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1 Intro duction

Mixed and mixed-hybrid nite-element methods form a classof popular discretization methods
designedto approximate systems of partial dierential equations of saddle-point type arising
in the modeling of a variety of physical phenomenain areassuc as uid-dynamics or linear
elasticity. They generallygiveriseto large, nonsymmetric, inde nite linear and nonlinear systems
for which the solution is typically sougtt via iterative approates. An essetial feature of suc

methods is the stopping criteria employed. This work aims to describe how to devisea suitable
stopping procedure,given the well-de ned theoretical cortext of variational formulation of partial

di erential equationsand in particular the mixed nite elemen theory.

The outline of the paper is as follows. In Section 2, we intro duce the abstract formulation of a
generic saddle-pint problem as a system basedon bilinear forms. Then, we describe a general
framework in which we can formulate a stopping criterion basedon the energynorm of the error
betweenthe exact solution of the contin uous problem and the solution computed by an iterativ e
method. Section 3 generalizesthe stopping criterion derived in (Arioli et al. 2005) to the case
of mixed nite elemen formulations, discussingboth the linear symmetric and nonsymmetric
cases. We also propose a strategy for the extension of the stopping criteria to the nonlinear
case. Finally, in Section 4, we present our classof test problems together with the corvergence
behaviour of someiterativ e algorithms shawing the bene cial e ect of our stopping criteria.

2 Mixed variational form ulation

We start by summarizing the theoretical setting necessaryto describe our problem. A compre-
hensiwe and exhaustive intro duction can be found in the book of Brezzi and Fortin (1991).

Let V;Q be Hilbert spaceswith norms k ky;k kg and duals V ;Q , respectively. Consider
the two real-valued bilinear formsa(; ) : V  V, b(;) :V Q and the two linear functionals
f()2V ;g()2 Q . Weareinterestedin the following abstract variational formulation

8
< Find (u;p) 2V Qsucthat forall (v;g)2V Q
(SP). a(u;v) + blv;p) = f (v);
B CHe) = g(a):
In the nonlinear casethe bilinear form a( ; ) is replaced by the nonlinear operator F : V! V ,
as, for example, in the Navier-Stokes case. The variational formulation in this casereads

g Find (u;p) 2V Q sucthat forall (v;g)2V Q
(NSP) . hF(u)viy )+ BXvip) = f(v)
~ b(u;g) = g(9):

Following Hughes,Franca and Balestra (1986), Demkowicz (2006), and Xu and Zikatanov (2003),
we introduce the Hilbert spaceH = V  Q with the norm graph:

H3w = u;q
kwk3 = kvkZ + kgk3;
the bilinear form K:H H ! IR and the linear functional f:H! IR; f2 H :
K(uipivig) = a(u;v) + Kvip) + Ku; a); (1)

f(uig) = f(v)+ g(a);
wherewe equip H with the norm k ky given by

kikG = kF kG + Kok
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Problem SP can be reformulated as

Find u2 H sud that forallv2 H 2)
K(u;v) = f(v):

Existenceand uniquenessof solutionsto problemsof type (2) is guaranteed provided the following
conditions hold for all u;v2 H

K(w; V) C1kwky kvky (3a)

K(w; V)
su Cokwky ; 3b
v2anpOg kaH 2 : ( )
su K(w;v) Cokvky; (3¢)

for somepositive constarts Cy; Co.

Remark 2.1. Requirements (3) are known as the Babuska conditions and can be shownto be
equivalent to the Brezzi conditions which essentialy are (i) continuity conditions (of type (3a))
ona(; );b(;), (i) a condition of type (3b) for b(; ) and (iii) a coercivity condition on a( ;)
(Xu and Zikatanov 2003, Demkowicz2006). In the following we nd it convenient to work with
the Babuska conditions.

Consider now the nite dimensional spacesVy V and Q Q with bases and

- respectively. Moreover, we denote by Hy, and its dual H,, the spaces

1§ n

i1
Hh=Vh Qn Hp=V, Qy:

Variational formulation (2) restricted to the nite dimensional spaceH, reads

Find u, 2 H,, sud that for all v, 2 Hp,
Kn(Un;Vh) = fh(vh):

(4)

where Ky ( ; ) is a bilinear form on Hy, Hy, and f() is a cortinuous linear form on Hy,.
In the following we assumethat the Babuska conditions (3) hold for the bilinear form Ky( ;).
This allows us to derive the a priori error estimate
C1 .
ku unkn 1+ — min ku viky: (5)
2 Va2V
Remark 2.2. We shal be assumingthat the variational formulations intr oduced alove are weak
formulations of a systemof partial dier ential equations de ned on some open subset of RY.
Then the Hilbert spaces are spaces of real-valued functions de ned on , while Vy; Qp are nite
elementspaces, smnnad by basis functions de ned on a suldivision  of . Replacingvy, by the
interpolant of u on  and using standard interpolation error estimateswe can derive a priori
bounds of the form
kKu unky C(uC(h);

which are very usefulin informing our approach to designingstopping criteria.

For the choice (1), the weak formulation (4) givesrise to a linear system of equations

Ku=f;



where the matrix K hasthe 2-by-2 block structure

A BT

K= 58 0

with
Aj=a( j; i); Bk=Dblj; «); 5j=1 nk=1 m
Let us examinethe discrete setting further. Note rst that there is an isomorphism | between
R"™ ™ and Hy, de ned via
P n
v pi=1 Vi i Vh

AW = h = m = = Wh!
q ji=1 dj j Oh

In particular, since
kvhkd, = vTVv = kvk§;  konkd, = 9'Qq = kqkd;

whereV 2 R" "andQ 2 R™ ™, the nite dimensionalHilbert spaces(Vh;k ky,), (Qn;k ko,)
are represetted, respectively, by (IR";k ky); (R™;k kg). Therefore, the spaceHy can be
represetied by R™ ™ with norm k ky whereH 2 R(M*™M ("*Mm) 5 given by

vV o0
0 Q

The dual spaceH,, can be shown to be represetied by R ™ with norm k ky 1.
Finally, we have the following discrete represenation

H =

Kn(Un;vh) = VI KU 8un;vp 2 Hp;
which allows us to write the continuous stability conditions (3) as

wTKv

max max ——— C 6a
w2R"nf0gv2Rnf0g Kw Ky kv ky ! (62)
T
) K
min max _W RV C, (6b)

w2R"nf0gv2R"nfog KW ky kKvky
which is equivalert to uniform conditioning of K with respect to the norm induced by H:
kKkyy 1 Ci; KK tky 1y Co b

or, w(K) C;1=C,. We point out that both C; and C, are constarts independert of h and,
thus, independert of n and m.

3 Stopping criteria
Conditions (6) are su cien t for the main theoremin (Arioli et al. 2005)to apply:
Theorem 3.1. Let u be the solution of the weak formulation (2) and let u;u, = nu satisfy

_ .. ku unky _
Ku=f; KUK, C(h):
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Then o, = nu satis es

ku thky _
Kok C(h) = O(C(h))
if
ki Kuky 1
_ h)C,; 7

for some 2 (0;1).

Remark 3.1. This result meansthat one may repla® the nite elementsolution u, by an approx-
imation t, constructed by an iterative methal provided the H *-norm of the residualr = f K
is of the sameorder as the nite elementerror.

In the following, we considerin greater detail the application of the above criterion to saddle-point
systems,both in a linear and nonlinear setting.

3.1 The linear case

Unlike the positive-de nite caseconsideredin (Arioli et al. 2005), there is no obvious solution,
or iterative method, that would allow for the approximation of krky 1 in an inde nite context.
In fact, it appearsthat this may have to be computed by solving a linear systemwith coe cien t
matrix H. Fortunately, this is a procedure that is included already in some preconditioned
iterativ e methods.

3.1.1 Symmetric inde nite problems

It is an established fact that symmetric saddle-mint problems arising from the stable nite
elemern discretization of a systemof partial di erential equationsare rather amenableto iterativ e
treatment in the sensethat they come equipped with optimal preconditioners. We quote here a
generalresult from (Loghin and Wathen 2004) that expresseghis fact.

Theorem 3.2. Let (6) hold. Then

kH K ky
kK THky

KKH kg 1 Ci: (8a)
KHK ky 1 c,h (8b)

While the form of (8) is useful when we considerthe nonsymmetric case,we note here that one
can write the above bounds as a bound on the 2-norm condition humber of K preconditioned
certrally by the norm

Ci.

Cy

This suggeststhat an iterative method such as the Minimum Residual method (MINRES) will

corvergein a number of stepsindependert of the size of the problem. Furthermore, the residual
computed by this method is in fact measuredin the right norm: k ky 1. Hence,one can easily
incorporate in this approac bound (7). This we carry out in our numerics section.

We note herethat there is a signi cant amount of researt dewoted to the analysisof norm-based
preconditioners for symmetric saddle-point problemsand derivation of bounds of type (8). Some
of the problems consideredcome from ground-water ow applications (Bramble and Pasciak
1988), (Bramble and Pasciak 1997), (Chen, Ewing and Lazarov 1996), (Glowinski and Wheeler
1988), (Rusten and Winther 1993), (Vassilevski and Wang 1992), Stokes ow (Cahouet and
Chabard 1988), (Wathen and Silvester1993), (Silvesterand Wathen 1994), (Fischer, Wathen and

2(H 1=2 K H 1=2)
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Silvester1998), (Chen and Strikwerda 1999), elasticity (Glowinski and Pironneau 1979),(Arnold,
Falk and Winther 1997), (Klawonn 1998), (Brown, Jimack and Mihajlovic 2000), (Miha jlovic
and Silvester 2002), magnetostatics (Perugia and Simoncini 1998), (Perugia, Simoncini and Ari-
oli 1999) etc.

3.1.2 Nonsymmetric inde nite problems

While corvergenceof iterative methods for nonsymmetric problems is not fully understood,
bounds sud as (8) are clearly attractiv e in a preconditioning context. They guarantee that for
H ¥KH 72 poth the singular values and the absolute values of the eigervalues are bounded
from below and above. This meansthat the use of the norm as a preconditioner can be rec-
ommendedalso in the nonsymmetric case. The general approad, as suggestedby the form of
(8) is to employ an iterative solver in the H-inner product with left preconditioner H. The
resulting algorithm is equivalent to employing an Euclidean inner-product and system matrix
H KH 72 and output a residual measuredin the norm k ky 1 which is what we want to
monitor. We carry out this kind of procedurein the caseof the GeneralizedMinim um Residual
method (GMRES).

3.2 The nonlinear case

In the nonlinear casethe approximation of the solutions by mixed or mixed-hybrid methods in
combination with the linearization of the operator by a Newton method or a Picard approad,
yields a sequenceof nite dimensional problems of type (4), generally nonsymmetric, ead of
which satisfy the stability conditions (6). Writing the approximation of problem N SP as

F(w)=0
after linearization, we want to solve
KkWis1 = Ok; 9)
where
Uk+1 fi
w = and =
k+1 pk+1 gk 0

In practice, an inner-outer iteration processis the method of choice for large problems, with an
inner linear solve, typically an iterativ e process,and an outer nonlinear update. A popular ap-
proach is the Newton-Krylov procedure,wherethe outer Newton iteration usesan inner iterativ e
procedureof Krylov type to solve the linear system (9). The e ciency of sudh methods relieson
the choice of inner stopping criteria. This was recognizedby Dembo et al. (Dembo, Eisenstat
and Steihaug 1982). We review brie y their result and adapt it to the nite elemer context.

3.2.1 Nonlinear stopping criteria

Let us assumethat we seekthe solution of problem (9) via an iterativ e routine in which at every
stepj we compute or estimate a residual

N = ok KgWgsr:

Sinceinitially system (9) approximates poorly the equation F (w) = 0 one can compute only a
coarseapproximation to the solution wy+; . As cornvergenceof the outer iteration improvesone

5



would want to improve the quality of wy.1. One way of achieving this is through the use of of
the following inner stopping criterion (Dembo et al. 1982)

krjk

KE (WK ckF (wy)k%: (10)

The norm employed in (10) is general, though in practice the standard Euclidean norm is em-
ployed. This is wasteful in a nite elemen corntext. In particular, given the result of Thm 3.1,
we proposeto evaluate the above criterion in the relevant norm k ky 1

krj Ky 1

m CkF (Wk)kq 1; (11)

H
Criterion (11) is to be conmbined with criterion (7). Thus, while (7) is not satis ed, one employs
at ead nonlinear step an iterativ e method with criterion (11). Moreover, the choiceof ¢;qin (11)
needsto berelated to C(h) in (7). Thus, if the problem is large, one can compute a satisfactory
solution in just a few iterations, without the needto attain a very small order for the nonlinear
residual, which in a nite elemen context has no relevant meaning. A typical algorithm for
solving (9) is outlined below:

k = 0, choosewy, rx = F g(wg) tol_out .= C(h)C,
while kriky i1=kwyky  tol _out
wO=wp, r0=ry, tol_in := ckrki ,
wl = GMRES(K i; gi; w?; tol_in;H)
k=k+1, we=w; re= F (wy)

end while

where the iterativ e routine GMRES(E; b;x°;tol; H) applied to a matrix E computesan approx-
imate solution xK such that
kb Ex*ky 1
kb Ex%y 1
A GMRES routine which usesthe H -norm in its stopping criterion is a GMRES iteration in
the H -inner product preconditioned from the left by H (cf. section3.1.2)

tol:

3.2.2 3-term GMRES

It was shawvn in the positive-de nite casein (Arioli et al. 2005) that the GMRES method in
the H-inner product with left preconditioner H is a three-term recurrence provided H is the
symmetric part of K. In this case,the preconditioned system matrix is a normal matrix

H KH ¥2=1+s

where S is a skew-symmetric matrix. Sud an implemenation of GMRES is storage-free,a
desirablefeature in an iterativ e solver. One would naturally want to extend this to the inde nite
case,particularly for the casewhere we have to solve a long sequenceof problems of type (9).
We shawv how this can be achieved for a classof nonlinear saddle-point problems.

Let K¢ in (9) have the form

_ A¢ BJ

K= By ok

6



where Ay are nonsymmetric positive-de nite for all k, a standard assumption for a great variety
of problems. Let us replacethe sequenceof problems (9) with the following sequence
T
Ak Bk uk+l - fk . (12)
Bk M Pk+1 M pi
It is easyto seethat this sequencecorvergesto the samesolution provided is su cien tly small
(in fact, we require (M BA, 'BT)).
Multiplying the secondset of equations by minus one, equation (12) becomes
T
Bk M Pk+1 M pk
and thus one can split the systemmatrix into a symmetric (positive-de nite) and anti-symmetric
part
Ak By _ Lk O N S« By
Bk M 0 M Bk O

It is clear now that the three-term GMRES method devised for the scalar case (Arioli et al.
2005) will work alsoin this case,provided we precondition the above matrix certrally with the
hermitian part Hy of the modi ed matrix Ky

Ly, O

M= g

Residual corvergencewill then be automatically measuredin the norm
2 2 1 2 .
kaHk 1 = lekLk 1 + kVZkM 1.

It is clearthat M will be chosento be Q, while Ly will be in generalequivalert to V, when not
identically equalto it. Thus, during the Arnoldi process,one can monitor strictly the H -norm
of the residual. Numerical experimerts indicate that the method doesnot a ect the corvergence
rate of the outer iteration for su cien tly small, the advantage being that one can employ a
short-term recurrencefor the inner iteration.

4 Exp erimen ts

4.1 Test problems

We used two test problems suggestedin (Berrone 2001). The rst is Stokes ow in the unit
squarewhile the secondis 2D Navier-Stokes ow in a cavity, which tries to mimic the behaviour
of the driven-cavity ow. The problemswe solved are

g+rp = f in (14a)
dve = 0 in (14b)
t#(x) = o (X) on ; (14c¢)
and
" d+ (¢ r)g+rp = f in (15a)
divet = 0 in (15b)
t#(x) = # (X) on ; (15¢)

7



both of which have the exact solution (¢ ;p) = (u ;v ;p ) given by

U0y = S2a(RpY)(1 o2 qRyix)sin2 q(Rz:y)

R .
2—1q0(R1;x) (1 cos2 q(R2;y)) sin2 g(R1;X)
R1R200(R1;X)G(R2;y) sin2 g(R1;x) sin2 q(Rz;Y):

v (X;Y)
p (Xy)

where - R
e 1
R;t) = ; R;t) =
and Rj; R, are two real constarts that can be usedto modify the ow behaviour. The pressure
satis es Z

p dx = 0; (16)

and this is the type of condition onecan useto ensurethat equations(15) have a unique solution.

(a) Streamlines (b) Pressure

Figure 1: Exact solution for Ry = 0:1; R, = 4:2.

(a) Streamlines (b) Pressure

Figure 2: Exact solution for R; = 1:2; R, = 0:1.

Streamlinesand pressureplots for various valuesof R1; R, are given in Figs 1, 2. The problem
usedin our tests correspondsto the choice R; = 0:1; R, = 4:2.
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We solved (14), (15) using the discrete mixed formulation (4) where the spaceH;,  H with
H=H&) L2(). In particular, we choseto work with the norm

kvkg = "jvji + quEZ()
wherev = (v;qg) and
0 1=
. . . . X z . .2
MX)jnzy = M) = @ jD w(x)j“dxA

j =1

Our discrete spacesvy; Qn were nite elemen spacesspannedby quadratic basisfunctions in the
caseof the velocity spaceand linear basisfunctions in the caseof the pressurespace.

4.2 The linear case

We choseto compare the stopping criterion (7) with both the exact nite elemen error and
interpolation error measuredin the norms inherited by the problem. We computed

() FE: the exact relative errors between the solution at step k and the exact cortinuous
solution of either (14) or (15)
ku ukky

FE = K :
kUth

(i) FIE: the exact relative interpolation errors

ku' UkkH
FIE = — ",
kUEkH

(i) HINV: the exactH *-norm criterion (7) with C, estimated on a coarsemesh;
(iv) the standard 2-norm stopping criterion kr*k=kr%k.

We rst display in Fig. 3 the results for MINRES preconditioned with the norm in the caseof
the Stokesproblem. In Fig. 3 (a), we plot the value of the global error while in Fig. 3 (b), (c),
and (d), we plot the values of FE, FIE, HINV, and 2-norm of the residual for ead one of the
componerts of the velocity and the pressure,which in this caseappear distributed unevenly. The
pressurecomponert providesthe largest error, while the velocity componerts appearto cornverge
faster. This will not be the casefor the nonsymmetric example. Moreover, the interpolation error
seemsto be higher than the energyin the caseof the pressureand this is alsore ected globally.
Our guessis that this is to do with imposing condition (16) numerically. We remark here that
Theorem 3.1 is only applicable to the global solution w = (u;v;p) and there is no reasonto
expect that the criterion should work componerntwise.

We also examinedthe convergenceof the symmetrically norm-preconditioned GMRES applied to
the Navier-Stokes problem. More precisely we computed the solution to the nonlinear problem
using a Picard iteration, but displayed only the results corresponding to the last linear system
solve. As before, the convergencecan be examined globally or separately for the di erent com-
ponerts of the solution. These curves are shown in Figs 4, 5 for two values of the di usion

parameter: " = 0:1;" = 0.01. Again, the criterion works ne; moreover, it seemsthat in this
case,the componert cornvergencecan be described by componerts of our criterion, a feature
which did not work for MINRES. More precisely plots (b), (c), (d) seemto indicate that velocity
and pressureresidualscan provide respective boundsfor the velocity and pressureforward errors.



e=1; N=2113; solver=MINRES

e=1; N=2113; solver=MINRES
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uvp u
(a) Global (uvp) convergence (b) Componert u convergence
e=1; N=2113; solver=MINRES e=1; N=2113; solver=MINRES

10° 10°
10” 10”
10* = 10" R
10° TN 10° NG

-8 N 8 ﬁgx
10 ' R 10 S

—— FE —— FE
10| — FIE 101 — FIE
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10_12 — 2—‘norm ‘ ‘ 10_12 — 2—‘norm ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

(c) Componert v

(d) Component p

Figure 3: Convemene criteria for preconditioned MINRES.

4.3 The nonlinear case

In this section, we presert the results for the fully nonlinear Navier-Stokes problem (15).

First, we show the simple run of unpreconditioned GMRES asa solwer for the Picard iteration
applied to the nonlinear problem (15). The Picard iteration takesthe form (9), but we usedthe
modi ed iteration (13), in order to both exhibit its corvergenceproperties and highlight the
relevance of our stopping criteria.

The choicec = 10 ';q = 1=4 in (10) doesnot a ect the number of nonlinear iterations in
our tests. Note that the norm in (10) is the Euclidean one. The purposeof this criterion, as
described in (Dembo et al. 1982)is to make GMRES work hard only when it matters (i.e., when
the residual is su cien tly small).

The nonlinear corvergencehistory is displayed in Fig. 6. More precisely the 2-norm of the
residualsry, concatenatedfrom all nonlinear iterations (7 in this case)is plotted together with
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e=0.1; N=2113; solver=SYM-PGMRES e=0.1; N=2113; solver=SYM PGMRES
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(a) Global (uvp) convergence (b) Componert u convergence
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v p
(c) Componert v (d) Component p

Figure 4: Convemene criteria for symmetrically preconditioned GMRES for " = 0O:1.

the energy-errorand the H 1-norm of the residual, which is computed exactly for illustration
purposes.Of course,in the caseof unpreconditioned GMRES it is not clear how one could derive
an approximation for krky 1, exceptthrough direct computation.
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e=0.01; N=2113; solver=SYM PGMRES
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Figure 6: Convemgene criteria for unpreconditioned GMRES for " = 0:1 and the dier ence
between the solution convergead using (10) and using our proposed stopping criterion (11).

We plotted also in Fig. 6 the di erence betweenthe nal solution obtained using criterion
(10) and that obtained by employing the H 1-norm of the residual. The errors are of the order
10 3 for the velocities and 10 2 for the pressure(given solutions of order one), which indeed are
of the order of the FEM error.

In Fig 7 we display the convergenceof the 3-term GMRES method in the last Picard step of
the nonlinear iteration of type (13) using the hermitian part to symmetrically precondition the
system. We point out that the choice = 10 2 in (12) did not changethe number of nonlinear
iterations.

Finally, we presern the results obtained using the 3-term GMRES algorithm suggestedin
Section 3.2.2 for solving the full nonlinear problem.

First, we note that di erent choicesof c;q will leadto di erent nonlinear corvergencecurves.
We presern a typical examplein Fig 8 (with c= 1;q= 0:5) and highlight corvergenceproperties
for seweral choicesof parametersin Tables1, 2. In particular, we choseto work with ¢ = c(h), for
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Figure 7: Convemene criteria for symmetrically preconditioned 3-term GMRES.
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Figure 8: Convergene criteria for the full nonlinear problem using symmetrically-preconditioned
GMRES-Picard for " = 0:1;0:01

three valuesof g. We settol_out= 10 © and highlighted the number of iterations neededfor this
“classic'criterion comparedwith that suggestedn the algorithm above wheretol .out= C(h)C».
We worked with = C, = 1 and C(h) = h? for " = 0:1 and C(h) = h3%2 for " = 0:01; we note
that this leadsto a robust stopping criterion which we highlight in the vertical lines acrossthe
convergencecurvesin Fig 8. As expected,a small value of ¢ = ¢(h) leadsto best performancein
the H 1-norm. In particular, the GMRES-Picard algorithm is most wasteful when we attempt
to solve ead iteration to the full FEM error level, i.e., when c(h) = h2. On the other hand, when
c(h) = h'2, the corvergenceis relatively robust with respect to the q parameter.
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g= 0:25 g= 05 g= 075

c(h) = | dual | classic|| dual | classic| dual | classic
h1=2 26 83 30 125 31 175
h 31 112 33 155 37 199
h? 45 170 49 215 52 257

Table 1: Total numkber of preconditioned GMRES iterations for the full nonlinear solution of our
test problemwith " = 0:1 using both the classic (12) and dual stopping criteria

g= 0:25 g= 05 g= 075
c(h) = | dual | classic|| dual | classic| dual | classic
h1=2 229 | 914 309 | 1440 | 405 | 1928
h 317 | 1261 405 | 1754 495 | 2205
h? 544 | 1949 || 635 | 2385 || 722 | 2747

Table 2: Total numkber of preconditioned GMRES iterations for the full nonlinear solution of our
test problemwith " = 0:01 using both the classic (I12) and dual stopping criteria

5 Conclusion

We shawved how the results described in (Arioli et al. 2005) can be used and extended in the
framework of mixed and mixed-hybrid nite-element approximation of partial di erential equa-
tion systemsin saddle-pint form.

Moreover, we described how the dual norm of the residual can be easily usedwithin classical
Krylov methods to obtain reliable and e cien t stopping criteria.

Finally, we described how to generalizethesetechniquesto the nonlinear case,thus obtaining
a considerablegain in e ciency. In particular, we shoved how the use of the dual norm of the
residual (essemially, the energy norm of the error) can be successfullyconbined with a short
term recurrenceGMRES in order to solve nonlinear saddle-pint problems suc as Navier-Stokes
equations.
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