RAL-TR-2002-028

Task scheduling in an asynchronous distributed
memory multifrontal solver!

Patrick R. Amestoy? Iain S. Duff® and Christof Vémel*

ABSTRACT

We describe the improvements to the task scheduling for MUMPS, an asynchronous
distributed memory direct solver for sparse linear systems. In the new approach, we
determine, during the analysis of the matrix, candidate processes for the tasks that will
be dynamically scheduled during the subsequent factorization. This approach significantly
improves the scalability of the solver in terms of execution time and storage. By
comparison with the previous version of MUMPS, we demonstrate the efficiency and the
scalability of the new algorithm on up to 512 processors. Our test cases include matrices
from regular 3D grids and irregular ones from real-life applications.

Keywords: Sparse linear systems, high performance computing, MUMPS, multifrontal
Gaussian elimination, distributed memory code, task scheduling.

AMS(MOS) subject classifications: 65F05, 65F35, 65F50.

!Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports.
This report is available in compressed postscript as file amdvRAL2002028.ps.gz or
as the PDF file amdvRAL2002028.pdf. The report is also available through URL
http://www.numerical.rl.ac.uk/reports/reports.html. An extended version of this report was
published as Technical Report TR/PA/02/105 from CERFACS.

?Patrick. Amestoy@enseeiht.fr, IRIT-ENSEEIHT, Rue Camichel, Toulouse, France.
3i.s.duff@rl.ac.uk, the work of this author was supported in part by the EPSRC Grant GR/R46441.

4Christof.Voemel@cerfacs.fr, CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

December 16, 2002

Contents

1

2

3

Introduction
Tasks and task dependencies in the multifrontal factorization

Parallelism in the multifrontal factorization

3.1 The different types of parallelism,

3.2 Parallel task scheduling: main principles Lo
3.2.1 Geist-Ng mapping and layers in the assembly tree
3.2.2 The proportional mapping of Pothen and Sun
3.2.3 Dynamic task scheduling for type 2 parallelism

Combining the concept of candidates with dynamic task scheduling
4.1 Issues of dynamic scheduling o0 L.
4.2 Candidate processors for type 2 parallelnodes

Task mapping and task scheduling in MUMPS
5.1 Task mapping algorithm during the analysis phase
5.2 Task scheduling during the factorization phase

Details of the improved task mapping and scheduling algorithms
6.1 The relaxed proportional mapping
6.2 The Geist-Ng construction of layer Lo
6.3 Choosing the number of candidates for a type 2node
6.4 Layer-wise task mapping Lo e
6.5 Post-processing of the assembly tree for an improved memory balance in
the LU factorization
6.6 The dynamic scheduling algorithm used at run time

The test environment
7.1 Regular grid test problems oo oL
7.2 General symmetric and unsymmetric matrices

Experimental investigation of algorithmic details

8.1 The impact of k;,q4; on volume of communication and memory
8.2 The impact of k4. on performance oL,
8.3 Modifying the freedom offered to dynamic scheduling
8.4 Improved node splitting L o o
8.5 Improved node amalgamation L0000
8.6 Post-processing for a better memory balance

Performance analysis

9.1 Nested dissection ordering oL
9.2 Approximate Minimum Fill (AMF) ordering
9.3 Analysis of the speedup for regular grid problems
9.4 Performance analysis on general symmetric and unsymmetric matrices . . .

10
11

12
12
13
14
15

16
17

18
19
20

21
21
23
24
26
28
29

30
30
32
33
34

10 Perspectives and future work

11 Summary and conclusions

ii

36

36

1 Introduction

We consider the direct solution of sparse linear systems on distributed memory computers.
Two state-of-the-art codes for this task, MUMPS and SuperLU, have been extensively
studied and compared by Amestoy, Duff, L’Excellent and Li (20015). Specifically, the
authors show that on a large number of processors, the scalability of the multifrontal
approach used by MUMPS (Amestoy, Duff, L’Excellent and Koster 2001a, Amestoy et al.
2001b) with respect to computation time and use of memory could be improved. This
observation is the starting point for this current work.

The solution of a linear system of equations using MUMPS consists of three phases.
In the analysis phase, the matrix structure is analysed and a suitable ordering and data
structures for an efficient factorization are produced. In the subsequent factorization
phase, the numerical factorization is performed. The final solve phase computes the
solution of the system by forward and backward substitution using the factors that were
just computed.

The numerical factorization is the most expensive of these three phases, and we now
describe how parallelism is exploited in this phase. The task dependency graph of the
multifrontal factorization is a tree, the so-called assembly tree. A node of this tree
corresponds to the factorization of a dense submatrix (the frontal matrix), and an edge
from one node to another describes the order in which the corresponding submatrices can
be factorized. In particular, independent branches of the assembly tree can be factorized in
parallel as the computations associated with one branch do not depend on those performed
in the others. Furthermore, each node in the tree can itself be a source of parallelism. The
ScaLAPACK library (Choi, Demmel, Dhillon, Dongarra, Ostrouchov, Petitet, Stanley,
Walker and Whaley 1996) provides an efficient parallel factorization of dense matrices and
is used for the matrix associated with the root of the assembly tree. But MUMPS offers
another possibility for exploiting parallelism for those nodes that are large enough. Such
nodes can be assigned a master process during analysis that chooses, during numerical
factorization, a set of slave processes to work on subblocks of the dense matrix. This
dynamic decision about the slaves is based on the load of the other processors, only the
less loaded ones are selected to participate as slaves.

In order to address the scalability issues, we have modified this task scheduling and
the treatment of the assembly tree during analysis and factorization. We now give a brief
description of these new modifications to Version 4.1 of MUMPS (to which we sometimes
refer as the old code or the previous version of MUMPS).

The objective of the dynamic task scheduling is to balance the workload of the
processors at run time. However, two major problems arise from offering too much freedom
to the dynamic scheduling. In the previous version of MUMPS, a master process is free
to choose its slaves among all available processes. Since this choice is taken dynamically
during the factorization phase, we have to anticipate it by providing enough memory on
every process for the corresponding computational tasks. Since typically not all processes
are actually used as slaves (and, on a large number of processors, often only relatively few
are needed), the prediction of the required workspace will be overestimated. Thus, the
size of the problems that can be solved is reduced unnecessarily because of this difference
between the prediction and the allocation of memory by the analysis phase and the memory

actually used during the factorization. Secondly, decisions concerning a node should take
account of global information in the assembly tree to localize communication. For example,
by mapping independent subtrees to disjoint sets of processors so that all data movements
related to a subtree are performed within the set, we can improve locality of communication
and increase performance.

With the concept of candidate processors, it is possible to guide the dynamic task
scheduling and to address these issues. The concept originates in an algorithm presented
by Pothen and Sun (1993) and has also been used in the context of static task scheduling
for sparse Cholesky factorization (Henon, Ramet and Roman 2002). In this paper, we
show how it also extends efficiently to dynamic scheduling. For each node that requires
slaves to be chosen dynamically during the factorization, we introduce a limited set of
processors from which the slaves can be selected. While the master previously chose
slaves from among all less loaded processors, the freedom of the dynamic scheduling is
reduced so that the slaves are only chosen from among the candidates. This allows us to
exclude all non-candidates from the estimation of workspace during the analysis phase and
leads to a more realistic prediction of the workspace needed. Furthermore, the candidate
concept allows us to structure the computation better since we can explicitly restrict the
choice of the slaves to a certain group of processors and enforce for example a ‘subtree-
to-subcube’ mapping principle (George, Liu and Ng 1989). (Throughout this paper, we
assume that every processor has one single MPI process associated with it so that we can
unambiguously identify a processor and a corresponding MPI process.)

We illustrate the benefits of the new approach by tests using a number of performance
metrics including execution time, memory usage, communication volume, and scalability.
Our results demonstrate significant improvements for all these metrics, in particular when
performing the calculations on a large number of processors.

The rest of this paper is organized as follows. In Section 2, we review briefly the
general concepts of the multifrontal direct solution of sparse linear systems. We introduce
the assembly tree as a model for the tasks and task dependencies. We describe in
Section 3 the possibilities for exploiting parallelism. We then introduce, in Section 4, the
concept of candidate processors. In Section 5, we give an overview of how the candidate
concept fits into the scheduling algorithm and present the algorithmic details in Section 6.
Section 7 gives an overview of the test problems used in this paper. The presentation of
our experimental results begins with parameter studies and detailed investigations of the
improved algorithms in Section 8. Afterwards, we present a systematic comparison of the
previous with the new version of the code on regular grid problems and general matrices
in Section 9. Finally, we discuss possible extensions of our algorithm in Section 10 and
present our conclusions and a brief summary in Section 11.

2 Tasks and task dependencies in the multifrontal
factorization

We consider the direct solution of large sparse systems of linear equations

Az =b

on distributed memory parallel computers using multifrontal Gaussian elimination. For
an unsymmetric matrix, we compute its LU factorization; if the matrix is symmetric, its
LDLT factorization is computed.

The multifrontal method was initially developed for indefinite sparse symmetric linear
systems (Duff and Reid 1983) and was then extended to unsymmetric matrices (Duff and
Reid 1984). Because of numerical stability, pivoting is required in these cases in contrast
to symmetric positive definite sparse systems where pivoting can be avoided. We are
concerned with general unsymmetric and symmetric indefinite matrices in the following,
for an overview of the multifrontal method for symmetric positive definite systems we refer
to Duff and Reid (1983), Duff, Erisman and Reid (1986), and Liu (1992).

In this section, we describe the tasks arising in the factorization phase of a multifrontal
algorithm. Specifically, we investigate the work associated with the factorization of
individual frontal matrices and the order in which these factorizations can be performed.

The so-called elimination tree (Duff and Reid 1983, Liu 1990) represents the order
in which the matrix can be factorized, that is, the order in which the unknowns from
the underlying linear system of equations can be eliminated. For a dense matrix, the
elimination tree is a chain and defines a complete ordering of the eliminations. However,
for a general sparse matrix, the definition yields only a partial ordering which allows some
freedom for the sequence in which pivots can be eliminated.

One central concept of all modern sparse direct solvers and, in particular, the
multifrontal approach is to group (or amalgamate) columns with the same sparsity
structure to create bigger supervariables or supernodes (Duff and Reid 1983, Liu, Ng
and Peyton 1993) in order to make use of efficient dense matrix kernels. We will
discuss later the advantages and dangers of amalgamation in the context of a distributed
memory multifrontal code. We mention here that it is common to relax the criterion
for amalgamation and permit the creation of coarser supernodes with extra fill-in that,
however, improve the performance of the factorization (Duff and Reid 1983, Ashcraft and
Grimes 1989). The amalgamated elimination tree is called the assembly tree.

We now investigate more closely the work associated with the factorization of the
frontal matrix at an individual node of the assembly tree. Frontal matrices are considered
as dense matrices and we can make use of the efficient BLAS kernels and avoid indirect
addressing, see for example Dongarra, Duff, Sorensen and van der Vorst (1998). Frontal
matrices can be partitioned as shown in Figure 2.1.

fully summed columns partially summed columns

fully summed rows —- Fi11 Fis
partially summed rows —- Fy1 Fho

Figure 2.1: A frontal matrix.

Here, pivots can be chosen only from within the block of fully summed variables Fi;.
Once all eliminations have been performed, the Schur complement matrix Fso —F21F1_11F12
is computed and used to update later rows and columns of the overall matrix which are

associated with the parent nodes. We call this Schur complement matrix the contribution
block of the node.

The notion of children nodes which send their contribution block to their parents leads
to the following interpretation of the factorization process. When a node of the assembly
tree is being processed, it assembles the contribution blocks from all its children nodes
into its frontal matrix. Afterwards, the pivotal variables from the fully summed block are
eliminated and the contribution block computed. The contribution block is then sent to
the parent node to be assembled once all children of the parent (which are the siblings of
the current node) have been processed.

We remark that possibly some variables cannot be eliminated safely from a frontal
matrix because of possible numerical instability. In this case, their elimination will be
delayed until stable pivots can be found. The corresponding fully summed rows and
columns are added to the contribution block and are assembled at the parent node. The
contribution block is then larger than was predicted during the analysis phase, and the
data structure used in the factorization needs to be modified dynamically.

3 Parallelism in the multifrontal factorization

In the following, we identify different sources of parallelism in the multifrontal factorization
and describe how these are exploited in MUMPS (Amestoy et al. 2001a).

3.1 The different types of parallelism

In Section 2, we mentioned that the tasks of multifrontal Gaussian elimination for sparse
matrices are only partially ordered and that the task dependencies are represented by the
assembly tree. A pair of nodes where neither is an ancestor of the other can be factorized
independently from each other, in any order or in parallel. Consequently, independent
branches of the assembly tree can be processed in parallel, and we refer to this as tree
parallelism or type 1 parallelism.

A fundamental concept for the complete static mapping of assembly trees from model
grid problems, the subtree-to-subcube mapping, was given by George, Liu and Ng (1989).
This algorithm was then generalized for problems with irregular sparsity structure and
unbalanced trees to the bin-pack mapping scheme by Geist and Ng (1989) and the
proportional mapping approach by Pothen and Sun (1993). We will describe these
algorithms in Section 3.2.

It is obvious that, in general, tree parallelism can be exploited more efficiently in
the lower part of the assembly tree than near the root node. Experimental results
presented by Amestoy, Duff and L’Excellent (2000) showed a typical speedup obtained
from tree parallelism of less than five on 32 processors. These results are related to the
observation (Amestoy and Duff 1993) that often more than 75% of the computations are
performed in the top three levels of the assembly tree where tree parallelism is limited.
For better scalability, additional parallelism is created from parallel blocked versions of
the algorithms that handle the factorization of the frontal matrices.

The computation of the Schur complement of frontal matrices with a large enough
contribution block can be performed in parallel using a Master-Slave computational model.

The contribution block is partitioned and each part of it assigned to a slave. The master
processor is responsible for the factorization of the block of fully summed variables and
sends the triangular factors to the slave processors which then update their own share of
the contribution block independently from each other and in parallel. We refer to this
approach as type 2 parallelism and call these nodes type 2 nodes.

Furthermore, the factorization of the dense root node can be treated in parallel with
ScaLAPACK (Choi et al. 1996). The root node is partitioned and distributed to the
processors using a 2D block cyclic distribution. We refer to this as type 3 parallelism.
Note that a 2D distribution could also be used for frontal matrices other than the root
node, but this is not exploited in MUMPS.

MUMPS performs the factorization of the pivot rows of a frontal matrix on a single
processor. This can lead to performance problems, particularly if the frontal matrix has
a large block of fully summed variables and only a relatively small contribution block.
However, if the front size is big enough, it is possible to create artificial type 2 parallelism
by splitting the pivot block, see Amestoy et al. (2001a) for a discussion of splitting.

3.2 Parallel task scheduling: main principles

From the point of view of scheduling, the different types of parallelism vary in their degree
of difficulty. Apart from looking at each type of parallelism individually, it is also necessary
to investigate their interaction. The main objectives of the scheduling approaches are to
control the communication costs, and to balance the memory and computation between
the processors. We describe in this section the techniques implemented in Version 4.1 of
MUMPS which is described by Amestoy et al. (2000) and Amestoy et al. (2001a), and
which has been extensively tested and compared with SuperLU (Amestoy et al. 2001b)
and WSSMP (Gupta 2002). We also present the proportional mapping of Pothen and Sun
(1993) from which we develop, in Section 4, our idea of the candidate-based scheduling
that is used in the new version of MUMPS.

3.2.1 Geist-Ng mapping and layers in the assembly tree

We mentioned in Section 3.1 that, in general, only the lower part of an assembly tree can
be exploited efficiently for tree parallelism. Our previous scheduling approach consists
therefore of two phases. At first, we find the lower part of the assembly tree where enough
tree parallelism can be obtained. Afterwards we process the remaining upper part of the
tree additionally exploiting type 2 and type 3 parallelism.

The mapping algorithm by Geist and Ng (1989) allows us to find a layer in the
assembly tree so that the subtrees rooted at the nodes of this layer can be mapped onto
the processors for a good balance with respect to floating-point operations. Processor
communication is avoided by mapping each subtree completely to a single designated
processor. We call the constructed layer Ly. It marks the boundary between the lower
part where scheduling exploits only tree parallelism (type 1), and the upper part where
all three types of parallelism are used.

We consider the following top-down tree-processing approach (Geist and Ng 1989). We
take as a potential layer Lj the root nodes (or the root node, for an irreducible matrix)
of the assembly tree. We check whether the nodes can be mapped onto the processors so

that the load on each processor is balanced up to a threshold. In general, this will not
be the case, in particular if the number of processors used for the factorization is larger
than the number of root nodes. We then modify the potential layer Ly by replacing the
node whose subtree has largest computational cost by its children. Again, we check if
the mapping of the new layer is balanced up to the threshold, otherwise we repeat the
previous substitution step for the node which has now the highest computational subtree
costs, and so forth. The algorithm stops once the nodes in the potential layer Lj allow a
threshold-balanced mapping. Intuitively, we can think of the algorithm descending down
the assembly tree, as illustrated in Figure 3.1.

a b c

Figure 3.1: Geist-Ng algorithm for the construction of layer L.

The constructed initial layer Ly induces a layer partition of the upper part of the
assembly tree. Before the frontal matrix belonging to a node of the tree can be processed,
all contributions from the descendants of the node have to be gathered. This leads to the
following recursive definition. Given a node in layer L; 1, the parent of this node belongs
to L; if and only if all the children of this parent node belong to the layers Lg,..., L; 1.
As the nodes in one layer can be only processed if all their children, belonging to the lower
layers, have already been treated, the layer partition not only represents dependency but
also concurrency of the multifrontal factorization. An example is shown in Figure 3.2.

Figure 3.2: Layers in the assembly tree.

3.2.2 The proportional mapping of Pothen and Sun

The proportional mapping approach of Pothen and Sun (1993) represents an alternative
approach to task scheduling in both regular and possibly irregular assembly trees. It
consists of a recursive assignment of processors to subtrees according to their associated
computational work.

The assembly tree is processed from top to bottom, starting with the root nodes. For
each root node, we calculate the work associated with the factorization of all nodes in
its subtree, and the available processors are distributed among the root nodes according
to their weight. Each node thus gets its set of so-called preferential processors. The
same partitioning is now repeated recursively. The processors that have been previously
assigned to a node are now distributed among the children proportional to their weight
given by the computational costs of their subtrees. The recursive partitioning stops once
a subtree has only one processor assigned to it.

A main benefit of the proportional mapping is that communication is effectively
localized within the processors assigned to a given subtree, with the partitioning guided
from a global point of view taking account of the weight of subtrees. An illustration of the
proportional mapping algorithm is given in Figure 3.3.

P1P2P3P4P5P6P7P8

PP PR R PRy

@,
W o e
Q R, P,

R R PR
" * db db
BB PR

Figure 3.3: Proportional mapping of an assembly tree on eight processors.

While the proportional mapping approach has not been previously used in MUMPS,
we mention it here due to its central importance for other sparse linear solvers like
PaStiX (Henon et al. 2002) and because the concept of candidate processors for type 2
parallel nodes presented later exploits this idea.

3.2.3 Dynamic task scheduling for type 2 parallelism

It is possible to extend the static mapping to the tasks arising in the Master-Slave
computational model for the factorization of type 2 parallel nodes. However, the static
mapping is performed during the analysis phase on the basis of estimated costs of
computational work and communication. These estimates can be inaccurate if pivots have
to be delayed for numerical reasons. For a better equilibration of the actual computational
work at run time, both the number and the choice of the slaves of type 2 nodes are
determined dynamically during factorization as described by Amestoy et al. (2000) and

Amestoy et al. (2001a). When the master of a type 2 node receives the symbolic
information on the structure of the contribution blocks of the children, the slaves for
the factorization are selected based on their current workload, the least loaded processors
being chosen. The master then informs the processes handling the children nodes which
slaves are participating in the factorization of the node so that they can send the entries
in their contribution blocks directly to the appropriate slaves.

The previous version of MUMPS exploits type 2 parallelism above layer Lg as follows.
If a node possesses a contribution block larger than a given threshold and the number of
eliminated variables in its pivot block is large enough, then it will be declared a type 2
node and will be involved in the dynamic decision to schedule new activities. In the new
version of MUMPS, we leave this concept principally unchanged; however, we restrict the
freedom for the dynamic choice of the slaves. While, in the earlier algorithm, potentially
every processor could be chosen as a slave during run time, in the new approach we restrict
this selection to the candidates that have been chosen for a given node during the analysis
phase. This is explained in detail in Section 4.2.

4 Combining the concept of candidates with dynamic task
scheduling

The dynamic choice of the slaves of type 2 nodes during the factorization phase is
an attempt to detect and adjust an imbalance of the workload between the processors
at run time. It was shown to work very well on a small to medium (64) number of
processors (Amestoy et al. 2001a, Amestoy et al. 20015). However, the straightforward
extension of this technique to a large number of processors often offers more freedom to the
dynamic scheduling than can be exploited effectively. In this section, we first give a more
detailed illustration of these shortcomings, and then propose as a solution an algorithm
that exploits the concept of candidate processors.

4.1 Issues of dynamic scheduling

The first issue of dynamic scheduling concerns the memory management. In MUMPS,
the amount of memory needed for each processor is estimated during the analysis phase
and is reserved as workspace for the factorization. Consequently, if every processor can be
possibly taken as a slave of a type 2 node, then enough workspace has to be reserved, on
each processor, during the analysis phase for the potential corresponding computational
task. However, during the factorization, typically not all processors are actually used as
slaves. This leads to a severe overestimation by the analysis phase of the required work
space with the possible consequence of exhausting the memory available on the processors.

Secondly, the choice of the slaves is completely local. When a type 2 node is to be
processed, its master greedily takes the slaves that seem best to it; those processors that
are less loaded (with respect to the number of floating-point operations) than itself at
the time of the scheduling decision are selected as slaves. Thus, the decision about the
slaves depends crucially on the instant when the master chooses the slaves (locality in
time). Furthermore, no account is taken of other type 2 nodes in the tree that have to be
processed (locality in space). Instead of sharing the available slaves so that other nodes

can be processed in parallel, a master might decide to take all of them, hindering the
work on the other type 2 nodes and the treatment of other branches of the assembly tree.
Furthermore, it is not possible in this approach to guarantee any locality of communication
and data movement as, in principle, every processor can work on any type 2 node in the
assembly tree. However, controlling locality is of great importance for modern computer
architectures, for example SMPs like the IBM SP, where, for an MPI programming model,
data movement within the shared memory of a node is cheap compared to communication
across nodes.

4.2 Candidate processors for type 2 parallel nodes

In the following, we present a concept of candidate processors that naturally addresses
the issues raised in Section 4.1. For each type 2 node that requires slaves to be chosen
dynamically during the factorization because of the size of its contribution block, we
introduce a limited set of processors from which the slaves can be selected. While the
master previously chose slaves from among all less loaded processors, slaves are now only
chosen from this list of candidates. This effectively allows us to exclude all non-candidates
from the estimation of workspace during the analysis phase and leads to a tighter and
more realistic estimation of the workspace needed. Secondly, we can expect a performance
gain in cases as described in the previous section where greedy decisions of one type 2
master can no longer hinder processors from processing another node.

The candidate concept can be thought of as an intermediate step between full static
and full dynamic scheduling. While we leave some freedom for dynamic decisions at run
time, this is guided by static decisions about the candidate assignment during the analysis
phase. We refer to Section 6.6 for a full description of the algorithmic details.

In Section 3.2.1, we described the layer structure of the assembly tree. As each layer of
the assembly tree represents a view of concurrent execution, all type 2 nodes on the same
layer are potential rivals for slave processors, see Section 4.1. By assigning the candidates
to all type 2 nodes of a given layer simultaneously, we avoid isolated treatment of nodes
and direct our candidate concept from a global view of complete layers.

The assignment and the choice of the candidate processors is guided using a
proportional mapping as described in Sections 3.2.2 and 5.1. We partition the set of
processors recursively, starting from the root, so that for each subtree there is a well
defined subset of preferential processors which guides the selection of the candidates.

With this approach, we achieve

e Locality of communication as we limit the communication to those processors
belonging to the subtree.

e Independence of computation as we limit the interaction of the processing of one
subtree with the treatment of another independent one.

5 Task mapping and task scheduling in MUMPS

In this section, we give a generic description of the algorithm used by Version 4.1 of
MUMPS (Amestoy et al. 2001a, Amestoy et al. 20015) and discuss in general terms our

improvements to it as they have been integrated into the new version. A detailed discussion
of the key modifications is given in Section 6. We speak, in the following, of task mapping
when we refer to the assignment of master processors and candidates during the analysis
phase, and of task scheduling when we refer to the dynamic choice of type 2 slaves during
the factorization phase.

5.1 Task mapping algorithm during the analysis phase

We consider the task mapping during the analysis phase and compare the previous version
with the new version of MUMPS. A first major point to emphasize is the greater flexibility
and adaptivity of the new algorithm when mapping the upper part of the assembly tree
(that is, above layer Lj). The former version, shown in Algorithm 1, performs a simple
mapping of only the master nodes, while the new version, shown in Algorithm 2, treats the
upper part layer-wise, mapping both master nodes and type 2 candidates. Using a layer-
wise approach we take better account of the task dependency that will control the later
factorization phase and, by analysing the quality of mapping decisions taken on previous
layers, we can try to correct problems by influencing the mapping of the current layer.
This adaptivity was conceptually impossible in the old mapping algorithm.

The second contribution of the new algorithm is of course the added features. A very
important feature is the candidate concept guided by a proportional mapping partition of
the processors. Furthermore, we have added to the treatment of each layer a preprocessing
step that performs amalgamations and node splitting. Moreover, we have improved the
construction of layer Ly for better memory scalability. Lastly, we treat memory imbalances
due to type 2 node mapping using a post-processing step.

We now present in more detail the previous version of the task mapping (Algorithm 1)
and compare it afterwards with the new one, Algorithm 2.

Algorithm 1 Old task mapping algorithm.

(1) Given the assembly tree of a sparse matrix A

(2) Build and map initial layer Ly

(3) Decide type of parallelism for nodes in upper part of tree
(4) Map master nodes of upper part of tree

The starting point (1) of the original algorithm is the assembly tree that was
constructed from the elimination tree of a given sparse matrix using basic amalgamation
and node splitting. From this assembly tree, the algorithm constructs, in step (2), an initial
layer Lg following the Geist-Ng approach presented in Section 3.2.1 with the objective of
balancing the work between the processors. Afterwards, it is decided for which nodes
type 2 or type 3 parallelism is exploited (3), and finally the masters of all nodes above
layer Ly are mapped (4) with the objective of balancing the memory. The choice of the
slave processors for the type 2 nodes is left entirely to the dynamic scheduler during
factorization, see Section 5.2.

The starting point (1’) of the new algorithm is the same assembly tree as for the old
approach (1). In step (2'), we calculate a variant of the proportional mapping as introduced
in Section 3.2.2 and whose algorithmic description is given later in Section 6.1. For each

10

Algorithm 2 New task mapping algorithm.

1) Given the assembly tree of a sparse matrix A
y 1Y
(2') Calculate relaxed proportional mapping, i.e. the preferential processors
(3") Build and map modified initial layer Lg
current_layer = 1
while there exist unmapped nodes on or above current_layer do
4"y Perform tree modifications if necessar
y
(5') Decide type of parallelism for the nodes on current_layer
(6') Map the tasks associated with the nodes on current_layer
current_layer = current_layer + 1
end while
7") Post-processing of the candidate selection to improve memory balance
p g p y

node in the assembly tree, we obtain a set of preferential processors that will guide the
selection and mapping of the candidate processors in step (6'). Step (3') differs from the
corresponding step (2) in the old algorithm insofar as the constructed initial layer has
one additional property. Not only can it be mapped so that the computational work is
balanced between the processors, but we also control better the memory demands of the
subtree roots, see Section 6.2 for the details. Step (4') performs amalgamations and node
splitting to improve the nodes of the current layer. In step (5'), we decide which type of
parallelism we exploit for the nodes of the current layer. Nodes are of type 2 when their
contribution block is large enough, that is greater than a minimum block size. The list
of tasks associated with the current layer includes the masters for the type 1 and type 2
nodes, and the type 2 candidates which are derived from the proportional mapping (2'),
see Section 6.1. For the task mapping, we use a list scheduling algorithm that is described
in Section 6.4. The main difference of the new mapping (6') from the old one (4) is that
we now pre-assign candidate processors for the type 2 nodes while in the former version,
every processor was a potential type 2 slave. The post-processing step (7') affects mostly
the LU factorization. Because the flop-based equilibration of the mapping step (6') can
lead to a particularly bad memory balance, we perform a remapping of the type 2 masters
for improved memory balance, as described in Section 6.5.

5.2 Task scheduling during the factorization phase

In this section, we describe the task management of a processor during the factorization
phase. Here, the old and the new version of the algorithm differ only in the way the type 2
slaves are chosen. In the previous algorithm, every processor was a potential slave for
a type 2 node, whereas now only the candidates can be selected to work on the parallel
update of the contribution block.

The task pool (1) of a processor can contain the following tasks: master of a type 1
node, master of a type 2 node, or slave of a type 2 node. MUMPS uses a stack as the data
structure for the task pool; the processor adds new tasks (3) or extracts them from the
pool (4), respectively. If, during the factorization, the task pool of the processor is empty,
it will wait until it receives new tasks and then re-enter loop (2). If the processor works

11

Algorithm 3 Dynamic task scheduling performed on each processor during the
factorization.

(1) Given the task pool of one processor
while (2) Not all tasks processed do
if Work is received from another processor then
(3) Store work in pool of tasks
else
(4) Extract work from the task pool
if Task is master of type 2 node then
(5) Choose and notify the slaves for the type 2 node
end if
(6) Perform pivot elimination and/or contribution block update
end if

end while

as a type 2 master, it chooses the slaves that will participate in the parallel contribution
block update (5) before it starts the elimination of the pivotal block (6). Otherwise, if the
processor is a type 1 master or a type 2 slave, it begins directly with the pivot elimination
or the contribution block update, respectively (6).

In the new version of the algorithm, only step (5) is modified to ensure that the type 2
slaves are selected from among the candidates allocated for the type 2 node. We give the
details of the algorithm for choosing the slaves in Section 6.6.

6 Details of the improved task mapping and scheduling
algorithms

After the general discussion, in Section 5, contrasting the task mapping and scheduling for
the old and new versions of MUMPS, we now describe the key points of the new algorithm
in detail.

6.1 The relaxed proportional mapping

We give below, in Algorithm 4, an algorithmic description of one step of the proportional
mapping presented in Section 3.2.2. The preferential processors given to a node are
distributed among its children according to their weights. Note that we can relaz the
strict proportional mapping by multiplying the number of preferential processors n, by a
relaxation factor p > 1 in step (2).

In step (1), we calculate the relative costs ¢,(s) of a child s,s € {sy,...,s;} from the
costs ¢(s) for the factorization of all nodes in the subtree rooted at s as

__ s
)= S ey (6.1)

From the relative weight of child s, we obtain its share of preferential processors in step
(2) that can be relaxed by the factor p. A fundamental property of the proportional

12

Algorithm 4 One step of proportional mapping.

Given a node n with preferential processors pi,...,p,,») and children s1,...,s;
for each child s of n do
(1) Calculate relative costs ¢, (s) of child s, 0 < ¢,(s) <1
(2) Calculate number of preferentials n,(s) = max (1, min {p X ¢,(s) x ny(n),n.(n)})
for child s
end for
(83) Cyclic assignment of the preferential processors for all children s1,...,s;

mapping is that the preferential processors of a child s are a subset of the preferential
processors of its parent node n. This is ensured because n,(s) < ng(n) in (2) and we
always choose from the preferential processors of the parents at step (3). Here, we also
make sure that each child has at least one processor, even if its cost is negligible. After
we have calculated the number of preferential processors for all children, in step (3) we
distribute the processors p1,...,py,, (n) among the children. If the proportional mapping is
strict (p = 1) and the number of preferential processors calculated from the relative weight
¢r(s) in equation (6.1) is an integer, each processor is assigned exactly once. Otherwise,
and in particular if the proportional mapping is relaxed with p > 1, processors can become
preferential for more than one child. Consequently, large values of p will dilute the strict
partition of the processors so that in the extreme case, p — oo, all processors become
preferential for each node.

6.2 The Geist-Ng construction of layer L,

We now give an algorithmic description of the construction of the initial layer Lg that
extends the Geist-Ng approach presented in Section 3.2.1.

Algorithm 5 The Geist-Ng algorithm.

(1) Let Ly contain all root nodes of the assembly tree

(2) Map layer Lo

while (3) Layer Ly is not acceptable do
(4) Find node in Ly with highest computational costs
(5) Replace this node by its children in Ly
(6) Map new layer L

end while

Starting with a potential layer L consisting of the root nodes of the assembly tree
(1), we first compute (2) a mapping of Ly with the list scheduling heuristics described in
Section 6.4. The former criterion for accepting the layer in step (3) demands that the load
imbalance between the processors is smaller than a threshold. Here, the work associated
with a node in Lg is defined as the costs for computing the factors of the subtree rooted
at the node and can be estimated during the analysis phase. If the mapping of layer Ly
is not acceptable, then the node with the highest costs is eliminated from the layer and
replaced by its children (4, 5). A new mapping is computed (6) with the same algorithm
as in (2).

13

The main problem of the algorithm is that balancing the computational work does not
necessarily imply balancing the memory. Consider a node with a very small number of
pivots but a big contribution block. The costs for the factorization depend mainly on the
size of the pivotal block and are small, while the memory required to stack the contribution
block is large. In order to take care of such situations, we propose the following approach.
If a node with a large contribution block was in the upper part of the tree above Ly,
it could either be amalgamated with its parent or become a type 2 node, and, in both
cases, the memory problems would vanish. Thus, by eliminating such nodes from layer
Ly and replacing them by their children, we control the memory required for the subtrees
in addition to balancing the work on layer Lg. The idea is to treat critical nodes in the
latter part of the algorithm by moving them into the upper part of the tree.

Summarizing, we modify the criterion of acceptability (3) to demand that both the
load imbalance for the mapping of Ly is smaller than a threshold and that Lg contains no
nodes that would need to be amalgamated.

6.3 Choosing the number of candidates for a type 2 node

We now describe the role of the proportional mapping for the decision of which processors
become candidates for a type 2 node. Our approach consists of two steps. For a given layer,
we first determine for each type 2 node the number of candidate processors. In a second
step, we choose the candidates from the available processors. (Thus, for a given node n we
determine first an integer number n.(n) that determines how many candidate processors
Pl -+ Pn.(n) have to be chosen in the second step.) The reason for this approach is the
following. The selection of a candidate processor is conceptually similar to the selection of
the master processors for the type 1 and type 2 nodes; all these are tasks that need to be
mapped onto the set of processors. In Section 6.4, we describe the algorithm that we use
to map the tasks associated with one layer in the assembly tree. By mapping the master
and candidate processors together, we hope to obtain better load balancing.

Algorithm 6 Determining the number of candidates using the preferentials.

Given a layer in the assembly tree
for each Type 2 node n with n,(n) preferential processors in the layer do
(1) Determine the number of candidates by n.(n) = n.(n).
end for
(2) OPTIONAL: Redistribute the total number of candidates of the layer among

the layer’s type 2 nodes according to their relative weights.

We have experimented with two different ways for determining the number of
candidates for a given type 2 node and describe these in Algorithm 6. In the first approach,
we select its preferential processors as candidates, thus setting the number of candidates
equal to the number of preferentials. We emphasize that this approach is not equivalent
to a relaxed proportional mapping as the candidates are only potential slaves for the
factorization. In the second approach, we employ an additional post-processing step where
we redistribute the candidates of the layer according to the relative weight of the nodes.
As described in Section 3.2.2, the proportional mapping is calculated from the costs of

14

complete subtrees, not individual nodes. So it might happen that a small node has a large
number of preferentials because it is the root of a large subtree, while a relatively large
node on the same layer has only a small number of preferentials. In order to correct this,
we can reassign candidates from small type 2 nodes as candidates of large type 2 nodes
on the same layer by the optional step in Algorithm 6.

6.4 Layer-wise task mapping

The algorithm that we use for the mapping of the tasks of each layer is a variant of
the well known list scheduling algorithm (Hochbaum 1996) where we first make a list
of the tasks sorted by decreasing costs, and then maps the tasks in this order one after
another to the processor that has the least work assigned so far. We remark that this
heuristic can be proved to construct a schedule whose total makespan (that is, the time by
which all jobs complete their processing) never exceeds twice the makespan of an optimal
schedule (Hochbaum 1996).

As described in the previous sections, the tasks associated with a layer can include the
following:

e The masters of all type 1 and type 2 nodes.

e For each type 2 node, the number of candidate processors determined using the
node’s preferential processors, see Section 6.3.

e The type 3 parallel node.

In the case of layer Lg, we employ the original list scheduling algorithm (Hochbaum
1996), however, for all upper layers Li,Ls,... our algorithm is more complicated for
two reasons. Firstly, we want to guide mapping decisions by the proportional mapping
representing a global view of the tree. Secondly, we have to take care of constraints
that arise either from explicit user-given limits on memory or work for each processor,
or implicitly from the fact that any two candidate processors or any candidate and the
master of a type 2 node have to be different from each other.

Algorithm 7 Generic mapping algorithm.
(1) Create an ordered task list
while Task list not empty do
(2) Extract the next task t; from the list
(3) Make a preference list for the processors
while Task ¢; not mapped to a processor do
(4) Try to map t; to next processor from the preference list

end while
end while

The first two steps (1) and (2) of Algorithm 7 are identical to the original list scheduling
approach: we create a list of all tasks that have to be mapped on the layer, that is, the
work of the type 1 node masters, of type 2 node masters, and of type 2 node candidates
(which have been obtained from the proportional mapping, as described in Section 6.1).

15

This list is then ordered by decreasing costs and the tasks are mapped in the order that
they appear in the list.

Steps (3) and (4) are the generalization of the idea of mapping to the least loaded
processor. In order to take account of the proportional mapping, we can simply propose
mapping the task on the least loaded of the preferential processors coming from the
proportional mapping. However, this is actually too simple as the mapping constraints
for type 2 nodes that we mentioned above have to be respected. Our solution is that we
create a preference list containing all the processors, at first the preferential ones ordered
by decreasing workload and then the non-preferential ones ordered separately, also by
decreasing workload. The first processor in the preference list that doesn’t violate the
mapping constraints will be the one to which the task is mapped.

6.5 Post-processing of the assembly tree for an improved memory
balance in the LU factorization

The mapping algorithm from Section 6.4 tries to balance the work between the
processors. However, there is an important difference between symmetric and unsymmetric
factorization with respect to memory. In the LDLT factorization, the master of a type 2
node only holds the pivotal block whereas, in the LU factorization, the master stores the
complete fully summed rows. The additional memory that a master requires for storing
its part of the factors in the LU factorization (with respect to the LDLT factorization)
is illustrated in Figure 6.1. In both the LU and the LDLT factorization, a type 2 slave
reserves space for a part of the L factor below the pivotal block as shown in Figure 6.2.
Thus, in the case of the LU factorization, the work equilibration can lead to memory
imbalances if the same processor becomes master of several type 2 nodes.

Ny
PIMOTAL
BLO
L
2
Figure 6.1: Additional memory Figure 6.2: Memory reserved for the
needed by a type 2 master in the L factor on a type 2 slave in both
unsymmetric factorization. LU and LDLT factorization.

We propose the following simple remedy. After the whole tree is mapped with the
objective of balancing the work, we use a post-processing step to correct obvious memory
problems.

In Algorithm 8, we process the upper part of the assembly tree from the top down (1),
as the type 2 nodes creating the biggest problems are often near a root of the tree. By

16

Algorithm 8 Post-processing for better memory equilibration in the LU factorization.

(1) Process the type 2 nodes in the tree from the root downwards
(2) For a node n with master p™(n) select candidate ¢*(n) with smallest memory
if memory imbalance can be improved by swapping p*(n) and c*(n) then
(3) Exchange the roles of master and candidate processor p™ (n) & ¢*(n)
end if

swapping a master processor with one of the candidates, we still guarantee the benefits
of the proportional mapping used in the candidate assignment, but locally improve the
memory imbalance (steps 2 and 3).

6.6 The dynamic scheduling algorithm used at run time

We describe, in Algorithm 9, the dynamic scheduling algorithm used in MUMPS for the
mapping of the slaves of a type 2 node at run time (Amestoy et al. 2001a) and show
how the candidate concept influences the original approach. Furthermore, we identify and
describe the role of the algorithmic parameter that controls the minimum granularity for
type 2 parallelism at run time. We denote this parameter by kpax.

Algorithm 9 Dynamic choice of the slaves of a type 2 node.

Given a type 2 node n with master processor p*(n) and children sy, ..., s;

(1) The masters of the children p™(sy),...,p™ (s;) send symbolic data to p™ (n)

(2) p™(n) analyses its information concerning the load of all processors

(3) p™(n) decides the partitioning of the frontal matrix of node n and chooses
the slave processors pf (n),. .. ,pf(n)

(4) pM (n) informs all processors working on the children about the partition

(5) The numerical data is sent directly to the slaves pf(n),... ,pf(n)

Instead of first assembling all numerical data on the master of the type 2 node and
distributing it afterwards to the slaves, a two-phase assembly process is used. At step (1),
the master receives only the integer data describing the symbolic structure of the front.
At step (2), the master analyses the information on the workload of the other processors.
Each processor is responsible for monitoring its own workload status and for broadcasting
significant changes to all other processors so that everyone has accurate information on
the overall progress of the factorization. At step (3), the master processor p™(n) selects
the least loaded among all processors as slaves. As a general rule, all processors that are
less loaded than p™ (n) are chosen as slaves. Then a partition of the frontal matrix onto
the slaves is calculated.

The following constraint on the number of slaves, ng, for a type 2 node selected during
factorization is imposed. It must always satisfy

ncb

1), (6.2)

ng > max(|

where ncb denotes the number of rows in the contribution block. The parameter ky,ax

17

controls the maximum work of a type 2 slave and thus the maximum buffer size permitted
for the factorization of a type 2 node.

Once the slaves participating in the parallel update of the contribution block have been
selected, they obtain the part of the symbolic information from the master p™ (n) that is
relevant for their work (4). Furthermore, they receive the corresponding numerical data
from the processors working on the children (5).

In the candidate-based scheduling approach, we modify step (3) so that the slaves are
always chosen among the candidates provided for the node. At first, we select all those
candidates that are less loaded than the master processor. If the inequality (6.2) is not
satisfied, additional candidates are chosen so that it holds. In order to be able to choose the
slaves at factorization time among the candidates so that (6.2) is never violated, we must
take care to provide enough candidates during analysis. If we provide only a minimum
number of candidates so that (6.2) holds as equality, we enforce a static scheduling. In
this case, all candidates must be selected as slaves during factorization. We have freedom
for dynamic choices during the factorization only if we provide a number of candidates
greater than ncb/ky.x. Consequently, the freedom offered to the dynamic scheduling can
be measured by the number of extra candidates given for a type 2 node. On the other
hand, the larger the number of candidates for a given node, the closer we come to the case
of fully dynamic scheduling with all the possible drawbacks discussed in Section 4.1. In
the following experiments, we will see that the dynamic scheduling works most effectively
when kpax is large and (6.2) does not impose a significant restriction. Because of overall
memory constraints, the scope for increasing the parameter is limited; however, we will
see that the better memory estimates from the candidate approach greatly increase the
range from which k.« can be chosen.

We remark that, in the case of the LDL” factorization, MUMPS precomputes a
partition of the contribution block in order to guarantee that each of the slaves performs
approximately the same amount of work (Amestoy et al. 2000). As the frontal matrix is
symmetric (and only the lower triangular part is stored), rows at the bottom of the frontal
matrix are longer (and thus associated with more work) than rows at the top.

7 The test environment

In this section, we present the test matrices that we use to illustrate the behaviour of
our algorithm. Specifically, we consider in Section 7.1 matrices from regular grids and in
Section 7.2 irregular ones from real-life applications. We mention that our set of regular
grid problems includes those used by Amestoy et al. (2001b) which allows us to compare
the performance of the new code with results already published.

For our tests, we use both a CRAY T3E-900 (512 processors, 256 MBytes RAM and
900 peak MFlops per processor) and an SGI Origin 2000 (32 processors, 16 GBytes shared
memory, 500 peak MFlops per processor). We consider different orderings including nested
dissection from SPARSPAK (George and Ng 1984) and METIS (Karypis and Kumar 1998),
and Approximate Minimum Fill (Rothberg and Eisenstat 1998, Ng and Raghavan 1999).

18

7.1 Regular grid test problems

We consider a set of test matrices obtained from an 11-point discretization of the Laplacian
on 3D grids of either cubic or rectangular shape, the grid sizes are reported in Table 7.1.
The set of problems is chosen as in Amestoy et al. (2001b) and is designed so that
when the number of processors increases, the number of operations per processor in
the LU factorization stays approximately constant when employing a nested dissection

ordering (George and Ng 1984).

Processors | Rectangular Cubic
grid sizes grid size

1 96 24 12 29

2 100 20 20 33

4 120 30 15 36

8 136 32 16 41
16 152 38 19 46
32 168 42 21 51
48 172 44 22 55
64 184 46 23 57
128 208 52 26 64
256 224 56 28 72
512 248 62 31 80

In Tables 7.2 and 7.3, we show the distribution of work for type 1 masters (T1), type 2
masters (T2M) and slaves (T2S), and the type 3 root node (T3). It can be seen that,
when increasing the problem size and the number of processors used, the work of the
type 2 slaves becomes a major part of the overall work. Thus, improving the mapping of
the type 2 slaves through the candidate concept will have a great influence on the overall

Table 7.1: 3D grid problems.

performance of the factorization, in particular on larger problems.

LU LDLT

Processors | T1 T2M T2S T3 | T1 T2M T2S T3
1 100 0 0 0| 100 0 0 0

2 85 0 0 15| 85 0 0 15

4 45 7 34 14| 45 2 39 14

8 28 7 49 14 | 28 2 56 14

16 18 5 63 14 18 2 65 15

32 7 4 75 14 8 1 77 14

48 7 4 75 15 8 1 77 14

64 5 3 78 14 5 1 81 13

Table 7.2: Percentage distribution of work for 3D cubic grid problems (nested dissection

ordering).

19

LU LDLT

Processors | T1 T2M T2S T3 | T1 T2M T2S T3
1 100 0 0 0 | 100 0 0 0

2 88 0 0 12| 88 0 0 12

4 84 1 3 12| 84 1 3 12

8 49 5 34 12| 49 3 36 12

16 25 5 58 12| 25 2 61 12

32 16 4 68 12 16 2 70 12

48 14 4 70 12 12 2 74 12

64 10 4 74 12 10 1 7T 12

Table 7.3: Percentage distribution of work for 3D rectangular grid problems (nested
dissection ordering).

7.2 General symmetric and unsymmetric matrices

The matrices described in this section all arise from industrial applications and include
test matrices from the PARASOL Project (PARASOL 2002), the Rutherford-Boeing
Collection (Duff, Grimes and Lewis 1997), and the University of Florida sparse matrix
collection (Davis 2002).

Matrix Matrix Matrix | Number | Origin

name type order entries

bbmat symmetric 38744 | 1771722 | Rutherford-Boeing
ecl32 symmetric 51993 380415 | Rutherford-Boeing

g7jac200 | symmetric 59310 837936 | University of Florida
twotone symmetric | 120750 | 1224224 | Rutherford-Boeing
ship003 | unsymmetric | 121728 | 8086034 | PARASOL

bmwcra_ 1 | unsymmetric | 148770 | 10644002 | PARASOL

Table 7.4: Matrix order, type, and number of entries for the irregular test matrices.

In Table 7.4, we describe the characteristics of the test matrices arising from real
life problems. In Table 7.5, we show for the irregular problems on 64 processors the
distribution of work for type 1 masters (T1), type 2 masters (T2M) and slaves (T2S),
and the type 3 root node (T3). We see that the work distribution depends heavily on
the ordering used. The AMF ordering produces assembly trees that are rich in type 2
parallelism; on the other hand, the root nodes are so small that type 3 parallelism cannot
be exploited effectively, in contrast to METIS. For all matrices apart from bbmat, the
major part of the work is associated with the factorization of type 2 nodes, similar to the
regular grid problems.

20

AMF METIS
Matrix T1 T2M T2S T3 |T1 T2M T2S T3
bbmat 43 3 54 0 | 57 7 30 6
ecl32 14 8 78 0 |29 8 52 11
g7jac200 | 9 2 89 0 | 12 5 71 12
twotone 6 6 90 0 7 8 79 6
ship003 7 7 85 1 |14 10 65 11
bmwcra_1l | 22 8 70 0 [36 12 51 1

Table 7.5: Percentage distribution of work for irregular problems on 64 processors with
different orderings.

8 Experimental investigation of algorithmic details

In this section, we study the influence and scope of parameters in the algorithms used
by Version 4.1 and by the new version of MUMPS. Furthermore, we present a detailed
investigation of isolated parts of the improved algorithm by typical examples of phenomena
that we have observed in our experiments.

8.1 The impact of k,,,, on volume of communication and memory

We first show the impact on the volume of communication and memory of the parameter
kmax that controls the minimum granularity of the type 2 parallelism.

Our test matrix is from Section 7.1 and comes from an 11-point discretization of the
Laplacian on a cubic grid of order 46, ordered by nested dissection. Here, we perform an
LU factorization on an SGI Origin 2000 with 16 processors. This platform is well suited
for testing the ky.x parameter over a wide range of values because of its shared-memory
architecture where a large amount of memory is available to all processors.

At first, we study the behaviour of Version 4.1 of MUMPS and then compare it with
the new code.

The two graphs in the upper row of Figure 8.1 illustrate that with increasing k., both
the total volume of communication and the number of messages associated with dynamic
scheduling decrease. If kyax is small, the required minimum number of slaves for a type 2
node and the corresponding communication volume will be large. With increasing kmax, a
single type 2 slave might be authorized to work on larger parts of a contribution block and
the minimum number of slaves required during factorization becomes smaller. With kp,.x
sufficiently large and thus the guaranteed minimum number of slaves from inequality (6.2)
being no longer a constraint, the dynamic scheduling can freely choose slaves among the
least loaded processors. Thus, further increases in kpax do not further reduce the volume
of communication.

The graph in the left lower corner of Figure 8.1 shows the increase in estimated and
actually used memory with increasing k;,.x, and the graph in the right lower corner shows
the decomposition of the estimated memory into the space reserved for the communication
buffers, the LU factors, and the stack. As potentially every processor can be selected as a

21

Total volume of communication x 10* Total number of messages

3500 4
3000 3.8
172
e
u>)' 0
2 2500 L 3.6
= It
] @
£ 2000 234
1
o
o
1500 3.2
1000 3
0 500 1000 1500 2000 0 500 1000 1500 2000
kmax kmax
Estimated and real average memory Average estimated memory
700 500
—-©— est —©— Buffer
600 400 —#— LU factors
— — —— Stack
g 500 g
> >
2 400 g 300
> >
5 300 g 200
2 200 T 2
100
100
0 0=

0 500 1000 1500 2000
k

max

Figure 8.1: Impact of kmax on volume of communication and memory in Version 4.1 of
MUMPS (Origin 2000, 16 processors).

slave during the factorization and the memory predicted depends monotonically on kpax,
the prediction during the analysis phase will lead to an increasing gap between real and
estimated memory as can be seen in the graph on the lower left. On the lower right, we
see that the main contribution to the overestimation of the memory is the stack. As slaves
stack their part of the contribution block until it can be received by the processors working
on the parent of the node, the stack has to grow when k.5 increases. Furthermore, a
single type 2 slave is authorized to work on larger parts of a contribution block.

When weighing memory estimation and communication volume against each other,
the best value for kpax is so that it reduces the memory overestimation but at the same
time limits the communication volume sufficiently.

We now investigate the behaviour of the new candidate-based code on the same test
matrix. Candidates are assigned without relaxation and layerwise redistribution, following
the proportional mapping of the assembly tree. From the two graphs in the bottom
row of Figure 8.2 we observe the expected better estimation of memory. Compared to
the corresponding graphs in Figure 8.1, the growth of the gap between estimated and
real memory is significantly smaller. As the type 2 slaves can only be chosen from the
candidates, the non-candidates can be excluded thus making the estimation tighter and
more realistic. Furthermore, the two graphs in the top row of Figure 8.2 indicate that the
communication volume in the new version of MUMPS drops faster with increasing kmax
than it does for the previous version. This can be explained by the restricted freedom

22

Total volume of communication x 10* Total number of messages

3500 4
3000 3.8
172
e
u>)' 0
2 2500 L 3.6
= It
] @
£ 2000 234
1
o
o
1500 3.2
1000 3
0 500 1000 1500 2000 0 500 1000 1500 2000
kmax kmax
Estimated and real average memory Average estimated memory
700 500
—-©— est —©— Buffer
600 —— real |1 —— LU factors
400 % st
— — ack
§'500 4
> >
2 400 g 300
>
5 300 g 200
2 200 s
100
100
0 o=
0 500 1000 1500 2000 0 500 1000 1500 2000
kmax kmax

Figure 8.2: Impact of kpax on volume of communication and memory in the new version
of MUMPS (Origin 2000, 16 processors).

for the dynamic scheduling, so that actually less parallelism is created and fewer slaves
are chosen during factorization. Thus, if we want to reduce the communication volume
in the new code, we are not obliged to increase kj,,x substantially with the consequent
drawback of overestimating the memory. Instead, we can choose kpy.x relatively small
and have the benefits of a relatively realistic memory estimation together with a reduced
communication volume.

8.2 The impact of k,,,, on performance

In the following, we show the impact of the parameter kpj.x on the factorization time,
using as a test matrix an 11-point discretization of the Laplacian on a cubic grid of order
51, ordered by nested dissection. We perform an LU factorization on a CRAY T3E with
64 processors. (We have reduced the problem size from that in Table 7.1 so that we have
enough flexibility with respect to memory for this parameter study.) Furthermore, because
of limited memory and in order to separate the different algorithmic parameters, we use
a candidate assignment without relaxation. For a study of the influence of relaxation we
refer to Section 8.3.

The CRAY T3E is well suited for providing reliable timing for performance measures
because the processors are guaranteed to run in dedicated mode for a single task. On the
other hand, the T3E has a distributed-memory architecture with a fairly small amount of

23

memory per processor, so that we can vary the parameter k., only in a relatively small
range compared to the range possible on the Origin 2000 which has a shared memory.

Factorization time as function of kmax
70 T

* - orig
1 —&— new

65 7

60F

a
o
T

time [sec]

Iy
a1
T

40

35

301

25 1 1 1 1 1 1 1
20 40 60 80 IiI.OO 120 140 160 180

max

Figure 8.3: Impact of kmax on the performance of the original and the new version of the
LU factorization time (CRAY T3E, 64 processors).

From Figure 8.3, we see that with increasing kmax, the factorization time decreases in
both versions of the code as the minimum number of slaves required during factorization
gets smaller and the dynamic scheduler is free to decrease unnecessary parallelism.
However, the previous version of MUMPS needs much more memory than the candidate-
based version, and thus the flexibility for increasing kmax is more strictly limited.

Once kmay is sufficiently large, a further increase in kp,ax shows no further improvements
in performance. This corresponds to the results on the limited reduction in the volume
of communication obtained in Section 8.1. We note that for the larger values of kp,.x, the
new version of the code performs better. We will confirm this observation by systematic
studies on our set of test matrices in Section 9.

8.3 Modifying the freedom offered to dynamic scheduling

We now investigate the behaviour of the new code when modifying the assignment of
candidates. We study two different approaches. As described in Section 6.3, we can
increase the number of candidates given to a node by increasing its number of preferentials
through relaxing the proportional mapping. Furthermore, according to Algorithm 6, we
can modify the candidate assignment for a given layer by an optional redistribution of the
candidates that takes account of the weight of the nodes relative to each other.

We first compare the performance of the candidate assignment with and without

24

layerwise redistribution. Afterwards, we show the impact of relaxation on the two
assignment strategies.

Factorization time as function of kmax
70 T

T
* - no redist.
* —5— redist.

654 R

60

a1
o

time [sec]

Iy
a1

40

35

30

25 1 1 1 1 1 1 1
20 40 60 80 IiI.OO 120 140 160 180

max

Figure 8.4: Comparison of the candidate assignment with (solid) and without
(dotted) layer-wise candidate redistribution when increasing minimum granularity (LU
factorization time on CRAY T3E, 64 processors, no candidate relaxation).

For our study, we use the same test case as in Section 8.2. Figure 8.4 shows the
factorization time of the new version of MUMPS for the candidate assignment with and
without layer-wise candidate redistribution as a function of the minimum granularity. We
cannot find significant differences in the behaviour of the two approaches. This example
is representative of the results we have obtained on the complete set of test problems.

We now investigate the impact of relaxation on the volume of communication, memory,
and performance. In Figures 8.5 and 8.6, the horizontal axis denotes the percentage
relaxation factor. We present the behaviour of the new version of MUMPS for the
candidate assignment with and without layer-wise candidate redistribution as a function
of the relaxation.

The two graphs in Figure 8.5 illustrate that, with increasing relaxation, both the total
volume of communication and the number of messages related to dynamic scheduling
increase because the flexibility for choosing the slaves during factorization becomes
greater. Likewise, the memory estimation grows with increasing relaxation, see Figure 8.5.
However, we do not observe a positive impact of relaxation on the performance of the
algorithm; a possible interpretation is that, through the relaxation, we create additional
parallelism that is not actually needed at run time. In general, we already have, without
relaxation, enough freedom for a dynamic choice of the slaves. While this observation
holds for all the experiments we have conducted, we are convinced that relaxation might
show a positive impact on irregular problems from real-life applications. Unfortunately,

25

Total volume of communication Estimated and real average memory
100 T T T T T T T

o

S
*

*

=
3

*- est. (noredist) | 1
—5- est (redist.)
real

©
&
3
S

—~
=]

commvol [MBytes]
Memory [MBytes]

o
3

*- no redist.
—&- redist.

| |
10 20 30 40 5 60 70 80 9 100 0 10 20 30 4 5 60 70 80 9 100
relax relax

o
S

x10' Total number of messages Factorization time
1 T T T T T T T

S
S

w
&

time [sec]
w
8
*
*
*

© ¢
I
31

*- no redist. | - *- no redist.
-5 redist. —&- redist
8 | | | | | | |

. L . . L .
0 10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 5 60 70 8 9 100
relax relax

)
S

Figure 8.5: Amount of communication Figure 8.6: Memory estimation and
in original and modified candidate performance of original and modified
assignment when increasing the relaxation candidate assignment when increasing the
(CRAY T3E, 64 processors). relaxation (CRAY T3E, 64 processors).

the irregular problems available to us are not large enough to effectively exploit parallelism
on a large number of processors, and we plan to investigate this further in the future, see
the remarks in Section 10.

In conclusion, we note that the candidate approach without layer-wise redistribution
and without additional relaxation already offers good results in our experiments. In
the following, we focus therefore on the presentation of the results obtained with this
algorithmic configuration.

8.4 Improved node splitting

Node splitting is useful when the pivot block is large relative to the size of the frontal
matrix. It is discussed in detail by Amestoy et al. (2001a) and was introduced at the
end of Section 3.1 and discussed briefly in Section 5.1. We now illustrate the additional
capabilities of the new code for node splitting on the set of test matrices from Section 7.1.
Those matrices are obtained from an 11-point discretization of the Laplacian on 3D cubic
or rectangular grids with Approximate Minimum Fill (AMF) ordering and are described
in Table 7.1. The AMF ordering produces long and thin trees from the regular grid
problems which we can use to illustrate the problems of the splitting criterion used in
the previous version of the code. Splitting was done in a preprocessing step and before
the layer structure of the assembly tree was known. In order to prevent useless splitting
below layer Ly where no type 2 parallelism is exploited, the algorithm authorized node
splitting only up to a fixed distance from the root node, where this distance depended
only on the number of processors but not on the matrix. So it could happen that even

26

though there were nodes in the upper part of the tree that should have been split for
better performance, the splitting was not performed.

Cubic grids (AMF) Rectangular grids (AMF)

Number of splittings Number of splittings
added by total in Nodes in | Added by Total in Nodes in
Processors | new code new code upper tree | new code new code upper tree
1 0 0 1 0 0 1
2 0 0 13 0 0 118
4 0 0 14 0 0 285
8 2 5 31 0 0 246
16 2 7 41 0 2 188
32 7 21 96 0 2 175
48 8 37 120 3 10 136
64 14 32 140 1 194
128 2 13 192 0 7 196
256 2 33 348 50 80 414
512 Not enough memory in analysis 61 107 830

Table 8.1: Improved splitting of the new code.

The new algorithm incorporates the splitting systematically in the upper part of the
tree. Once layer Lg is known, we can authorize splitting everywhere in the upper part of
the tree to create more parallelism if this is useful. We illustrate the additional splitting in
Table 8.1 for both cubic and rectangular grids. For each grid type, we show in the first of
the three columns the additional number of splittings of the new code and compare them
to the total number of splittings (including the splittings already performed by Version 4.1
of the code) and the total number of nodes in the upper part of the tree after splitting
in the second and third columns, respectively. For example, for the rectangular grid on
512 processors, and with the same splitting criteria, the new code performs 61 splittings
in addition to those already done by the old code, so that altogether 107 splittings are
performed, resulting in an assembly tree with 830 nodes. In other words, in this example,
the previous version of MUMPS missed 57% of the possible splittings.

Nmb Operations Mem. est. | Mem. real | Facto.
Algorithm | type 2 elim. assem. | max | avg | max | avg | time
no splitting 126 | 7.98e+11 | 1.10e4+09 | 196 | 143 | 141 | 92 182

with splitting | 140 | 7.98e+11 | 1.30e+09 | 167 | 150 | 119 | 96 145

Table 8.2: Comparison of the candidate-based LU factorization with and without improved
node splitting, cubic grid of order 57 on CRAY T3E with 64 processors (AMF).

We illustrate, in Table 8.2, the properties and benefits of the improved splitting in
the case of the cubic grid of order 57 on 64 processors. The additional splitting slightly
increases the number of assembly operations and also the average amount of memory

27

per processor. However, it creates additional parallelism by augmenting the number of
type 2 nodes. This significantly improves the performance of the factorization. Moreover,
memory can be balanced better between the processors because of the additional type 2
parallelism.

8.5 Improved node amalgamation

Amalgamation, particularly amalgamation that potentially increases fill-in, can be
considered the opposite of splitting and can be useful when the pivot block is relatively
small. In this section, we illustrate the improvements we have made concerning node
amalgamation by using our test examples from Table 7.1 with a nested dissection ordering.

Cubic grids (ND) | Rectangular grids (ND)

extra amalg total | extra amalg total
Processors | Lg total mnodes | Lg total nodes
1 0 0 1] 0 0 1

2 0 0 11 0 0 1

4 2 2 51 0 0 3

8 2 3 181 0 0 17
16 1 4 431 0 1 53
32 7 12 121 | 2 2 90
48 13 18 126 | 0O 1 104
64 9 14 157 | 3 5 156
128 0 7 250 | 2 2 271
256 36 54 528 | 2 7 525
512 77 119 1371 | 66 93 1326

Table 8.3: Improved amalgamation of the new code.

In Table 8.3, we show, for both cubic and rectangular grids, the number of extra
amalgamations the new code performed in layer Lg of the Geist-Ng algorithm as described
in Section 6.2 and the total number of extra amalgamations performed on all layers of the
tree. We also give the total number of nodes in the upper part of the tree after all
amalgamations have been performed.

We emphasize that, in the new version, we use the same amalgamation criteria as
in the previous version and show, in the table, the amalgamations that are performed
in addition to those performed before. Amalgamation in the previous version was only
possible between a parent node and its oldest child; the greater freedom in the new code
allows many more amalgamations as can be seen in particular for the large test matrices on
512 processors. For example, for the cubic grid on 512 processors, the new code performed
119 additional amalgamations, that is, 119 amalgamations more than the old code with
the same amalgamation criteria. Among the additional amalgamations of the new code
are 77 for layer Ly, so that the amalgamated assembly tree has 1371 nodes in the upper
part.

We illustrate in Table 8.4 the properties and benefits of the improved amalgamation

28

in the case of the cubic grid of order 46 on 16 processors. The additional amalgamation
decreases the number of assembly operations and allows a better memory balance because
the stacking of several large type 1 nodes can be avoided.

Type of Operations Mem Mem real | Fact.
amalgamation | assem. elim. max | avg | max | avg | time
Old 2.44e+408 | 5.91e+10 | 187 | 121 | 175 | 97 | 19.4
New 2.35e+08 | 5.91e+10 | 108 | 95 82 71 | 18.7

Table 8.4: Comparison of the candidate-based LDLT factorization with and without
improved node amalgamation, cubic grid of order 46 on CRAY T3E with 17 processors.

8.6 Post-processing for a better memory balance

On the CRAY T3E, we illustrate a shortcoming that we detected when testing an initial
version of the candidate-based LU factorization. We consider the cubic grid problem of
order 72 from Table 7.1 ordered by nested dissection. We show the benefits obtained
by remapping the masters of type 2 nodes for better memory balance as described in
Section 6.5 and conclude that the post-processing is also crucial for obtaining good
speedup.

Looking at the first rows (no postp.) of Table 8.5, we see that the flop-based
equilibration of the scheduling algorithm leads to severe memory imbalance both in the
estimated and the actual memory. In particular, the process needing the largest amount of
(estimated) memory requests 179 megabytes, about 70% of the memory of the processor.
For performance reasons, it is necessary to increase kmax, see Section 8.2. However, this
is impossible because of the strong memory imbalance, as augmenting kp,.x increases the
memory estimations of the analysis phase considerably.

Max | Avg | Max | Avg | Fact.
Algorithm | kpax | est est | real | real | time
no postp. 80 | 179 | 117 | 172 | 102 | 165
160 Not enough memory
w. postp. 80 | 136 | 117 | 123 | 102 | 152
160 | 193 | 164 | 162 | 132 | 124

Table 8.5: Memory (in MBytes) and factorization time (in seconds) of the candidate-
based LU factorization with and without post-processing, cubic grid of order 72 with
nested dissection.

In the last two rows of Table 8.5, we show the memory statistics when the post-
processing is performed. We observe that the difference between average and maximum
values for both the estimated and actual memory are much reduced. This allows us
to double the ky.x parameter for this test case and obtain better performance for
the factorization. However, note that the estimate for the most loaded processor is

29

more accurate without post-processing. This is because the differences between memory
estimation and actually used memory are mainly related to a processor being a type 2
candidate but not being chosen as a slave during factorization. Without post-processing,
the major activity for the most loaded processor probably involves work associated with
being master of several type 2 nodes, see Section 6.5. But after the post-processing, the
processor exchanges its role as master with another and becomes a type 2 candidate so
that its memory estimate can become less accurate.

9 Performance analysis

In the following, we compare the performance of the new MUMPS code with the previous
version (Amestoy et al. 2001b) on the complete set of test problems presented in Section 7.
All these tests were performed on the CRAY T3E of the NERSC computing center at
Lawrence Berkeley National Lab in Berkeley, California.

9.1 Nested dissection ordering

In this section, we use the test matrices from Table 7.1 ordered by nested dissection.

We observe, from the results in Table 9.1, that for up to 64 processors, the new version
has similar performance to the good results of the previous version. However, when more
processors are used and the matrices become larger, the new code performs significantly
better. Looking at the results on 128, 256 and 512 processors, we note the greatly improved
scalability of the candidate-based code.

Cubic grids (ND) Rectangular grids (ND)
Processors flops old new old new
1 7.2e+09 232 23.2 | 4.5¢+09 166 16.6

2 1.6e4+10 29.1 29.0 | 9.5e+09 17.2 17.1

4 2.7e+10 274 239 | 1.8¢+10 16.6 16.9

8 6.0e+10 30.1 29.5 | 3.7e+10 20.6 19.2

16 1.2e+11 30.8 318 | 7.3e+10 224 23.3

32 2.3e+11 43.3 422 | 1.4e+11 25.7 274

48 3.6e+11 53.0 57.5 | 1.8e+11 26.0 23.9

64 45e+11 59.0 529 | 2.4e+11 31.2 30.2

128 8.9e+11 934 727 | 49e+11 449 385
256 1.8e+12 163.5 1194 | 7.7e+11 754 47.1
512 3.4e+12 599.6 189.1 | 1.4e+12 135.5 73.7

Table 9.1: Performance of the old and new LU factorization (time in seconds on the CRAY
T3E).

Another major advantage of the new candidate-based code is that it better estimates
the memory used for the factorization. In Table 9.2, we show the memory space for the
LU factors of the old and the new version of MUMPS. We see that the candidate-based
code significantly reduces the overestimation of the storage required, and that the gains
increase with the matrix size and the number of processors.

30

Cubic grids (ND) Rectangular grids (ND)
space Estimate Estimate | space Estimate Estimate
Processors | used old new | used old new
1 11.4 11.4 11.4 10.2 10.2 10.2
2 19.7 19.7 19.7 17.2 17.2 17.2
4 28.1 28.1 28.1 26.5 26.6 26.6
8 49.1 49.2 49.2 43.9 44.6 44.0
16 77.9 84.3 78.6 70.4 82.3 70.9
32 121.2 181.5 122.8 | 107.7 166.8 110.0
48 165.9 289.5 170.7 | 130.2 255.5 134.7
64 193.7 412.6 203.8 | 158.4 407.2 166.7
128 309.7 897.9 357.0 | 260.1 1108.0 296.4
256 504.4 2678.5 924.6 | 353.9 2420.5 478.0
512 780.4 4594.0 1369.7 | 541.6 5759.0 921.5

Table 9.2: Space for the LU factors (number of reals x10°).

The big gains of the new candidate-based code are a result of the individual
improvements concerning splitting and amalgamation, reduced communication and the
better locality of the computation as illustrated in Section 8. Furthermore, we need to
decrease kpyax in the large problems for the old version of MUMPS because of memory.
This limits the performance as we saw in Section 8.2. On the other hand, we do not
need to decrease kp,.x in the candidate-based code as the tighter estimates stay within the
memory available.

As all regular test matrices are symmetric, we can also compare the old with the
new candidate-based LDL" factorization. The results presented in Table 9.3 confirm
those obtained for the LU factorization. The candidate-based code shows a much better
performance in particular for the large problems on a large number of processors due to
improved locality of communication and computation, and because of the bigger scope for
increasing the kp,.x parameter.

Cubic grids (ND) Rectangular grids (ND)
Processors flops old new flops old new
1 3.6e+09 19.1 18.7 | 2.2¢4+09 13.5 13.1

2 8.0e+09 21.3 20.7 | 4.8e+09 13.1 129

4 1.3e+10 19.7 16.7 | 9.0e+09 11.5 12.4

8 3.0e+10 18.1 18.3 | 1.8e+10 15.2 12.9

16 5.9e+10 188 19.8 | 3.6e+10 13.8 13.2

32 1.1e+11 25.8 22.2 | 6.8e+10 15.5 15.3

48 1.8e+11 28.7 30.4 | 9.0e+10 142 148

64 2.2e+11 30.7 25.6 | 1.2e+11 176 16.8

128 4.4e+11 45.6 33.0 | 2.4e+11 335 203

256 9.1e4+11 109.1 43.0 | 3.8e+11 45.2 184
512 1.7e4+12 4219 64.0 | 7.1le+11 1955 24.3

Table 9.3: Performance of the LDL” factorization (time in seconds on the CRAY T3E).

31

Note that, because of the improvements in the scalability of the new code, MUMPS
now compares favourably to SuperLU on a large number of processors. (The factorization
time for SuperLLU on 128 processors and the same nested dissection ordering is 71.1 seconds
for the cubic and 56.1 seconds for the rectangular grid (Amestoy et al. 20015).)

9.2 Approximate Minimum Fill (AMF) ordering

Recently a fairly large number of experiments have been conducted with several heuristics
to reduce the fill-in (deficiency) during the elimination process (Ng and Raghavan 1999,
Rothberg and Eisenstat 1998). The approximation of the deficiency used in our AMF code
is based on the observation that, because of the approximate degree, we count variables
twice that belong to the intersection of two elements adjacent to a variable in the current
pivot list. This property of the approximate degree can be exploited to improve the
estimation of the deficiency and the accuracy of the approximation proposed by Rothberg
and Eisenstat (1998).

The AMF ordering produces trees that are difficult to exploit in MUMPS. The upper
part of the tree where type 2 and type 3 parallelism can be exploited is usually a long
and thin chain. In Table 9.4, we show the memory required to store the factors of the
LU factorization for the different orderings. In the case of the cubic grid, the real space
used by the factors is significantly larger than when using the nested dissection ordering.
Furthermore, we note that for the rectangular grid, AMF actually needs the least space for
the factors. However, the shape of the assembly tree still offers less potential for parallelism
and we expect the factorization time for AMF-ordered matrices to be considerably longer
than for the case of nested dissection. This is confirmed by the results in Tables 9.5
and 9.6.

AMF ND
Grid Factors Factors
Cubic | 247,804,999 | 193,785,687
Rect 148,102,032 | 158,402,018

Table 9.4: Number of entries in the factors by ordering for the LU factorization on 64
processors, grid sizes according to Table 7.1.

32

Cubic grids (AMF) Rectangular grids (AMF)

Processors flops old new flops old new
1 8.6e+09 25.7 25.7 | 3.1e+09 13.4 13.7

2 2.1le+10 47.4 48.3 | 5.8e+09 21.7 22.1

4 3.8e+10 35.1 35.0 | 1.0e4+10 22.5 23.7

8 1.0e+11 545 478 | 2.2e+10 27.8 27.6

16 1.9e+11 555 54.9 | 5.4e4+10 34.8 32.6

32 3.8e+11 96.3 81.3 | 1.0e+11 50.7 49.8

48 4.8¢+11 114.6 98.2 | 1.9e4+11 71.0 67.4

64 8.0e4+11 188.0 145.4 | 1.8e+11 46.4 43.3
128 1.7e+12 302.6 242.7 | 4.6e+11 118.9 114.6
256 4.1e+12 740.9 484.1 | 8.6e+11 262.5 208.6
512 Not enough memory in analysis | 1.2e+12 325.7 264.7

Table 9.5: Performance of the LU factorization (time in seconds on the CRAY T3E).

Cubic grids (AMF) Rectangular grids (AMF)

Processors flops old new flops old new
1 4.3e4-09 19.5 19.5 | 1.6e+409 11.3 11.3

2 1.1e+10 328 33.8 | 2.9e+09 18.6 18.7

4 1.9e+10 24.0 24.6 | 5.2e4+09 19.5 19.9

8 5.le+10 28.0 27.9 | 1.1e+10 15.0 14.9
16 9.5e+10 29.0 29.2 | 2.7e+10 154 16.7
32 1.9e+11 34.1 33.8 | 5.1e+10 20.1 20.9
48 2.4e+11 36.3 36.5 | 9.3e+10 24.6 25.0
64 4.0e+11 51.8 48.6 | 8.9e+10 23.6 23.7
128 8.4e+11 86.1 67.8 | 2.3e+11 38.6 34.5
256 2.1e+12 237.7 117.3 | 4.3e+11 74.6 67.7
512 Not enough memory in analysis | 6.2e+11 196.1 73.0

Table 9.6: Performance of the LDL” factorization (time in seconds on the CRAY T3E).

9.3 Analysis of the speedup for regular grid problems

We now summarize the results of the previous sections by presenting a comparison of the
speedup on the 3D grid problems.

Let t; denote the time to execute a given job involving ops; floating point operations
on j parallel processors. Then, we define the scaled speedup, S, for p processors to be

_ t1/opsy

S, = .
tp/opsy

) (9.1)

In Figures 9.1 and 9.2, we show the scaled speedup for the matrices ordered by nested
dissection and in Figures 9.3 and 9.4 for the AMF ordering, respectively.

33

LU cubic grids (nested dissection)
60 T T T T T T T

* - orig
50 —&- cand

o 40

3 30-
D201

101

L L L L L L
1 2 4 8 16 32 48 64 128 256 512
Processors

LU rectangular grids (nested dissection)
T T T T

* - orig
—=- cand

80 T T

.
1 2 4 8 16 32 48 64 128 256 512
Processors

Figure 9.1: Comparison of the speedup of
the LU factorization for 3D grid problems
ordered by nested dissection.

LU cubic grids (AMF)
30 T T T T T T

* - orig
—&- cand

L L L L L L
8 16 32 48 64 128 256
Processors

LU rectangular grids (AMF)
T T T

* - orig
—=- cand

.
1 2 4 8 16 32 48 64 128 256 512
Processors

Figure 9.3: Comparison of the speedup of
the LU factorization for 3D grid problems
ordered by AMF.

LDLT cubic grids (nested dissection)
T T T

150 T

32
Processors

LbL" rectangular grids (nested dissection)
200 T T T T T T T T

* * b

1
1 2 4 8 16 32 48 64 128 256 512
Processors

Figure 9.2: Comparison of the speedup
of the LDL”T factorization for 3D grid
problems ordered by nested dissection.

LDLT cubic grids (AMF)

100 T T
* - orig
80l —&— cand
E —
@
2
& 40f 4
20 T
I
1 2 4 8 16 32 48 64 128 256
Processors
LoL” rectangular grids (AMF)
60 T T T T T T T T
* - orig
501 —&— cand T
o 40r * * 4
S
35
30 —
a
@ 20- 3
10 T
. .

B
1 2 4 8 16 32 48 64 128 256 512
Processors

Figure 9.4: Comparison of the speedup
of the LDLT factorization for 3D grid
problems ordered by AMF.

9.4 Performance analysis on general symmetric and unsymmetric

matrices

In this section, we compare the performance of the new mapping algorithm with the
previous version on general symmetric and unsymmetric matrices. The main problem
with this comparison is that our algorithm offers the biggest performance gains only on a
large number of processors. However, the unsymmetric matrices available to us are either

too small to offer enough potential for scalability on more than 64 processors, or they are
too large to do the analysis (which is performed on only one processor). This was already
observed in the analysis of the scalability of both MUMPS and SuperLU (Amestoy et al.

2001b) .

In order to compare the quality of the different orderings, we show the number of
entries in the factors for the test matrices in Table 9.7.

While it is not always the best ordering, METIS consistently provides a good overall
performance with respect to the number of entries in the factors.

Matrix AMF METIS

name Factors Flops Factors Flops
bbmat 37,734,384 2.8e+10 | 37,429,544 2.8e+10
ecl32 31,862,069 3.5e+10 | 25,190,381 2.1e+10

g7jac200 | 33,245,736 3.5e+10 | 43,496,678 5.5e+10
twotone | 22,653,594 2.9e+10 | 25,537,506 2.9e+410
ship003 | 68,199,143 9.6e410 | 71,388,126 8.3e+10
bmwcra_1 | 95,816,634 9.9e+10 | 78,012,686 6.1e4+10

Table 9.7: Number of entries in the factors and number of operations during factorization
by ordering (LDLT factorization for symmetric and LU factorization for unsymmetric
matrices).

Matrix Order Alg 4 8 16 32 64
bbmat AMF old | 119.7 | 71.1 | 50.5 | 44.3 | 44.1
new | 114.2 | 69.6 | 44.1 | 27.6 | 21.7

METIS old 39.5 (242 | 145 | 11.8 | 9.6

new | 37.7 | 22.2 | 14.1 | 10.8 | 8.8

ecl32 AMF old 45.2 | 25.7 | 19.9 | 16.6 | 16.0
new | 44.4 | 24.2 | 19.0 | 16.0 | 14.5

METIS old 28.4 | 16.7 | 10.7 | 7.7 | 6.3

new | 29.4 | 16.0 | 11.4 | 7.7 | 5.6

g7jac200 AMF old | 166.0 | 77.3 | 63.4 | 40.2 | 41.8
new | 171.6 | 78.3 | 61.3 | 38.6 | 33.7

METIS old - | 48.2 | 27.4 | 20.3 | 15.7

new - | 414 | 26.7 | 19.9 | 13.6

twotone AMF old | 105.8 | 47.1 | 28.3 | 20.8 | 19.1
new | 102.4 | 47.4 | 29.0 | 20.9 | 18.7

METIS old - 1269 |19.1 | 133 | 11.4

new - 1279 | 17.7 | 11.9 | 11.2

ship003 AMF old -166.0 | 34.0 | 24.4 | 22.1
new - 1622|335 24.2 | 20.4

METIS old - -129.2 | 182 | 12.3

new - -128.4 | 18.0 | 12.0

bmwcra_.i1 AMF old - -144.6 | 30.3 | 27.6
new - - 1424 | 285 | 26.9

METIS old - 136.6 | 20.1 | 13.5 8.5

new - 135.7120.9 | 13.2 8.4

Table 9.8: Performance of old and new code on the irregular test matrices (factorization
time in seconds on the CRAY T3E).

35

In Table 9.8, we see that in general the new mapping algorithm performs similarly
to the old one. As already noted, we would expect significant improvements on large
matrices and on more than 64 processors. However, we notice some improvements for the
AMF ordering on bbmat and g7jac200. However, since METIS generally provides better
orderings, these improvements for AMF are not so relevant and only show the capacity of
our algorithm to correctly handle irregular trees.

10 Perspectives and future work

In this section, we summarize the open questions that need further investigation.

In Section 8.3, we investigated the behaviour of the new code when modifying the
assignment of candidates through relaxation and layer-wise redistribution. On the test
cases that we have studied in the framework of this paper, these modifications have
not shown a positive effect on the overall performance of the code. Still, there is an
intuitive argument suggesting further experiments. The analysis phase tries to predict
the actual factorization of the matrix and takes mapping decisions based on this symbolic
factorization. However, there are cases where this approach might not be accurate enough;
for example we do not take into account costs of communication between the processors as
is done, for example, by the static scheduler of PaStiX (Henon et al. 2002). Since, during
factorization, the assembly tree is treated from bottom up, we might expect mapping
problems to have more severe influence towards the root of the tree. For this reason, we
could decide to offer more freedom to dynamic scheduling near the root nodes so that
unfortunate mapping decisions can be corrected dynamically there.

Furthermore, in Section 9.4 we have presented test results on a few large irregular test
matrices from real life applications. We have already remarked that these matrices are
still relatively small and do not offer enough sources of parallelism on a large number of
processors. This study needs to be extended in order to be able to give reliable statements
on the scalability of the new code also in real life applications.

Finally, our candidate based approach can be extended to take account of the system
architecture, for example with respect to non-uniform communication costs on machines
consisting of SMP nodes. We can modify the task scheduling so that processors which
require expensive communications are penalized so that the master-slave communication
costs are reduced.

11 Summary and conclusions

Previous studies of MUMPS, a distributed memory direct multifrontal solver for sparse
linear systems, indicated that its scalability with respect to computation time and use
of memory could be improved. In this paper, we have presented a new task scheduling
algorithm designed to address these problems. It consists of an approach that treats the
assembly tree layer by layer and integrates tree modifications, such as amalgamation and
splitting, with the mapping decisions. As a major feature, we have introduced the concept
of candidate processors that are determined during the analysis phase of the solver in
order to guide the dynamic scheduling during the factorization.

36

We have illustrated key properties of the new algorithm by detailed case studies on
selected problems. Afterwards, by comparison of the old with the new code on a large set
of regular and irregular test problems, we have illustrated the main benefits of the new
approach. These include improved scalability on a large number of processors, reduced
memory demands and a smaller volume of communication, and the easier handling of
parameters relevant for the performance of the algorithm. Finally, we have discussed
possible extensions of our algorithm, in particular with respect to its use on SMP
architectures.

Acknowledgments
We are grateful to E. Ng for providing access to the CRAY T3E at NERSC. J. Koster and
J. Y. L’Excellent gave helpful comments on an earlier version of this paper.

References

P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods
on multiprocessors. Int. J. Supercomputer Appl., 7, 64-82, 1993.

P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Computer Methods in Appl. Mech. Eng.,
pp. 501-520, 2000.

P. R. Amestoy, I. S. Duff, J. Y. L’Excellent, and J. Koster. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matriz Anal.
Appl., 23(1), 1541, 2001 a.

P. R. Amestoy, 1. S. Duff, J. Y. L’Excellent, and X. S. Li. Analysis, Tuning and Comparison
of Two General Sparse Solvers for Distributed Memory Computers. ACM Trans.
Math. Software, 27(4), 388-421, 2001b.

C. Ashcraft and R. G. Grimes. The influence of relaxed supernode partitions on the
multifrontal method. ACM Trans. Math. Software, 15, 291-309, 1989.

J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear algebra library for

distributed memory computers - design issues and performance. Computer Physics
Communications, 97, 1-15, 1996. (also LAPACK Working Note #95).

T. Davis. University of Florida sparse matrix collection. URL:
http://www.cise.ufl.edu/research/sparse /matrices/, 2002.

J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical Linear
Algebra for High-Performance Computers. SIAM Press, Philadelphia, 1998.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear

systems. ACM Trans. Math. Software, 9, 302-325, 1983.

37

I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear systems.

SIAM J. Sci. Stat. Comput., 5, 633—-641, 1984.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, London, 1986.

I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse Matrix Collection.
Technical Report RAL-TR-97-031, Atlas Centre, Rutherford Appleton Laboratory,
1997. Also Technical Report ISSTECH-97-017 from Boeing Information & Support
Services and Report TR/PA/97/36 from CERFACS, Toulouse.

A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization. Int J.
Parallel Programming, 18, 291-314, 1989.

A. George and E. Ng. SPARSPAK: Waterloo sparse matrix package user’s guide for
SPARSPAK-B. Research Report CS-84-37, Dept. of Computer Science, University of
Waterloo, 1984.

J. A. George, J. W. H. Liu, and E. G.-Y. Ng. Communication results for parallel sparse
Cholesky factorization on a hypercube. Parallel Computing, 10, 287-298, 1989.

A. Gupta. Recent advances in direct methods for solving unsymmetric sparse systems of
linear equations. ACM Trans. Math. Software, 28(3), 301-324, 2002.

P. Henon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver
for Sparse Symmetric Definite Systems. Parallel Computing, 28(2), 301-321, 2002.

D. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems, chapter
Approximation algorithms for scheduling, pp. 1-45. PWS Publishing, Boston, 1996.

G. Karypis and V. Kumar. MeTis - A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices - Version 4.0. University of Minnesota, 1998.

J. W. H. Liu. The Role of Elimination Trees in Sparse Factorization. SIAM J. Matriz
Anal. Appl., 11, 134-172, 1990.

J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory and Practice.
SIAM Review, 34, 82-109, 1992.

J. W. H. Liu, E. G. Ng, and W. Peyton. On finding supernodes for sparse matrix
computations. SIAM J. Matriz Anal. Appl., 14, 242-252, 1993.

E. Ng and P. Raghavan. Performance of greedy heuristics for sparse Cholesky factorization.
SIAM J. Matriz Anal. Appl., 20, 902-914, 1999.

PARASOL. PARASOL test data. URL: http://www.parallab.uib.no/parasol/data.html,
2002.

A. Pothen and C. Sun. A Mapping Algorithm for Parallel Sparse Cholesky Factorization.
SIAM J. Sci. Comput., 14(5), 1253-1257, 1993.

38

E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix
ordering. SIAM J. Matriz Anal. Appl., 19(3), 682-695, 1998.

39

