kappa_d \Delta_k^2}{\|g_k\| \Delta_k} = 2 \frac{\kappa_d \Delta_k}{\|g_k\|} \le 1 - \eta_v.$$

 $\implies \rho_k \ge \eta_v \implies$  iteration is very successful.

# RADIUS WON'T SHRINK TO ZERO AT NON-OPTIMAL POINTS

**Lemma 3.5.** Suppose that  $f \in C^2$ , that the true and model Hessians satisfy the bounds  $||H_k|| \le \kappa_h$  and  $||B_k|| \le \kappa_b$  for all k and some  $\kappa_h \ge 1$  and  $\kappa_b \ge 0$ , and that  $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$ . Suppose furthermore that there exists a constant  $\epsilon > 0$  such that  $||g_k|| \ge \epsilon$  for all k. Then

$$\Delta_k \ge \kappa_\epsilon \stackrel{\text{def}}{=} \epsilon \gamma_d \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d}\right)$$

for all k.

#### PROOF OF LEMMA 3.5

Suppose otherwise that iteration k is first for which

$$\Delta_{k+1} \leq \kappa_{\epsilon}$$
.

 $\Delta_k > \Delta_{k+1} \Longrightarrow \text{ iteration } k \text{ unsuccessful} \Longrightarrow \gamma_d \Delta_k \leq \Delta_{k+1}. \text{ Hence}$ 

$$\Delta_k \leq \epsilon \min \left( \frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d} \right)$$

$$\leq \|g_k\| \min \left( \frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d} \right)$$

But this contradicts assertion of Lemma 3.4 that iteration k must be very successful.

#### POSSIBLE FINITE TERMINATION

**Lemma 3.6.** Suppose that  $f \in C^2$ , and that both the true and model Hessians remain bounded for all k. Suppose furthermore that there are only finitely many successful iterations. Then  $x_k = x_*$  for all sufficiently large k and  $g(x_*) = 0$ .

#### PROOF OF LEMMA 3.6

$$x_{k_0+j} = x_{k_0+1} = x_*$$

for all j > 0, where  $k_0$  is index of last successful iterate.

All iterations are unsuccessful for sufficiently large  $k \Longrightarrow \{\Delta_k\} \longrightarrow 0$ 

+ Lemma 3.4 then implies that if  $||g_{k_0+1}|| > 0$  there must be a successful iteration of index larger than  $k_0$ , which is impossible  $\Longrightarrow ||g_{k_0+1}|| = 0$ .

## GLOBAL CONVERGENCE OF ONE SEQUENCE

**Theorem 3.7.** Suppose that  $f \in C^2$ , and that both the true and model Hessians remain bounded for all k. Then either

$$g_l = 0$$
 for some  $l \ge 0$ 

or

$$\lim_{k\to\infty} f_k = -\infty$$

or

$$\liminf_{k\to\infty} \|g_k\| = 0.$$

#### PROOF OF THEOREM 3.7

Let  $\mathcal{S}$  be the index set of successful iterations. Lemma 3.6  $\Longrightarrow$  true Theorem 3.7 when  $|\mathcal{S}|$  finite.

So consider  $|\mathcal{S}| = \infty$ , and suppose  $f_k$  bounded below and

$$||g_k|| \ge \epsilon \tag{6}$$

for some  $\epsilon > 0$  and all k, and consider some  $k \in \mathcal{S}$ .

+ Corollary 3.2, Lemma 3.5, and the assumption  $(6) \Longrightarrow$ 

$$f_k - f_{k+1} \ge \eta_s[f_k - m_k(s_k)] \ge \delta_\epsilon \stackrel{\text{def}}{=} \frac{1}{2} \eta_s \epsilon \min\left[\frac{\epsilon}{1 + \kappa_b}, \kappa_\epsilon\right].$$

 $\Longrightarrow$ 

$$f_0 - f_{k+1} = \sum_{\substack{j=0 \ j \in \mathcal{S}}}^k [f_j - f_{j+1}] \ge \sigma_k \delta_{\epsilon},$$

where  $\sigma_k$  is the number of successful iterations up to iteration k. But

$$\lim_{k\to\infty}\sigma_k=+\infty.$$

 $\implies f_k$  unbounded below  $\implies$  a subsequence of the  $||g_k|| \longrightarrow 0$ 

#### GLOBAL CONVERGENCE

**Theorem 3.8.** Suppose that  $f \in C^2$ , and that both the true and model Hessians remain bounded for all k. Then either

$$g_l = 0$$
 for some  $l \ge 0$ 

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k\to\infty}g_k=0.$$

#### II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize  $q(s) \equiv s^T g + \frac{1}{2} s^T B s$  subject to  $||s|| \leq \Delta$ 

**AIM:** find  $s_*$  so that

$$q(s_*) \le q(s^{\scriptscriptstyle C})$$
 and  $||s_*|| \le \Delta$ 

Might solve

- $\odot$  exactly  $\Longrightarrow$  Newton-like method
- approximately ⇒ steepest descent/conjugate gradients

## THE $\ell_2$ -NORM TRUST-REGION SUBPROBLEM

minimize  $q(s) \equiv s^T g + \frac{1}{2} s^T B s$  subject to  $||s||_2 \leq \Delta$ 

#### Solution characterisation result:

**Theorem 3.9.** Any *global* minimizer  $s_*$  of q(s) subject to  $||s||_2 \le \Delta$  satisfies the equation

$$(B + \lambda_* I)s_* = -g,$$

where  $B + \lambda_* I$  is positive semi-definite,  $\lambda_* \geq 0$  and  $\lambda_* (\|s_*\|_2 - \Delta) = 0$ . If  $B + \lambda_* I$  is positive definite,  $s_*$  is unique.

#### PROOF OF THEOREM 3.9

Problem equivalent to minimizing q(s) subject to  $\frac{1}{2}\Delta^2 - \frac{1}{2}s^Ts \ge 0$ . Theorem 1.9  $\Longrightarrow$ 

$$g + Bs_* = -\lambda_* s_* \tag{7}$$

for some Lagrange multiplier  $\lambda_* \geq 0$  for which either  $\lambda_* = 0$  or  $||s_*||_2 = \Delta$  (or both). It remains to show  $B + \lambda_* I$  is positive semi-definite.

If  $s_*$  lies in the interior of the trust-region,  $\lambda_* = 0$ , and Theorem 1.10  $\implies B + \lambda_* I = B$  is positive semi-definite.

If  $||s_*||_2 = \Delta$  and  $\lambda_* = 0$ , Theorem 1.10  $\Longrightarrow v^T B v \geq 0$  for all  $v \in \mathcal{N}_+ = \{v | s_*^T v \geq 0\}$ . If  $v \notin \mathcal{N}_+ \Longrightarrow -v \in \mathcal{N}_+ \Longrightarrow v^T B v \geq 0$  for all v.

Only remaining case is where  $||s_*||_2 = \Delta$  and  $\lambda_* > 0$ . Theorem 1.10  $\implies v^T(B + \lambda_* I)v \ge 0$  for all  $v \in \mathcal{N}_+ = \{v | s_*^T v = 0\} \implies$  remains to consider  $v^T B v$  when  $s_*^T v \ne 0$ .



Figure 3.1: Construction of "missing" directions of positive curvature.

Let s be any point on the boundary  $\delta R$  of the trust-region R, and let  $w = s - s_*$ . Then

$$-w^{T}s_{*} = (s_{*} - s)^{T}s_{*} = \frac{1}{2}(s_{*} - s)^{T}(s_{*} - s) = \frac{1}{2}w^{T}w$$
 (8)

since  $||s||_2 = \Delta = ||s_*||_2$ . (7) + (8)  $\Longrightarrow$ 

$$q(s) - q(s_*) = w^T (g + Bs_*) + \frac{1}{2} w^T B w = -\lambda_* w^T s_* + \frac{1}{2} w^T B w = \frac{1}{2} w^T (B + \lambda_* I) w,$$
(9)

 $\implies w^T(B + \lambda_* I)w \ge 0$  since  $s_*$  is a global minimizer. But

$$s = s_* - 2\frac{s_*^T v}{v^T v} v \in \delta R$$

 $\implies$  (for this s)  $w||v \implies v^T(B + \lambda_*I)v \ge 0$ .

When  $B + \lambda_* I$  is positive definite,  $s_* = -(B + \lambda_* I)^{-1} g$ . If  $s_* \in \delta R$  and  $s \in R$ , (8) and (9) become  $-w^T s_* \geq \frac{1}{2} w^T w$  and  $q(s) \geq q(s_*) + \frac{1}{2} w^T (B + \lambda_* I) w$  respectively. Hence,  $q(s) > q(s_*)$  for any  $s \neq s_*$ . If  $s_*$  is interior,  $\lambda_* = 0$ , B is positive definite, and thus  $s_*$  is the unique unconstrained minimizer of q(s).

## ALGORITHMS FOR THE $\ell_2$ -NORM SUBPROBLEM

Two cases:

- $\odot$  B positive-semi definite and Bs=-g satisfies  $\|s\|_2 \leq \Delta \Longrightarrow s_*=s$
- B indefinite or Bs = -g satisfies  $||s||_2 > \Delta$ In this case
  - $\diamond \ (B + \lambda_* I) s_* = -g \text{ and } s_*^T s_* = \Delta^2$
  - $\diamond$  nonlinear (quadratic) system in s and  $\lambda$
  - ⋄ concentrate on this

## EQUALITY CONSTRAINED $\ell_2$ -NORM SUBPROBLEM

Suppose B has spectral decomposition

$$B = U^T \Lambda U$$

- $\circ$  U eigenvectors
- $\circ$   $\Lambda$  diagonal eigenvalues:  $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Require  $B + \lambda I$  positive semi-definite  $\Longrightarrow \lambda \ge -\lambda_1$ 

Define

$$s(\lambda) = -(B + \lambda I)^{-1}g$$

Require

$$\psi(\lambda) \stackrel{\text{def}}{=} ||s(\lambda)||_2^2 = \Delta^2$$

Note

$$(\gamma_i = e_i^T U g)$$

$$\psi(\lambda) = \|U^T(\Lambda + \lambda I)^{-1} Ug\|_2^2 = \sum_{i=1}^n \frac{\gamma_i^2}{(\lambda_i + \lambda)^2}$$

## **CONVEX EXAMPLE**



#### NONCONVEX EXAMPLE



## THE "HARD" CASE



#### **SUMMARY**

For indefinite B,

**Hard case** occurs when g orthogonal to eigenvector  $u_1$ for most negative eigenvalue  $\lambda_1$ 

- OK if radius is radius small enough
- ⊙ No "obvious" solution to equations . . . but solution is actually of the form

$$s_{\lim} + \sigma u_1$$

where

$$s_{\lim} = \lim_{\lambda \to -\lambda_1} s(\lambda)$$

$$||s_{\lim} + \sigma u_1||_2 = \Delta$$

$$\diamond \|s_{\lim} + \sigma u_1\|_2 = \Delta$$

# HOW TO SOLVE $\|\mathbf{s}(\lambda)\|_2 = \Delta$

DON'T!!

Solve instead the **secular equation** 

$$\phi(\lambda) \stackrel{\text{def}}{=} \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\Delta} = 0$$

- o no poles
- ⊙ smallest at eigenvalues (except in hard case!)
- $\circ$  analytic function  $\Longrightarrow$  ideal for Newton
- ⊙ global convergent (ultimately quadratic rate except in hard case)
- $\odot$  need to safeguard to protect Newton from the hard & interior solution cases

## THE SECULAR EQUATION



## NEWTON'S METHOD FOR SECULAR EQUATION

Newton correction at  $\lambda$  is  $-\phi(\lambda)/\phi'(\lambda)$ . Differentiating

$$\phi(\lambda) = \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\Delta} = \frac{1}{(s^T(\lambda)s(\lambda))^{\frac{1}{2}}} - \frac{1}{\Delta} \Longrightarrow$$
$$\phi'(\lambda) = -\frac{s^T(\lambda)\nabla_{\lambda}s(\lambda)}{(s^T(\lambda)s(\lambda))^{\frac{3}{2}}} = -\frac{s^T(\lambda)\nabla_{\lambda}s(\lambda)}{\|s(\lambda)\|_2^3}.$$

Differentiating the defining equation

$$(B + \lambda I)s(\lambda) = -g \implies (B + \lambda I)\nabla_{\lambda}s(\lambda) + s(\lambda) = 0.$$

Notice that, rather than  $\nabla_{\lambda} s(\lambda)$ , merely

$$s^{T}(\lambda)\nabla_{\lambda}s(\lambda) = -s^{T}(\lambda)(B + \lambda I)(\lambda)^{-1}s(\lambda)$$

required for  $\phi'(\lambda)$ . Given the factorization  $B + \lambda I = L(\lambda)L^T(\lambda) \Longrightarrow$ 

$$s^{T}(\lambda)(B + \lambda I)^{-1}s(\lambda) = s^{T}(\lambda)L^{-T}(\lambda)L^{-1}(\lambda)s(\lambda) = (L^{-1}(\lambda)s(\lambda))^{T}(L^{-1}(\lambda)s(\lambda)) = ||w(\lambda)||_{2}^{2}$$

where  $L(\lambda)w(\lambda) = s(\lambda)$ .

## NEWTON'S METHOD & THE SECULAR EQUATION

Let  $\lambda > -\lambda_1$  and  $\Delta > 0$  be given

Until "convergence" do:

Factorize  $B + \lambda I = LL^T$ 

Solve  $LL^Ts = -g$ 

Solve Lw = s

Replace  $\lambda$  by

$$\lambda + \left(\frac{\|s\|_2 - \Delta}{\Delta}\right) \left(\frac{\|s\|_2^2}{\|w\|_2^2}\right)$$

#### SOLVING THE LARGE-SCALE PROBLEM

- $\circ$  when n is large, factorization may be impossible
- may instead try to use an iterative method to approximate
  - steepest descent leads to the Cauchy point
  - obvious generalization: conjugate gradients ... but
    - ▶ what about the trust region?
    - ▶ what about negative curvature?

## CONJUGATE GRADIENTS TO "MINIMIZE" q(s)

Given  $s^0 = 0$ , set  $g^0 = g$ ,  $d^0 = -g$  and i = 0Until  $g^i$  "small" or breakdown, iterate  $\alpha^i = \|g^i\|_2^2/d^i B d^i$   $s^{i+1} = s^i + \alpha^i d^i$   $g^{i+1} = g^i + \alpha^i B d^i \quad (\equiv g + B s^{i+1})$   $\beta^i = \|g^{i+1}\|_2^2/\|g^i\|_2^2$   $d^{i+1} = -g^{i+1} + \beta^i d^i$ and increase i by 1

#### CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

**Theorem 3.10.** Suppose that the conjugate gradient method is applied to minimize q(s) starting from  $s^0 = 0$ , and that  $d^{iT}Bd^i > 0$  for  $0 \le i \le k$ . Then the iterates  $s^j$  satisfy the inequalities

$$||s^j||_2 < ||s^{j+1}||_2$$

for  $0 \le j \le k - 1$ .

#### TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration i if

- 1.  $d^{iT}Bd^{i} \leq 0 \Longrightarrow$  problem unbounded along  $d^{i}$
- 2.  $||s^i + \alpha^i d^i||_2 > \Delta \Longrightarrow$  solution on trust-region boundary

In both cases, stop with  $s_* = s^i + \alpha^{\scriptscriptstyle B} d^i$ , where  $\alpha^{\scriptscriptstyle B}$  chosen as positive root of

$$||s^i + \alpha^{\mathrm{B}} d^i||_2 = \Delta$$

Crucially

$$q(s_*) \le q(s^{\scriptscriptstyle \mathrm{C}})$$
 and  $\|s_*\|_2 \le \Delta$ 

 $\implies$  TR algorithm converges to a first-order critical point

#### HOW GOOD IS TRUNCATED C.G.?

In the convex case ... very good

**Theorem 3.11.** Suppose that the truncated conjugate gradient method is applied to minimize q(s) and that B is positive definite. Then the computed and actual solutions to the problem,  $s_*$  and  $s_*^{\text{M}}$ , satisfy the bound

$$q(s_*) \leq \frac{1}{2}q(s_*^{\scriptscriptstyle{\mathrm{M}}})$$

In the non-convex case ... maybe poor

- $\circ$  e.g., if g = 0 and B is indefinite  $\Longrightarrow q(s_*) = 0$
- $\odot$  can use Lanczos method to continue around trust-region boundary if necessary