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ABSTRACT

A Null Space algorithm is considered to solve the augmented system produced by the mixed
finite element approximation of Darcy’s Law. The method is based on the combination
of a Gaussian factorisation technique for sparse matrices with an iterative Krylov solver.
The computational efficiency of the method relies on the use of spanning trees to compute
the Gaussian factorization without fill-in and on a suitable stopping criterion for the
iterative solver. We experimentally investigate its performance on a realistic set of selected
application problems.
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1 Introduction

In this paper we present a null space method to solve the algebraic problem that arise from
the Mixed Finite Element approximation of Darcy’s law in dual formulation (Brezzi and Fortin
1991). Our strategy combines a spanning tree based direct LU factorisation of the divergence
matrix with a preconditioned conjugate gradient iterative resolution of the linear problem for the
projected Hessian matrix. For a detailed review of the bibliography on this topic the interested
reader is referred to Arioli and Baldini (2001), where the theoretical properties concerning the
backward stability when using finite-precision arithmetic has been investigated and proved, and
to Arioli and Manzini (2001). We outline that the iterative solver stopping criterion has a strong
impact on the computational efficiency of our approach. The stopping criterion adopted in this
paper is based on an estimate of the approximation error in the energy norm of the problem.
See Arioli (2000) for a more detailed theoretical presentation. The performance of the final
algorithm is experimentally investigated on a representative set of problems. In the following,
we will denote by E; and Ey the n x m and n x (n — m) (with m < n) matrices

I, Om,nfm

E1 = and E2 = . (1)

On—m,m In—m

2 Problem Formulation

The Darcy’s law describes the relationship between the hydraulic head p(x) and the velocity
field u(x) in ground-water flow. The governing equations take the form

u(x) = —K(x)gradp(x), x €,
divu(x) = f(x), x €1,

(2)

where  is a connected, bounded, polygonal domain in R? defined by the closed boundary curve
I. The first equation in (2) relates the vector field u to the scalar field p via the permeability
tensor K, which accounts for the soil characteristics. The second equation relates the divergence
of u to the source-sink term f(x).

Equations (2) are completed by the following set of boundary conditions for both u and p

p(x) = gp(x), xelp, 3

u-n = gy(x), x €'y,

where n denotes the external normal to I', and I'p and I'y are two distinct and non-overlapping
sub-sets of the domain boundary such that I' = I'pUI'y. Dirichlet and Neumann-type boundary
conditions are respectively imposed on I'p and I'y using two regular functions gp and gyn. In
the following, we will assume that gy = 0.

Let us consider the mixed finite element method on the dual weak formulation of system (2)
in the lowest-order Raviart-Thomas space. This method is defined on a family of triangulations
Th, where the parameter h is the mesh diameter. Any mesh of 7} is a set of disjoint triangles T
covering 2 and such that no triangle has one vertex on gp and another vertex on gy and more



than one edge lying on I'. We also assume that 7} is regular and conforming in the sense of
Ciarlet (1978), which means that triangles do not degenerate in the approximation process for
h — 0. We refer to the book by Brezzi and Fortin (1991) for a detailed analysis.

Let us denote by n the number of edges and by m the number of triangles in the current
mesh of 7. Using the R7 discrete functional space for the approximation of the velocity field
and the piece-wise constant Py elements for the pressure field leads to the solution of the linear
system

M A U q
T = ) (4)
A" 0 P b

where M is a n x n symmetric and positive definite matrix, and AT the n x m divergence matrix.
The augmented system (4) is non-singular because the inf-sup condition satisfied by the mixed
finite element formulation implies that Ker(AT) N Ker(M) = 0.

3 Graph properties of the matrix A

The matrix A in (4) shows very strong structural properties related to the edge-triangle graph
connectivity of the mesh. This latter one, indicated by the symbol G = {N, A}, is associated
to the 2-D triangulation as follows:

- N ={m, 7,... 7} U{7r} is the set of graph nodes corresponding to the mesh triangles
7; < T3, for 1 = 1, m; the root node 7 is identified with the region external to €2;

- A = {(m,7j)} is the set of graph arcs where (7;,7;) is an arc if and only if the triangles
T; and T} shares the edge e;; or e;; is a Dirichlet boundary edge.

Notice that G is binary graph when 7}, is a 2-D mesh and a ternary one in the 3-D case.

The vector n.,, which is orthogonal to the mesh edge e;, is defined in order to point like
the edge flux, the direction of this latter being uniquely determined by sign (u;). The non-zero
entries of A are thus equal to £1, and A, 1!, + A, T = = 0 when e; N I'p # e;. Let us define
the column vector r whose non-zero entries corresponds to the edge indices ¢ such that e; C I'p
and whose values is such that re, + A¢; 7., = 0. The (m + 1) x n matrix A" = [A, r], obtained
by augmenting A with the column vector r, is the incidence matrix of A'. The matrix A’ is
totally unimodular and has rank m (Alotto and Perugia 1999, Arioli and Manzini 2001). This
implies that every sub-matrix obtained removing a column of A’ has full rank (Tarjan 1983).
Therefore, A is also a full rank matrix and its entries are equal to either 1, —1, or 0.

Every spanning tree of G with root in 7p induces a partition of the graph arcs in in-tree
arcs and out-of-tree arcs. In accord with a given spanning tree, the rows of the matrix A can
be permuted by renumbering firstly the ones corresponding to in-tree arcs, and then the others.
In-tree arcs (matrix rows) and graph nodes (matrix columns) are then renumbered using the
spanning tree from root to leaves in a depth-search strategy. Let the symbol P and Q denote
the two permutation matrices determined by this renumbering process. It turns out that the
permuted matrix takes the form

L L. 0 |
PAQ=| | =] " ™ | = LE,. (5)

Ly Ly i m) 0



where L; is a non-singular lower triangular matrix.

The optimal choice for the rooted spanning tree is the one that minimizes the number of
non-zero entries in the kernel matrix of A7, that is Z = L=7'E,, as follows from the definition of
the Null Space algorithm in the next section. This is equivalent to find the tree for which the
sum of all the lengths of the fundamental circuits is minimal, which is an N’P-complete problem.
Thus, we considered the two heuristic algorithms discussed below. The first one consists of the
heap version of the Shortest Path Tree (SPT) algorithm, while the second one is the Minimum
Cost Tree (MCT) algorithm in the Prim’s implementation version (Tarjan 1983). Both ones
use the cost function costgpr : A — R4

cost a)=0 if 3, a= (1, 7;
Ve e A spr() (TR, Ti) (©)
costspr(a) = My, otherwise.

The set of paths produced by the SPT algorithm can be given an interesting physical inter-
pretation, because it identifies the more significant flux lines in the following sense. A graph
node (mesh triangle) lying in a low permeability zone — that is, where K~ is very large —
is connected to the root by a path of nodes mainly lying outside the low permeability zones.
Thus, the paths built by the SPT algorithm try to avoid islands where the lowest values of
permeability are attained and the flux is expected to be minimum.

4 The Null Space Algorithm

In this section, we shortly describe the classical null space algorithm, for the minimisation of
linearly constrained quadratic forms, a complete presentation can be found in the book by
Gill, Murray and Wright (1981). For the sake of simplicity, we assume that M, A and AT
indicate the matrices permuted using the edge/triangle numbering system built on a spanning
tree as discussed in the previous section. Let Y € R™ ™ be a right pseudo-inverse of AT and
Z € R™("~™) be a basis of the kernel of AT. That is,

Y'A=1,, and Z'A=0, mm- (7)

The Null Space algorithm can be formulated as follows:

Null Space Algorithm:

1. uy = Yb,

2. ZTMZw =2Tq — Z"Muq = s, (8)

3. u=uy+ Zw,

4. p=YT'qg—Y"'Mu.
Arioli and Manzini (2002) presented a version of this algorithm that uses the matrices Y and Z
built by an orthogonal factorisation of the matrix A. In the present work we instead consider
the LU Gaussian factorisation of A that is obtainable without floating-point operations by

exploiting the strong graph properties of the previous section. The sparsity of the Gaussian
factors deriving from this approach make possible to compute implicitly and efficiently all the



matrix-vector products required by the algorithm. Step 2 requires to solve a linear system of the
form ZT'MZ w = s. This latter one can be solved by a preconditioned conjugate gradient method
because ZTMZ is a symmetric positive definite matrix, thus requiring only the specification of
a matrix-vector product.

From (5), the matrices Y and Z can be implicitly computed as

Y=LTTE, and Z=L""TE. (9)

The solution of the linear systems involving L or L~! can be computed by visiting the tree
without storing explicitly the matrices. Let M = L~'ML™T, then the matrix-vector products
needed by the conjugate gradient method are computed by the following algorithm:

Maoy = E5 L™H(M(L™" Eay)). (10)

This approach is particularly suitable when the projected Hessian matrix cannot be calculated
because either the complexity would be too high — O((n —m)3) — or the resulting matrix would
be fairly dense, despite the sparsity of M. We point out that the dimension of Mas is the number
of nodes of the mesh plus one (n —m).

5 Stopping Criterion

As we use the conjugate gradient method, it is quite natural to have a stopping criterion which
takes advantage of the minimisation property of this method. At each step j the conjugate
gradient minimises the energy norm of the error éw = w — w) on a Krylov space. The space
R™ ™ with the norm

1
Ny llzrmz = (v"Z"MZy)> (11)

induces on its dual space the dual norm

N =

[ fllzrmzy-1 = (fT (ZTMZ)_l f). (12)
A stopping criterion such as
if  [|Z"MZwY —s||zrmzy-1 < nllsllzrmz)-:  then STOP, (13)
will guarantee that the computed solution w'9) satisfies the perturbed linear system

Z"TMZwl) =5 + f,
w s+ f (14)

Il £ llzrmzy-1 < nll sllzrmz)-1-

The choice of n will depend on the properties of the problem that we want to solve, and, in the
practical cases n >> €, where € is the rounding unit. Therefore, it is appropriate to analyse
the influence of the perturbations on the error between the exact solutions u and p and the
computed u* and p* neglecting the part depending on €. Using the results of Arioli and Baldini
(2001), we can prove that

IN

[lu = u*{lm 1w = uo[[m

(15)

N

Ilp—p*[larm-1a < 7VC]|u—ug||m

N



where ( is the spectral radius of Z'MZE;M~1Es.

Furthermore, we need to add some tool within the conjugate gradient algorithm for estimat-
ing the values in (13). The estimate ¢; of || ZTMZ w9 — s |l(zrmz)-1 can be computed using the
algorithm proposed by Hestenes and Stiefel (1952) which is equivalent to the Gauss quadrature
rule proposed by Golub and Meurant (1997) and tested by Arioli (2000) and Meurant (1999).
At step j of the conjugate gradient, ; estimates the true value of the error at step j — d, where
d is an a priori selected integer value. Strakos and Tichy (2002) proved that the Hestenes and
Stiefel rule is numerically stable in finite-precision arithmetic.

Finally, we must estimate || s ||zrmz)-1. Let r(OT be the residual Z'MZ w© — s computed
at step 0. Taking into account that

||5||?ZT|\/|2)—1 = ||w||%T|v|z 2 sTw(® _T(O)Tw(j)a
and that the lower bound converges to ||wl|3r,,, (Arioli 2000), we replace lIs|l(zrmz)-1 with its
lower bound at the step j of the conjugate gradient. Therefore, (13) can be replaced by:

F 2 <n?(s"w® - rOTy0)) THEN STOP . (16)

Moreover, (16) needs only a scalar product at each step.

6 Preconditioners

Arioli and Manzini (2001) have shown how, using the spanning tree and the properties of the
mesh, it is possible to compute a priori the structure of Mgo. This allows us to decide what
kind of preconditioner we can afford and to identify the diagonal blocks of Mg, that can be used
to compute a block Jacobi preconditioner.

Both the SPT and MCT algorithms compute a tree that places on the diagonal of Mgy =
ETME, the biggest entries of the diagonal of M. Therefore, the possibility of using the simplest
choice of the diagonal of My, is sensible. Moreover, with this choice we can avoid the additional
cost of computing either the diagonal (Jacobi) or the diagonal blocks (block Jacobi) of Mas.

In Section 7, we will give numerical evidence that this choice is very efficient for several test
problems.

7 Numerical Experiments

All our experiments were performed on a PC workstation comparing our free-matrix implemen-
tation of the Null Space algorithm and the sparse code M A47 of the HSL (2000).

We compare the exact solution u and p of (4) with the values v* and p* computed by the
null space algorithm where, in step 2, we used the conjugate gradient method with (16), we
chose w(®) = 0, and d = 5 in our stopping criterion. We assume that the values computed by
the HSL routine M A47 which implements a direct sparse Gaussian factorisation applied to (4)
are exact.

We generated two test problems using a square unit box. In the first test problem, for a given
triangulation, the values of K (x) are constant within each triangle and this value is computed
following the law: K, = 107'%% | i = 1,...,m where r; € [0,1] are numbers computed using
a random uniform distribution. In the second test problem, we have four rectangular regions



where the tensor K(x) assumes different values. In Figure 1, we illustrate the geometry of
the domain and the boundary conditions. The values of the tensor K (x) are chosen as follow:
K(x) =0.5in Q1, K(x) =10"%in Qp, K(x) = 10 * in Q3, K(x) = 10~* in 4, and K(x) =1
in Q\{Q; UQ2UQ3UQy}. In (2), we take the right-hand side f(x) = 0 in all our test problems.
We generated two regular meshes on 2 with an increasing number m of triangles. In Table 1,

g =0 g =0
0.1 N ° (%))

(0,0) (1,0)

g9, =1

Figure 1: Domain €.

we report on the values n, m (number of degrees of freedom of the problem), Ny (number of
nodes in the mesh) and the values of nnz(M) and nnz(A), the number of nonzero entries in M
and A.

Table 1: Parameters of the runs.

Mesh m n Ny | nnz(M) | nnz(A) h

1| 15472 | 23381 | 7908 | 116213 46107 | 0.02159
2 | 155746 | 234128 | 78381 | 1168604 | 466319 | 0.00687

In Tables 2-3, we summarise the numerical performance of the SPT versions of the algorithm
for each test case and each mesh versus the performance of M A47. In Tables 4-5, we summarise
the numerical performance of the SPT and M CT versions of the algorithm. All the results are
relative to the use of diag(Ma2) as the preconditioner for the conjugate gradient method.

Finally, in Table 6, we report the performances of the conjugate gradient algorithm using
the preconditoners diag(Ma2), Jacobi, and block Jacobi on the test problems relative to mesh
1.

The use of the stopping criteria (16) did not downgraded the numerical quality of the
computed solution: the energy norm of the error is always O(h) (see Table 7).



Table 2: MAA47 versus the null-space algorithm. Boxed domain with random permeabilities.
CPU times (in seconds) and storage (in MBytes).

Mesh MAA47 null space algorithm (SPT)
Symb. | Fact. | Sol. | Stge | Symb. | CG(#It) Sol.

1 0.51 | 0.75 | 0.03 | 9.03 0.04 0.81 (42) | 0.04
2 553 |27.96 | 0.25 | 129.72 | 0.64 | 35.12 (174) | 0.32

Table 3: MAA47 versus the null-space algorithm. Boxed domain with four isles of different
permeabilities. CPU times (in seconds) and storage (in MBytes).

Mesh MAA47 null space algorithm (SPT)
Symb. | Fact. | Sol. | Stge | Symb. | CG(#It) Sol.

1 0.41 0.33 | 0.02 | 6.09 0.04 1.07 (90) 0.04
2 5.42 9.87 | 0.20 | 82.08 | 0.51 | 68.01 (345) | 0.40

Table 4: SPT versus MCT null-space algorithm.
CPU times (in seconds) and storage (in MBytes).

Boxed domain with random permeabilities.

Mesh | SPT null space algorithm | MCT null space algorithm
Symb. | CG(#It) | Sol. | Symb. | CG(#It) | Sol.

1 0.04 0.81 (42) | 0.04 | 0.05 0.58 (30) | 0.05
2 | 064 |3512(174) | 0.32 | 0.60 | 34.74 (175) | 0.40

Table 5: SPT versus MCT null-space algorithm. Boxed domain with four isles of different
permeabilities. CPU times (in seconds) and storage (in MBytes).

Mesh | SPT null space algorithm | MCT null space algorithm
Symb. | CG(#It) | Sol. | Symb. | CG(#It) | Sol.

1 0.04 1.70 (90) | 0.04 | 0.05 1.84 (94) | 0.03
2 0.51 | 68.01 (345) | 0.40 | 0.58 | 75.10 (377) | 0.41




Table 6: Comparison of the preconditioners on mesh 1.

K Preconditioner #CG It. CPU Time (in sec.)

Building | CG solve
Random diag(Mao) 42 0.00 0.81
Random diag(Mgg) 16 6.03 0.32
gpp | Random blockdiag(May) 13 5.55 0.35
isles diag(Mag) 90 0.01 1.70
isles diag(Mao) 69 5.65 1.36
isles blockdiag(Mas) 53 4.60 1.35
Random diag(Mao) 30 0.01 0.58
Random diag(Mag) 16 6.15 0.33
Random | blockdiag(Mas) 14 5.53 0.38

MCT

isles diag(Mao) 94 0.01 1.84
isles diag(Mao) 93 6.23 1.80
isles | blockdiag(Map) 68 5.47 1.71

Table 7: Velocity and pressure errors (SPT and diag(Ma2) preconditioner)

K he | e =l /llulla | [lu =ull2/llull2 | [lp = p*[l2/llpll2
Random | 0.02159 0.01853 0.01313 0.00235
Random | 0.00687 0.01775 0.01152 0.00145

isles | 0.02159 0.03000 0.02869 0.00669
isles | 0.00687 0.02025 0.01964 0.00322




8 Conclusions

The numerical results give evidence of a slightly better performance for the SPT choice. Even
if MA47 can be 6 time faster than the best version of the null space algorithm (see Table 4),
we want to highlight that the absence of fill-in is promising when we need to solve Darcy’s
equations in 3D domains.

The cost of computing the Jacobi or the block Jacobi preconditioner makes the overall cost
of the null space algorithm not competitive respect to its cost when we choose diag(Myz) as
preconditioner.

Nevertheless, in the presence of strong discontinuities and of anisotropies in the permeability
function K, we are obliged to use either the diagonal Jacobi preconditioner or a block diagonal
Jacobi to obtain convergence.
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