
RAL-TR-2007-021

December 2007

J. Boyle, M. D. Mihajlović and J. A. Scott

HSL MI20: an efficient AMG
preconditioner

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

HSL MI20: an efficient AMG preconditioner1

by

J. Boyle2,3, M. D. Mihajlović4 and J. A. Scott5,6

Abstract

Algebraic multigrid (AMG) is an efficient multilevel method for solving large sparse linear systems

obtained from the discretisation of scalar elliptic partial differential equations. AMG can be used to

compute powerful preconditioners for use with Krylov subspace methods. We report on the design and

development of an efficient, robust and portable implementation of AMG that is available as package

HSL MI20 within the HSL mathematical software library. HSL MI20 implements the classical (Ruge-Stüben)

AMG method and, although it can be used as a “black-box” preconditioner, it offers the user a large

number of options and parameters that may be tuned to enhance its performance for specific applications.

The performance of HSL MI20 is illustrated using finite element discretisations of diffusion and convection-

diffusion problems in three dimensions.

Keywords: large sparse linear systems, Krylov subspace methods, algebraic multigrid, preconditioning,

Fortran 95.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 School of Mathematics, University of Manchester,

Alan Turing Building, Manchester M13 9PL, England, UK.

Email: j.boyle@manchester.ac.uk

3 Boyle was supported by the EPSRC grant EP/C000528/1.

4 School of Computer Science, University of Manchester,

Kilburn Building, Manchester M13 9PL, England, UK.

Email: milan@cs.man.ac.uk

5 Computational Science and Engineering Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, UK.

Email: j.a.scott@rl.ac.uk

6 Scott was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

December 17, 2007.

Contents

1 Introduction to AMG 1

2 Design of HSL MI20 3

2.1 Language . 3

2.2 The user interface and derived data types . 4

2.3 MI20 setup . 4

2.3.1 Finding F and C vertices . 5

2.3.2 One pass coarsening . 7

2.3.3 Aggressive coarsening . 7

2.3.4 Interpolation operator . 7

2.4 MI20 precondition . 8

2.4.1 Choice of smoother . 8

2.4.2 Coarse level solver . 9

3 Numerical experiments 10

3.1 The Poisson equation in 3D . 10

3.2 The convection-diffusion equation in 3D . 15

4 Concluding remarks and future directions 19

5 Code availability 20

6 Acknowledgements 20

i

1 Introduction to AMG

Multigrid methods are attractive for solving certain classes of large-scale sparse linear systems of equations

since they aim to solve such systems of order n in O(n) time, thus exhibiting a (near-optimal) scaling.

This near optimality is achieved by employing two complementary processes: smoothing and coarse-

grid correction. Smoothing involves applying a smoother (also called a relaxation method), which is

generally a few steps of a simple iterative method such as Gauss-Seidel or damped Jacobi. Coarse-grid

correction involves transferring information about the approximate solution residual to a coarser grid

through restriction, solving a coarse-grid system of equations, then transferring the correction back to

the fine grid through interpolation (also called prolongation). This is generally followed by additional

post smoothing steps. In a classical geometric multigrid method, smoothing reduces high frequency (or

oscillatory) components of the error, while the low frequency (or smooth) components are tackled using an

auxiliary lower-resolution version of the problem (coarse-grid). This geometric interpretation of multigrid

was critical to its early development (see, for example, [2]) but limits the problems it can be used to solve

to those that are discretized on a sequence of nested grids. For problems on complex domain geometries

it is difficult to construct such grid hierarchies. Moreover, the book-keeping of the geometric information

associated with such a grid hierarchy is memory-consuming and requires sophisticated data structures.

This can adversely impact the performance of software that implements them. Algebraic multigrid (AMG)

was introduced as an approach to solving linear systems based on multigrid principles, but in a way that

does not explicitly use the geometry of grids (and allows it to be used for linear systems that are not

associated with an underlying grid).

Although our main interest is in developing an AMG preconditioner, the AMG method was originally

devised as a linear solver and it is more intuitive to think of AMG as a solver when describing the method.

Thus, we start by considering the linear system

Ax = b (1.1)

where A is an n× n sparse matrix, b ∈ Rn is the given right-hand side vector, and x ∈ Rn is the solution

vector. At the heart of AMG is a series of progressively coarser (smaller) representations of the matrix

A. Given an approximation x̂ to the solution x, consider solving the residual equation Ae = r to find the

error e, where r is the residual vector r = b−Ax̂. A fundamental principle of AMG is that of algebraically

smooth error. This principle is designed to mimic the notion of low-frequency error components introduced

in geometric multigrid. An algebraically smooth error is an error that cannot be reduced effectively by

the application of simple fixed-point iteration methods (smoothers) [4, p. 138]. A plot of an algebraically

smooth error may not look smooth. To reduce the algebraically smooth errors further, they need to be

represented by a smaller defect equation (coarse grid residual equation) Acec = rc, which is cheaper to

solve. As in geometric multigrid, coarse error correction is the process of approximately solving the coarse-

level defect equation and then interpolating the correction back to the fine level. The interpolation back

to the fine level introduces parasite error components. Fortunately, these can be eliminated efficiently

by a few post-smoothing steps. The whole process can be applied recursively, producing a hierarchy of

coarse levels and a series of coarse error corrections to the solution. The coarsest (smallest) level may be

solved using either a direct method or a simple iterative scheme such as Gauss-Seidel, and the coarse level

correction to the solution must then be successively prolonged to each of the finer levels. When used as a

linear solver, the whole multigrid process is applied iteratively until a solution with the desired tolerance

is obtained.

Clearly, the AMG method requires some means of constructing the nc × nc coarse level coefficient

matrix Ac, together with a method of transferring the residual and error vectors between the coarse and

fine levels. A restriction operator maps the fine level to the coarse level and may be represented by an nc×n

matrix Ifc : Rn → Rnc . Similarly, an interpolation (or prolongation) operator represented by an n × nc

matrix Icf : Rnc → Rn maps the coarse level to the fine level. Setting Af = A and nf = n, we list the

main components an AMG algorithm in Table 1.1. Assuming these components have been constructed,

1

Table 1.1: Components of an AMG algorithm

Fine level vertices: Ωf = 1 : nf

Splitting of vertices: Ωf → C ∪ F (C ∩ F = ∅)
Coarse level vertices: Ωc = C

Smoothers: S simple stationary iterative methods

Restriction and interpolation operators: Ifc and Icf

Coarse level matrix: Ac := IfcAf Icf

Coarse level solve: Direct or iterative solver

the basic two-level AMG correction scheme proceeds as in Figure 1.1 and this cycle is repeated until

convergence.

In practice, the solve at Step 5 is itself replaced by a two-level procedure, leading to the recursive

definition of a V-cycle multigrid method. In Step 1, Sν1

pre(xf , Af , bf) denotes the application of ν1 iterations

of the chosen pre-smoother to the linear system Afxf = bf . Similarly, Sν2

post(xf , Af , bf) is the application

of ν2 iterations of the chosen post-smoother. In the symmetric case, if Gauss-Seidel smoothing is used,

it is important that the sweep direction is reversed for the post-smoothing; this ensures symmetry of the

preconditioning operator is retained. In this paper, we follow the standard approach of always defining

the restriction operator to be the transpose of the interpolation operator,

Ifc = IT
cf .

If A = Af is symmetric positive definite, it then immediately follows that the Galerkin matrix Ac =

IT
cfAf Icf is also symmetric positive definite, independent of the choice of Icf (provided it is of full rank).

Figure 1.1: One cycle of a two-level AMG correction scheme

1. Pre-smooth on the fine level xf ← Sν1

pre(xf , Af , bf)

2. Calculate the residual rf = bf −Afxf

3. Restrict rf to the coarse level rc = Icfrf

4. Compute the coarse level matrix Ac = IfcAf Icf

5. Solve the coarse level residual equation Acec = rc

6. Prolong the coarse level correction ec onto the fine level ef = Ifcec

7. Update the solution xf ← xf + ef

8. Post-smooth on the fine level xf ← Sν2

post(xf , Af , bf)

The AMG method can be shown theoretically to converge for systems for which the coefficient matrix

A is an M-matrix (two-level convergence results in this case can be found in [18, p. 444]). A symmetric

positive definite matrix A = {aij} is an M-matrix if aii > 0 for all i and aij ≤ 0 for all i, j, that is,

the diagonal entries are all strictly positive and the off-diagonal entries are non-positive. In addition, an

inverse of an M-matrix is a strictly positive matrix (see [16, p. 28]). An example is the Laplacian operator

in two dimensions discretised using linear finite elements on a uniform triangular grid, provided that no

triangle has an internal angle larger than 90◦, or using bi-linear quadrilateral finite elements, provided that

the grid is not too stretched1. For more general linear systems that do not violate the M-matrix properties

too strongly (such as arise from the discretisation of a perturbed elliptic operator), reasonably good

performance may be expected. Alternatively, the AMG algorithm can be used to compute a preconditioner

1In particular, if the ratio of the sides of a rectangular element is greater than
√

2, positive off-diagonal elements will

appear.

2

for use with an iterative solver, such as the conjugate gradient (CG) method or GMRES (see, for example,

[16, Ch. 6]). Importantly, an AMG preconditioner can be used as a black-box preconditioner, that is,

without tuning parameters. When AMG is used as a preconditioner, each time an application of the

preconditioner is required by the iterative method, a small, fixed number (typically 1 or 2) V-cycles is

performed. In this case, the right hand side vector is the current residual r(k) = b− Ax(k), where x(k) is

the value of current approximation to the solution x (see, for example, [16, p. 262]).

The purpose of this paper is discuss the design of a new software package HSL MI20 that computes and

applies a black-box AMG preconditioner. HSL MI20 has been developed for the mathematical software

library HSL [10], and may optionally be used with the iterative solvers that are available within HSL.

We describe the overall design of HSL MI20, highlighting the options that it offers, and then illustrate its

performance when solving the large sparse linear systems that arise from the finite element discretisation

of diffusion and convection-diffusion problems in three dimensions.

We remark that, since the original introduction of the method, a wide variety of AMG algorithms have

been developed that target different problem classes and have different robustness and efficiency properties

[3],[12],[17]. Our new software package, HSL MI20, is designed to efficently implement the classical AMG

method (also refered to as the Ruge-Stüben method), as described, for example, in [15] and [18].

2 Design of HSL MI20

Given a real n× n sparse matrix A and an n−vector z, HSL MI20 computes the vector y = Mz, where M

is an AMG V-cycle preconditioner for A. The matrix A (which may be symmetric or unsymmetric) must

be “close” to an M-matrix, that is, it must have positive diagonal entries and ideally (most of) the off-

diagonal entries should be negative (the diagonal should not be small compared to the sum of the modulii

of the off-diagonals). In this section, we discuss our choice of programming language for HSL MI20, briefly

explain the user interface, and then outline how the main steps in the AMG algorithm are implemented

within HSL MI20.

2.1 Language

HSL is a Fortran library and includes Fortran 77 and Fortran 95 packages. A key design decision was to

choose to write HSL MI20 in Fortran 95. We have adhered to the Fortran 95 standard except that we use

allocatable structure components and dummy arguments. These are part of the official extension that is

defined by Technical Report TR 15581(E), [11] and is included in Fortran 2003. It allows arrays to be of

dynamic size without the computing overheads and memory-leakage dangers of pointers.

Addressing is less efficient in code that implements pointer arrays since it has to allow for the possibility

that the array is associated with an array section, such as a(i,:), that is not a contiguous part of its

parent. Furthermore, optimization of a loop that involves a pointer may be inhibited by the possibility

that its target is also accessed in another way in the loop.

The principal version of HSL MI20 uses double precision reals, which we expect to occupy 64 bits.

We also provide a version using default reals; we anticipate that this will be useful on a computer with

64-bit addressing so that all reals and integers occupy 64 bits.

One of the main reasons for choosing Fortran 95 rather than Fortran 77 was because it allows the user

interface to be simplified. In particular, all work arrays needed by the AMG algorithm are allocated (and

deallocated) within the package. We have also found it useful to make extensive use of derived types.

These are discussed in Section 2.2. Furthermore, HSL MI20 uses recursion (which was not available in

Fortran 77) as a convenient and efficient way of checking and updating the coarse and fine level vertices;

this is outlined in Section 2.3.1.

3

2.2 The user interface and derived data types

The following procedures are available to the user:

MI20 setup takes the matrix A, optionally checks it for errors (duplicates and out-of-range entries are

not allowed), and then generates all the data that is required by the AMG preconditioner. That is, it

selects the coarse levels, builds the interpolation operators and constructs the coarse level matrices.

A must be supplied in compressed sparse row format (CSR), that is, the non zero entries in A must

be stored row by row.

MI20 precondition performs the preconditioning operation y = Mz, where M is the AMG

preconditioner and z is a user-supplied vector. MI20 precondition may be called repeatedly after

a single call to MI20 setup.

MI20 finalize should be called after all other calls to MI20 setup and MI20 precondition are complete

for a problem. It deallocates all array components of the derived data types set up by HSL MI20.

The following derived types are used by HSL MI20:

MI20 control is used to hold controlling data. The components, which are automatically given default

values in the definition of the type, are used to control the action. In MI20 setup, controls allow the

user to choose the maximum number of coarse levels and the maximum size of the coarsest level,

and to control the construction of the coarse levels. In MI20 precondition, there are controls to

select the solver that is used on the coarsest level, as well as the pre- and post-smoothers (Spre and

Spost), the numbers ν1 and ν2 of pre- and post-smoothing steps, and the number of V-cycles. In

addition, the user can specify the amount of diagnostic printing that is required. The default settings

for the control parameters have been chosen to make the code robust and, in general, efficient. If

these settings are used, HSL MI20 provides the user with a black-box preconditioner but, for some

practical applications, it may be worthwhile for the user to experiment with different choices of the

control parameters. This is illustrated in Section 3.

MI20 info is used to provide information about the progress of the algorithm. After the call to

MI20 setup, it includes data on the number of coarse levels computed and the order of and the

number of nonzeros in the matrix on the coarsest level. After the call to MI20 precondition, it

contains information on the coarse grid solver. In addition, the component flag is used throughout

the computation as an error and warning flag.

The components of the derived type MI20 keep are private and are used to pass data between the

subroutines of the package.

The data used to perform the AMG preconditioning that is generated by MI20 setup is stored in an

array of derived type MI20 data. Entry j of this array has two components: one holds the coefficient

matrix on level j and the other stores the interpolation matrix on level j. Both matrices are held in

CSR format.

2.3 MI20 setup

During the setup phase, the coarsening procedure is applied recursively with the aim of producing a

sequence of coarse-level problems of progressively smaller size. Constructing each level of the AMG

hierarchy comprises the following steps:

• Splitting the vertices into F and C vertices;

• Constructing the interpolation matrix Icf to transfer information between the fine and coarse levels;

4

• Constructing the coarse level matrix.

We briefly outline each of these steps. We will assume that we are starting with a fine level matrix Af

and we wish to construct the next coarse level Ac. To describe AMG coarsening, we use the adjacency

graph of the matrix Af = {aij} with nf vertices and consider connections between vertices. Let Ωf be

the set of vertices 1 to nf . Vertex i ∈ Ωf is said to be connected to vertex j ∈ Ωf if aij < 0 and Ni is

defined to be the set of vertices that are connected to i, that is,

Ni = {j ∈ Ωf : aij < 0}. (2.2)

2.3.1 Finding F and C vertices

In Section 1, we introduced the concept of algebraically smooth errors. The other key concept in the AMG

method is the strength of dependence principle. The non-zero elements in the i-th equation of system (1.1)

reveal which unknowns xj affect the solution xi. If the coefficient aij , which multiplies xj in the i-th

equation, is relatively large compared to aik (k 6= i), then xj strongly influences xi. If vertex i has been

selected to be a fine level vertex (an F vertex), the coarse level correction needs to be evaluated at i (and at

all other F vertices). This can be done by interpolating the value at i from the values at its neighbouring

coarse level (C) vertices, which are computed by solving the coarse level residual equation at Step 5 in

Figure 1.1. The best candidates for C vertices adjacent to vertex i are those that strongly influence i, that

is, the vertices j for which the coefficients aij are relatively large. The two key concepts of algebraically

smooth errors and the strength of dependence principle lie at the heart of the two-grid correction scheme

and hence of the AMG algorithm.

To generate Ac, the set Ωf of vertices on the fine level are split into disjoint sets of C vertices (those

vertices which will exist on the coarse level), F vertices (which must interpolate their values from the C

vertices), and unconnected vertices. This division is based on a strength of dependence measure that is

employed to determine if a given vertex j has a strong influence on the solution at a connected vertex i.

Let i be connected to j. If for some given threshold θ, called the strength of dependence threshold,

(0 < θ ≤ 1)

|aij | ≥ θ max{|aik| : aik < 0}, (2.3)

i is said to have a strong connection to j; otherwise, i is considered to be weakly connected to j. In other

words, the strength of the connection between a vertex i and its neighbours is measured relative to the

largest off-diagonal negative entry in row i. Note that positive off-diagonal connections are considered to

be weak connections and are ignored. We denote by Si the set of vertices j that i has a strong connections

to, that is,

Si = {j ∈ Ni : i is strongly connected to j}. (2.4)

Since the relationship between strongly connected vertices is not, in general, symmetric (if i has a strong

connection to j, it is possible that j is only weakly connected to i, even if A is symmetric), we also need

the concept of strong transpose connections. The set of strong transpose connections of i consists of

all vertices j that are strongly connected to i, that is,

ST
i = {j ∈ Ωf : i ∈ Sj}.

In MI20 setup, θ corresponds to the control parameter control%st parameter. Although the precise

choice of θ is often not crucial, it will effect the speed of the coarsening, the memory required and quality

of the resulting preconditioner. In MI20 setup, the default value is 0.25. This value is frequently cited in

the literature (see, for example, [18]). In Section 3, we report results for a range of values of θ.

Before attempting to divide the vertices into F and C vertices, MI20 setup performs tests to check that

coarsening is possible. Two coarsening problems can occur. Firstly, there may be a row (or more than one

row) that has no negative off diagonal entries but has at least one strictly positive entry. The corresponding

vertex i has no connections and so is unconnected. The user has control over what action is taken. If the

5

control parameter control%c fail is set to 1, a flag is set and the coarsening is terminated; otherwise,

the unconnected vertices are flagged and take no further part in the coarsening. The second coarsening

problem is that there may be one or more rows with negative off-diagonal entries (that is, vertices with

strong connections) that are connected to rows with no negative off-diagonals (that is, rows that are treated

as unconnected). The corresponding vertices are also treated as unconnected and take no further part in

the coarsening. Clearly, if all the vertices are flagged as being unconnected, the coarsening is terminated.

Provided the early termination of the coarsening is at the second or a subsequent level, the computation

continues but, in this case, the number of coarse levels (which is returned to the user in the information

parameter info%clevels) will be less than the requested number of levels (control%max levels).

Each vertex i that is not flagged as unconnected is initially put into the set U of undecided vertices

and is given a weight λi equal to the number of its strong transpose connections, that is, λi = |ST
i |. An

undecided vertex i ∈ U with maximum weight is moved into C and all undecided j that are strongly

connected to i (that is, all j ∈ ST
i ∩ U) are moved into F . For each such new j ∈ F , the weight of each

undecided neighbour that is strongly connected to j is increased by one (that is, for each k ∈ Sj ∩ U ,

λk ← λk + 1). This process is repeated until there are no undecided vertices with a nonzero weight.

Once the above process (which we refer to as the first pass) has terminated, a second pass is made

to check that all pairs of strongly connected F vertices share a common C vertex (that is, they both have

a strong connection to the same C vertex). If a pair of strongly connected F vertices does not share

a common C vertex, one of the pair is moved into C. Any remaining i ∈ U with a strong connection

to the new C vertex are then moved into F , whilst also ensuring that pairs of strongly connected F

vertices without strong connections to a common C vertex are not created. Note that, at this point in

the coarsening, a U vertex has no strong connections to any of the C vertices (otherwise it would already

have been moved into F). Moreover, such variables have no strong transpose connections (else they would

have been moved into C). Therefore, if i ∈ U is moved into F , and has a strong connection to another F

vertex, this new pair of F vertices cannot share a common C vertex. Also, no new F vertex can become a

C vertex since it has no strong transpose connections. Thus, if there is a connection from a new F vertex

to an existing F vertex, the existing F vertex must be moved into C. It is then necessary to move any

i ∈ U with a strong transpose connection to the new C vertex into F , and so on. In MI20 setup, this

process is implemented using a recursive subroutine.

Having completed the second pass, a third pass deals with any remaining i ∈ U . Any such i must

have a strong connection but, as already noted, it can have no strong connections to any of the C vertices

and no strong transpose connections. Thus either it must have a strong connection to an F vertex, in

which case we set this F vertex to be a new C vertex and the undecided vertex to be an F vertex, or it

has strong connections only to vertices that have already been flagged as unconnected, in which case i is

also flagged as unconnected.

To avoid the coarsening process becoming too slow, a control parameter control%reduction is used to

ensure there is a sufficiently large reduction in the number of points between successive levels. Specifically,

the coarsening is considered to have stagnated if

nc ≥ nf ∗ control%reduction,

where control%reduction has default value 0.8 and must lie between 0.5 and 1.0. In this case, the

coarsening is terminated, a warning flag is set and the number of levels that have been computed is

held in info%clevels. Otherwise, coarsening continues until either the requested maximum number of

levels (control%max levels) has been reached or the number of vertices has been reduced below a chosen

threshold (given by the control parameter control%max vertices). By default, control%max levels is

100 and control%max vertices is 1.

Throughout the coarsening, it is necessary to know the strong connections (for F vertices) and the

strong transpose connections (for C vertices). It is easy to test whether connections to a vertex are strong

(for vertex i, the data required is contained in row i of the matrix, and this is available since we hold

the matrices in compressed row storage (CRS) format). Testing for strong transpose connections is not

6

so straightforward. To find the strong transpose connections to vertex j, we need to know which rows

have a non-zero entry in column j. For a general sparse matrix held in CRS format, we must run through

the entire matrix, checking each row. Since this is expensive, the strong transpose connections are found

before the coarsening starts and then stored for later use. However, if the matrix has a symmetric sparsity

pattern, things are simpler, since if row i has an entry in column j, row j has an entry in column i. In

this case, the user can decide, using the control parameter control%st method, to compute the strong

transpose connections whenever they are required, rather than computing and storing them. Note that

the former is often faster and has the additional advantage of requiring less storage.

2.3.2 One pass coarsening

HSL MI20 includes an option for one pass coarsening, controlled by the parameter

control%one pass coarsen. If set to .true., at each level, only the first pass, where the vertices

are first divided into C and F vertices is performed; the second and third passes that (possibly) make

additional F vertices into C vertices in order to improve the interpolation are bypassed. Clearly,

implementing only the first pass speeds up the coarsening and thus the time required to compute and to

subsequently apply the preconditioner. But it may result in a poorer quality preconditioner so that the

preconditioned iterative method then needs a larger number of iterations to attain the same accuracy.

Thus there is a tradeoff between speed and quality. We have included results in Section 3 that illustrate

this feature.

2.3.3 Aggressive coarsening

So far, we have assumed that to generate the coarse level, coarsening is applied to the fine level and then the

coarse level matrix computed; the whole process is then repeated until the coarsening terminates. However,

for some applications, the memory requirements can be substantially reduced if the coarsening is applied

more than once before the next coarse level matrix is stored. This is called aggressive coarsening and,

in MI20 setup, may be controlled by the user with the parameter control%aggressive. The default value

is 1 (that is, only one coarsening is applied before the coarse level matrix is stored). In our tests, we did

not find using control%aggressive > 1 worked well, but examples have been reported in the literature

that illustrate the gains of using control%aggressive> 1 can outweigh the potential disadvantages of a

poorer preconditioner (see, for example, [18]).

2.3.4 Interpolation operator

An algebraically smooth error has two important properties that enable the efficient construction of the

interpolation operator Icf . The first is that algebraically smooth errors have small residuals [4, p. 139].

This can be expressed as

Ae ' 0. (2.5)

The second key property of an algebraically smooth error is that it changes slowly in the directions of

strong dependence. This makes interpolation effective [4, p. 141] because, if i depends strongly on j, the

fine level unknown xi can be accurately approximated from the coarse level unknown xj .

The (direct) interpolation used within HSL MI20 was originally devised for matrices with non-positive

off-diagonal entries, but it is known to be valid if positive off-diagonals are sufficiently small [18] . As already

discussed in Section 2.3.1, during coarsening positive off-diagonal entries correspond to unconnected

vertices and, when calculating interpolation weights, we add any positive off-diagonal entries to the

diagonal. From (2.5) it follows that, for each vertex i ∈ Ωf ,

ãiiei +
∑

j∈Ni

aijej ' 0

7

(the tilde here indicates any positive off-diagonal entries have been added to the diagonal and Ni is the set

of vertices connected to i given by (2.2)). Thus, the error ei at vertex i can be determined approximately

from the errors ej for j ∈ Ni, that is,

ei ' −
1

ãii

∑

j∈Ni

aijej .

It is also assumed that, when the smoother stagnates, the error varies slowly in the direction of strong

connections. This suggests the possibility of efficiently approximating the above equation using a set of

interpolation vertices Pi, which are C vertices that vertex i has strong connections to, that is, Pi = Si ∩ C

(Si is given by (2.4)). Specifically, ei may be approximated by the ek values, where k ∈ Pi, using

ei ' −









∑

j∈Ni

aij

∑

k∈Pi

aik









∑

k∈Pi

aik

ãii

ek .

This can be written as

ei '
∑

k∈Pi

wikek,

where

wik = −
(

aik

ãii

)









∑

j∈Ni

aij

∑

k∈Pi

aik









are the entries of the i-th row of the interpolation matrix Icf . Once the interpolation weights have been

calculated, Icf is used to form the next coarse level matrix using

Ac = IT
cfAf Icf .

A more detailed description of this interpolation, together with a more complete justification, and the

class of matrices for which its is valid can be found in Section 4.2 of [18].

To reduce the number of non-zero entries in the coarse level matrices, the interpolation weights

may be truncated. If control%trunc parameter > 0.0, interpolation weights will be removed from the

interpolation matrix if their value is less than or equal to control%trunc parameter times the largest

interpolation weight in their row of the interpolation matrix. After this, remaining weights are scaled

so that row sums remains unchanged. Default is control%trunc parameter = 0.0 (no truncation of

interpolation weights).

2.4 MI20 precondition

After a successful call to MI20 setup, MI20 precondition may be called repeatedly by the user to

perform the preconditioning operations. There are a number of options available, including a choice

of smoother and of coarse level solver, which we discuss in this section. In addition, using the

parameter control%v iterations, the user can select the number of V-cycles (the default value is

1). The information returned by MI20 setup may be used to select the number of levels used in

MI20 precondition; this is controlled by control%levels and can be chosen to be fewer than the number

constructed by MI20 setup.

2.4.1 Choice of smoother

The choice of smoother is controlled by the parameter control%smoother. If set to 1, damped Jacobi

(DJ) is used; if set to 2, Gauss-Seidel (GS) is used [16, p. 103]. The damping factor for the Jacobi method

is controlled by control%damping, which has default value 0.8. The default smoother is Gauss-Seidel.

8

This is frequently the method of choice in the literature because it is effective on a wide variety of common

model problems but it may well be worthwhile for the user to experiment with both choices for his or

her problems and then select the one that performs best. The user can also control the number of pre-

smoothing and post-smoothing iterations that are performed on each V-cycle. The default is to perform

two pre-smoothing and two post-smoothing iterations. If control%smoother = 2, the Gauss-Seidel sweep

direction is reversed for the post smoothing and, in this case, if A is symmetric, control%post smoothing

should be set to be equal to control%pre smoothing. As already noted, reversing the direction for the

post-smoothing ensures a symmetric preconditioner for a symmetric problem thereby allowing it to be

used in conjunction with the CG method. Again, the user may wish to experiment with different settings

for these parameters to optimise performance.

2.4.2 Coarse level solver

On the coarsest level, if the number of points is greater than 1, HSL MI20 offers the following solvers:

• damped Jacobi;

• Gauss-Seidel;

• sparse direct solver HSL MA48;

• LAPACK dense direct solver GETRF.

The choice is controlled by the parameter control%coarse solver. For robustness, the default is

HSL MA48 [7], [8] (which is included within the HSL library) but it may be faster to use an iterative

solver or, if the coarse level matrix is almost dense, to use the dense solver GETRF from the LAPACK

library [1]. For both the Jacobi and Gauss-Seidel solvers, the number of iterations is controlled by

control%coarse solver its (with default value is 10). For Gauss-Seidel, to maintain symmetry in the

symmetric case, one iteration comprises a forward and a backward Gauss-Seidel sweep.

HSL MA48 is a sophisticated, general-purpose sparse direct solver. Using a variant of Gaussian

elimination, it computes an LU factorization and then completes the solution by successively performing

two triangular solves. In common with other modern sparse direct solvers, HSL MA48 has a number of

distinct phases. The subroutine MA48 initialize initializes the structure for the L and U factors and

sets default values for the components of the control structure. MA48 analyse accepts the pattern of

the system matrix Ac and chooses pivots for Gaussian elimination using a selection criterion designed

to preserve sparsity. MA48 factorize factorizes the matrix Ac using the information from the call to

MA48 analyse. MA48 solve then uses the factors to solve the linear system. Repeated calls to MA48 solve

may follow the call to MA48 factorize.

If HSL MA48 is chosen as the coarse level solver, the parameter control%ma48 controls its use within

MI20 precondition. The choice control%ma48 = 0 (which is the default), uses HSL MA48 with its default

settings (although the printing level is set using the MI20 precondition printing controls) and no action

is required by the user, that is, each phase of HSL MA48 is called by MI20 precondition as needed. On

a second or subsequent call to MI20 precondition, the code will recognise that the matrix factors have

already been computed, and this will significantly reduce the cost of the coarse level solve since only the

(cheap) triangular solves must be performed. Other values of control%ma48 give the user greater control

by allowing values other than the HSL MA48 default settings to be used and/or by allowing the analyse and

factorize phases of HSL MA48 to be called separately. Possible values for control%ma48 are:
1: MI20 precondition will return to the user once HSL MA48 has initialised its control derived type

ma48 cntrl. At this point, if values other than the defaults are wanted for one or more of the

controls that are not related to printing, the user of MI20 precondition can reset the corresponding

components of ma48 cntrl and then recall MI20 precondition with control%ma48 = 2, 3, or 4.

2: MI20 precondition will return after the analyse phase of HSL MA48 is complete. At this point, the

user can use the information contained in the derived type info%ma48 ainfo to decide whether or

not to continue to the factorization phase (otherwise, the user can select an alternative coarse level

solver). If the user decides to continue, MI20 precondition must be recalled with control%ma48 =

3 or 4.

9

3: MI20 precondition will return after the factorization phase of HSL MA48 is complete. At this point,

the user can use the information contained in the derived type info%ma48 finfo to decide whether

or not to continue to use HSL MA48. If the user decides to continue, MI20 precondition should be

recalled with control%ma48 = 4.

4: MI20 preconditionwill complete any phases of HSL MA48 that have not yet been performed, including

the solve phase, and will then perform the preconditioning operation.

Full details of the HSL MA48 control parameters and of the information on the analyse, factorize, and solve

phases of HSL MA48 that is available to the user in the derived types info%ma48 ainfo, info%ma48 finfo

and info%ma48 sinfo are given in the documentation for HSL MA48.

Typically, MI20 precondition will be called a number of times after the call to MI20 setup. We have

designed the code to be flexible so that the user does not have to use the same coarse level solver on each

call. The user may decide, using the information returned by HSL MA48, that it would be worthwhile to

switch to one of the other solvers. This is possible without recalling MI20 setup and allows the user to

experiment to see which solver is most appropriate for his/her problem.

3 Numerical experiments

In this section, we present numerical results obtained using the HSL MI20 AMG preconditioner with Krylov

solvers for two classes of problems: the diffusion problem [9, Ch. 1,2] and the convection-diffusion problem

[9, Ch. 3,4]. Our test examples are from finite element discretisations of these problems on non-trivial

domains in 3D, which lead to large, sparse linear systems, in which the system matrices have highly

irregular sparsity patterns. AMG-preconditioned Krylov methods are often used in these situations in

preference to both direct sparse solvers and Krylov methods with general algebraic preconditioners (such

as the ILU(0) method [16, p. 287]).

The definition of domain geometries and the finite element mesh generation are performed in FEMLAB

[5]. The finite element discretisations use linear tetrahedral elements, with the standard Galerkin finite

element method (FEM) for the diffusion problem [9, p. 17], and the streamline upwinding Petrov-Galerkin

(SUPG) FEM with an optimal choice of the stabilisation parameter (as suggested in [9, p. 126]) deployed

in the convection-diffusion examples.

All experiments are performed on a PC with a Pentium Core Duo processor with 2.66GHz clock

and 4GB of RAM. The g95 Fortran compiler (see g95.sourceforge.net) with optimisation flag -O3

is used throughout. The reported times are elapsed times, in seconds, for the setup phase and for

the total execution (that is, the time for the setup followed by the solution phase) measured using

the Fortran intrinsic function dtime. We use the control parameters control%v iterations = 1

(default), and control%pre smoothing = control%post smoothing = 1; otherwise, unless explicitly

stated, default values are used for the remaining HSL MI20 control parameters. RS2 denotes the

standard coarsening described in Section 2.3.1 and RS1 denotes one pass coarsening, obtained by setting

control%one pass coarsen = .true. (see Section 2.3.2). We use the default setting control%c fail = 1

for the diffusion problems and control%c fail = 2 for the convection-diffusion problems. The latter

choice is because, in the convection-diffusion case, the coarsening can give coarse level matrices that have

some rows with negative off-diagonal entries connected to the rows with no negative off-diagonal entries.

This causes early termination of the coarsening.

3.1 The Poisson equation in 3D

We first consider the solution of the linear systems that arise in a Galerkin FEM approximation of the

Poisson equation

−∇2u = f in Ω ⊂ R
3 , (3.6)

10

subject to the boundary conditions

u = uD on ∂ΩD and
∂u

∂n̂
= uN on ∂ΩN , (3.7)

where ∂Ω = ∂ΩD∪∂ΩN is the boundary of Ω and ∂ΩD∩∂ΩN = ∅ (∂ΩD 6= ∅). Following the discretisation

procedure described in [9, Ch. 1], we obtain a linear system

Ax = b (3.8)

where A ∈ R
n×n is symmetric and positive definite [9, p. 18]. In this case, the Krylov method of choice

is the conjugate gradient (CG) method. In our experiments, we use the implementation of CG from the

HSL Library (routine MI21) and terminate the computation when

‖r(k)‖2 < ε, (3.9)

where r(k) = b−Ax(k) is the residual vector at the k-th iteration. We use ε = 10−6, which is the standard

value used in this context [9, p. 77], and for the computed solution x(k) we check the ‖x(k) − x̃‖2, where

x̃ is the exact solution (if known) or the solution obtained by a direct sparse solver.

Example 3.1.1. We start by solving (3.6) on a cylindrical domain Ω = {x2 + y2 ≤ 1} × [0, 5] ⊂ R
3. We

assume that the problem has a known analytical solution u = x2 + y2 + z2 and set the forcing term f in

(3.6) and the non-homogeneous Dirichlet boundary conditions in (3.7) accordingly.

In Table 3.1 we present iteration counts and execution times for the RS1 and RS2 coarsening strategies.

For each, we test three values of the strength of dependence threshold θ (defined in (2.3)) and use both the

damped Jacobi (DJ) and Gauss-Seidel (GS) smoothers. Our experiments with different values of θ and the

comparison of the coarsening strategies are motivated by recent results of [17], where the authors suggest

that, in examples such as this, it is advantageous to use coarsening strategies that produce relatively sparse

coarse-level operators. One way of achieving this is to increase θ from its default of 0.25.

Table 3.1: The iteration counts and the setup and total execution times for the AMG-preconditioned CG

method, as a function of the coarsening type (RS2/RS1), the smoother S, and the strength threshold

parameter θ.

n 22,764 69,285 208,965

S θ RS2 RS1 RS2 RS1 RS2 RS1

0.25 8 (0.30/0.43) 12 (0.09/0.21) 8 (1.23/1.72) 14 (0.32/0.81) 8 (4.92/6.71) 14 (1.16/2.92)

DJ 0.50 8 (0.22/0.36) 13 (0.09/0.23) 9 (0.89/1.42) 14 (0.34/0.85) 9 (3.28/5.24) 17 (1.22/3.47)

0.67 10 (0.16/0.31) 16 (0.09/0.26) 11 (0.65/1.24) 20 (0.33/1.08) 11 (2.36/4.46) 26 (1.19/4.73)

0.25 7 (0.30/0.49) 10 (0.09/0.24) 7 (1.23/1.93) 12 (0.32/0.94) 7 (4.92/7.52) 12 (1.16/3.38)

GS 0.50 7 (0.22/0.42) 10 (0.09/0.25) 7 (0.89/1.59) 12 (0.34/0.99) 8 (3.28/6.10) 15 (1.22/4.21)

0.67 8 (0.16/0.36) 13 (0.09/0.30) 9 (0.65/1.43) 17 (0.33/1.29) 10 (2.36/5.41) 22 (1.19/5.70)

We see that the fastest times are obtained for RS1 coarsening with θ = 0.25 and DJ smoothing.

Furthermore, the times increase by a factor of 4 when the problem size n is increased by a factor 3.

Ideally, the time and problem size should scale at the same rate but this does not happen because of the

non-optimality of the AMG coarsening procedure, which results from the coarse level matrices being much

denser than the original matrix A (see Table 3.2). Note that, because the Galerkin projection (Step 4 in

Figure 1.1) is used to generate the coarse level matrices, this also implies the interpolation matrices are

fairly dense2. Also, if GS smoothing is used, its application becomes more expensive at the coarser levels.

Denser coarse level matrices adversely effect data caching, which slows the algorithm performance.

2In particular, they are denser than the interpolation matrices used in geometric multigrid, which are constructed from

the finite element interpolation. For example, in the case of a nested sequence of uniformly refined quadrilateral grids in 2D,

and bi-linear finite element discretisation, geometric multigrid interpolation matrices would have at most 4 non-zero elements

per row.

11

Table 3.2: Coarsening statistics as a function of the coarsening type (RS2/RS1), and the strength of

dependence threshold θ. nlevel is the number of coarse levels, cG is the grid complexity, cA is the operator

complexity, cS is the average matrix stencil size across all coarse levels, and c
(1)
S is the average stencil size

of the original coefficient matrix.

n 22,764 69,285 208,965

θ RS2 RS1 RS2 RS1 RS2 RS1

nlevel 11 6 12 7 14 7

cG 1.67 1.23 1.68 1.23 1.71 1.24
0.25 cA 4.62 1.59 5.23 1.57 5.86 1.59

cS 64.5 19.5 102 21.1 152 28.0

nlevel 12 8 14 8 15 9

cG 1.93 1.34 1.98 1.35 2.02 1.36
0.50 cA 4.32 1.77 4.69 1.79 4.87 1.79

cS 44.2 16.4 58.1 20.4 77.4 23.5

nlevel 13 8 14 9 16 9

cG 1.91 1.42 1.99 1.44 2.01 1.45
0.67 cA 3.34 1.82 3.60 1.85 3.61 1.85

cS 25.7 14.9 34.0 17.2 39.0 20.3

c
(1)
S

11.2 12.0 12.8

To analyse how the choice of coarsening strategy and the strength of dependence threshold θ effects

the coarsening quality and the size of the coarse level operators, in Table 3.2 we report the average stencil

size cS , the grid complexity cG, and the operator complexity cA. The average stencil size cS is defined as

cS =
1

nlevel

nlevel
∑

i=1

nnz(Ai)

ni

, (3.10)

where nlevel denotes the number of levels in the AMG coarsening, Ai is the coefficient matrix at the i-th

level (with A1 = A), ni is the order of Ai and nnz(Ai) is the number of non-zero entries in Ai. This

quantity should be compared to the average stencil size of the original matrix c
(1)
S = nnz(A)/n. Note that,

because of small contributions from the coarsest levels, the value of cS is usually an optimistic estimate.

For example, for RS2 coarsening with θ = 0.25 and n = 208, 965, the average stencil size was cS = 152

(see Table 3.2) while the largest value of nnz(Ai)/ni was 435 (this was at level 6, with n6 = 1976). The

grid complexity is defined to be

cG =

(

nlevel
∑

i=1

ni

)

/n1, (3.11)

For comparison, we note that if a 3D problem is discretised on a sequence of nested, uniformly refined

grids, and a standard (geometric multigrid type) full coarsening is used, then cG = 8
7 [4, p. 154] (because

nlevel
∑

i=1

(

1
23

)i
<

+∞
∑

i=1

(

1
23

)i
= 8

7). Finally, the operator complexity cA is defined to be

cA =

(

nlevel
∑

i=1

nnz(Ai)

)

/nnz(A1). (3.12)

cA provides an indication of the AMG storage requirements, relative to that needed for the original matrix.

Note that the storage for the interpolation matrices Icf is not considered here. For large values of cA,

the Icf are also fairly dense. In the ideal case of a sequence of nested, uniformly refined grids in 3D, and

direct FEM discretisation of the underlying PDE problem on each of the coarse grids, all the Ai have the

same stencil sizes and hence cA ' cG. However, as already observed, AMG coarsening produces Ai with

stencils that are considerably larger than for A. Thus, the ratio cA/cG provides a measure of how much

denser the Ai are compared to the ideal case (the larger the ratio, the denser the matrices).

12

These results illustrate that RS1 coarsening produces much sparser coarse grid matrices and,

consequently, is faster. The cost of applying an AMG preconditioner is proportional to the number

nlevel of coarse levels and the size of operator complexity cA. Thus, the aim is to select the coarsening

parameters to reduce nlevel and cA without adversely affecting the quality of the preconditioner. If the

coarse level matrices and the associated interpolation matrices are too sparse, the number of iterations

needed by the AMG-preconditioned Krylov solver may grow as n is increased. We see this in Table 3.1

for RS1 coarsening with θ = 0.50 and θ = 0.67.

We end the results for this example by presenting the iteration counts and the times for of the CG

method using a ILU(0) preconditioner (Table 3.3). The ILU(0) factorisation is performed using the HSL

package MI11.

Table 3.3: The iteration counts nit and the setup and total execution times for the ILU(0)-preconditioned

CG method.

n 22,764 69,285 208,965

nit (time) 49 (4.83/5.02) 71 (45.75/46.80) 99 (445.39/450.84)

We see that the iteration counts and times grow significantly with n (the asymptotic execution time

behaves like O(n2)). It should be noted, however, that most of the time goes on computing the incomplete

factorisation (the setup time) and the average time of each CG iteration with the ILU(0) preconditioner

is less than with the AMG preconditioner. Finally, we comment on the total memory use, as measured by

the Linux program top. The total memory required is modest in all cases. For example, for n = 208, 965

with θ = 0.25 and RS2 coarsening, the memory use was 250MB, while for RS1 coarsening it was 175MB.

For the ILU(0) preconditioner, the total memory required was 125MB.

Example 3.1.2. This example is motivated by the well-known 2D Poisson problem on an L-shaped

domain (see [9, p. 13]). We extend this to 3D by defining the domain geometry to be Ω = [1, 2]× [0, 1]2

(see Figure 3.2). We solve equation (3.6) subject to uD = 0 on ∂ΩD and uN = 0 on ∂ΩN , with ∂ΩN =

Ω ∩ {x = 2} and ∂ΩD = ∂Ω \ ∂ΩN .

Figure 3.2: Domain geometry Ω = [1, 2]× [0, 1]2

We perform the same tests as for Example 3.1.1. Our findings in terms of iteration counts and the

optimal choice of coarsening parameters and the smoother are consistent with those reported in Tables 3.1

and 3.2. Again, the best results are obtained for RS1 coarsening, θ = 0.25 and DJ smoothing and these

are reported on in Table 3.4. For comparison purposes, the iteration counts and the times for the ILU(0)-

preconditioned CG method are also presented.

We see that, with the AMG preconditioner, the iteration counts remain (almost) constant when n is

increased, with the time exhibiting the same asymptotic behaviour as in Example 3.1.1.

13

Table 3.4: The iteration counts and the setup and total execution times for the AMG-preconditioned CG

method and the ILU(0)-preconditioned CG method.

n 18,005 53,431 160,737

AMG 9 (0.07/0.14) 11 (0.24/0.52) 12 (0.84/1.95)

ILU(0) 34 (3.00/3.10) 50 (26.72/27.47) 74 (260.63/263.57)

Example 3.1.3. In this example, we consider the Poisson problem (3.6) on the following highly non-

convex domain: Ω = Ω1 \Ω2, with Ω1 = [−0.5, 0.5]2× [0,−5], and Ω2 = [0, 0.25]2× [0,−3] (see Figure 3.3

for the outside picture of the domain and Figure 3.4 for the cross-section). Basically, Ω is a box-like domain

with a deep cavity within it (note that the cavity is not centered within the domain). We want to verify

whether the coarsening should be allowed to generate the coarsest level with only one (or a few) vertices

(this is the default option within HSL MI20 and was used already in the simpler domains of Examples 3.1.1

and 3.1.2). The concern is whether such coarse-level problems represent suitable approximations of the

original problem (the non-convexity of the domain might be lost).

Figure 3.3: Domain geometry (surface) Ω = Ω1 \ Ω2,

Ω1 = [−0.5, 0.5]2 × [0,−5], Ω2 = [0, 0.25]2 × [0,−3].

Figure 3.4: Domain geometry (cross-section) Ω = Ω1 \Ω2,

Ω1 = [−0.5, 0.5]2 × [0,−5], Ω2 = [0, 0.25]2 × [0,−3].

We again perform the same tests as for the previous two examples and again find very similar results.

The best results are for RS1 coarsening, θ = 0.25 and DJ smoothing and these are reported on in Table 3.5.

14

We conclude that the effectiveness of AMG as a preconditioner is not affected by the shape and convexness

of the domain and that it appears to be safe to coarsen as far as possible even in the cases of highly non-

convex domains. This supports our default setting within HSL MI20 of control%max points = 1.

Table 3.5: The iteration counts and the setup and total execution times for the AMG-preconditioned CG

method and the ILU(0)-preconditioned CG method.

n 21,177 62,675 188,636

AMG 10 (0.08/0.16) 11 (0.28/0.60) 13 (0.98/2.41)

ILU(0) 27 (4.11/4.20) 41 (36.73/37.25) 61 (357.97/360.85)

3.2 The convection-diffusion equation in 3D

In this subsection, we examine the effectiveness of an AMG-preconditioned Krylov method for solving the

linear systems that arise in the FEM discretisation of the 3D convection-diffusion equation. The convection-

diffusion equation is a scalar elliptic PDE that models a host of important processes and phenomena in

different areas, including fluid mechanics and electronics. It can occur either as a stand-alone problem, or

as a part of more complex systems of PDEs (such as the Navier-Stokes equation, the Boussinesq equation

or the drift-diffusion equation).

We consider the linear systems that arise in the streamline upwinding Petrov-Galerkin (SUPG) FEM

discretisation of the convection-diffusion equation

−ν∇2u + ~w · ∇u = f in Ω ⊂ R
3, (3.13)

subject to the boundary conditions (3.7). Details of the FEM discretisation can be found in [9, p. 126].

Here ν > 0 is the diffusivity parameter determining the relative contribution of the convection and the

diffusion (in most practical cases ν � 1), ~w : R
3 7→ R

3 is the vector-valued function referred to as the

convective field (or wind) that determines the direction of the convection, and f is the forcing term.

The SUPG discretisation of (3.13) and the boundary conditions (3.7) leads to a linear system

Φx = b , (3.14)

where the system matrix Φ ∈ R
n×n can be expressed in the form

Φ = νA + C + S . (3.15)

Here A is the diffusion matrix defined in (3.8), C is the convection matrix and S is the stabilisation

matrix. A is symmetric positive-definite; provided the convective field is incompressible (∇ · ~w = 0), C is

skew-symmetric (that is, cij = −cji, cii = 0, i, j = 1, . . . , n); S is symmetric but possibly indefinite. In

particular, if the Galerkin FEM is used, S = 0. If geometric multigrid is used to precondition (3.14), it is

essential that the SUPG discretisation is applied at all the coarse levels (see [9, p. 194]). In the case of an

AMG preconditioner, the coarse level matrices are created automatically. However, experience has shown

that the performance of the AMG preconditioner is more robust if the original problem is discretised using

the SUPG discretisation, rather than the standard Galerkin FEM.

Although the original design of the classical AMG coarsening procedure is based on the properties

of A, in practice it adapts well to the system matrix Φ given by (3.15). In particular, analysis of the

geometric positions of the coarse-grid vertices shows that AMG performs a version of semi-coarsening in

the characteristic directions (these are the directions of strongly coupled unknowns) [4, p. 119]. This feature

makes AMG a robust preconditioner for convection dominated problems, even though it uses simple point

smoothers. By contrast, robust performance of geometric multigrid (which uses full coarsening), requires

15

not only SUPG discretisation at all coarse levels, but also fairly sophisticated smoothing techniques, based

on the directional ordering of vertices [9, p. 195].

The system matrix Φ is non symmetric and this influences the choice of Krylov solver. We will use

right-preconditioned GMRES. The HSL package MI24 implements a restarted variant of the algorithm

GMRES(m) [16, p. 172] but GMRES with no restarting can be obtained by setting the truncation

parameter m equal to maximal allowed number of iterations and this is the setting used in our tests.

As in the diffusion tests, we use the stopping criterion (3.9) and monitor the norm ‖x(k)− x̃‖2 (x(k) is the

computed solution on the k-th iteration and x̃ is computed using a sparse direct solver).

Example 3.2.1. We first solve (3.13) on a cylindrical domain Ω = {x2 + y2 ≤ 1} × [0, 5] ⊂ R
3, with

convective field ~w = (0, 0, 1) (constant uni-directional field), forcing term f = 0, and Dirichlet boundary

conditions uD = 1 on z = 0 (bottom lid) and uD = 0 elsewhere on ∂ΩD and Neumann boundary conditions

uN = 0 on z = 5 (top lid). This is a problem of flow of a viscous fluid through the channel at constant

speed ~w.

In Table 3.6, we present results for the RS1 and RS2 coarsening strategies (with the default strength

of dependence threshold θ = 0.25) and a range of values of the diffusivity parameter ν. Gauss-Seidel (GS)

smoothing is used. Note that other choices of θ were tried but gave either similar or poorer results. In the

remainder of this section, all results are for the default setting θ = 0.25.

Table 3.6: Iteration counts and the setup and total execution times for the AMG-preconditioned GMRES

method, as a function of the coarsening type (RS2/RS1), the diffusivity parameter ν. GS smoothing is

used.
n 22,764 69,285 208,965

RS2 RS1 RS2 RS1 RS2 RS1

ν = 0.02 8 (0.30/0.58) 11 (0.09/0.26) 7 (1.24/2.11) 12 (0.33/0.94) 7 (5.02/8.18) 12 (1.20/3.34)

ν = 0.004 10 (0.28/0.63) 14 (0.10/0.34) 9 (1.18/2.31) 13 (0.38/1.10) 8 (4.50/8.12) 13 (1.32/3.84)

ν = 0.001 12 (0.28/0.70) 17 (0.11/0.40) 11 (1.17/2.54) 17 (0.40/1.38) 11 (4.45/9.32) 17 (1.43/4.88)

Again, we find the RS1 strategy is faster than RS2, but requires more iterations. We observe that the

iteration counts are slightly higher than in the diffusion case (see Table 3.1), but remain (almost) constant

as n increases. There is a moderate increase in the iteration counts for a fixed n and decreasing ν. It

should be emphasised that, in all our tests, including the highly convective cases (small values of ν), the

HSL MI20 package and resulting AMG preconditioner proved extremely robust.

In the diffusion case, if damped Jacobi smoothing is used, the optimal damping parameter (which

in HSL MI20 is the control parameter control%damping) can be determined analytically. For uniform

triangular grids and linear finite element approximation in 2D the optimal value is 0.8 and for uniform

quadrilateral grids and bilinear finite element approximation it is 8/9 [9, p. 100]. For this reason, we

chose the default setting to be control%damping = 0.8. However, this may not be the best choice for

convection-diffusion problems. In Table 3.7, we report results for damped Jacobi (DJ) smoothing for

control%damping = 1, 0.8 and 0.5. The results suggest that 0.8 is again the best choice, with the

convergence rate deteriorating significantly for control%damping = 1 and very small values of ν.

In Table 3.8, we report the coarsening statistics for ν = 0.001. Comparing these with the corresponding

statistics in Table 3.2, we conclude that the number of coarse levels nlevel is much larger in the convection-

dominated case. This is because of the semi-coarsening (rather than the approximately full coarsening

performed by AMG in the diffusion case). This inevitably leads to larger grid complexities cG and larger

values of the operator complexities cA.

16

Table 3.7: Iteration counts for the AMG-preconditioned GMRES method, using damped Jacobi smoothing

with a range of values of damping, and of the diffusivity parameter ν.

n 22,764 69,285 208,965

ν damping RS2 RS1 RS2 RS1 RS2 RS1

1 11 14 10 15 10 16

0.02 0.8 9 15 8 16 8 17

0.5 12 20 11 22 11 23

1 17 24 15 22 13 20

0.004 0.8 12 19 11 19 10 19

0.5 14 25 13 25 12 25

1 36 51 46 69 74 65

0.001 0.8 15 25 14 27 14 27

0.5 16 29 16 31 15 32

Table 3.8: Coarsening statistics for ν = 0.001. nlevel is the number of coarse levels, cG is the grid

complexity, cA is the operator complexity, cS is the average matrix stencil size across all coarse levels, and

c
(1)
S is the average stencil size of the original coefficient matrix.

n 22,764 69,285 208,965

RS2 RS1 RS2 RS1 RS2 RS1

nlevel 15 8 18 9 20 10

cG 2.26 1.47 2.34 1.49 2.38 1.49

cA 5.72 2.13 6.39 2.17 6.77 2.15

cS 65.4 24.5 82.7 27.6 110 32.1

c
(1)
S

11.3 12.2 12.9

Finally, for comparison, in Table 3.9 we present results for the GMRES solver preconditioned by ILU(0).

Again, more iterations are needed than for the AMG preconditioner but, interestingly, in contrast to the

AMG preconditioner, for fixed n, the iteration count reduces when ν is reduced.

Table 3.9: Iteration counts and the setup and total execution times for the ILU(0)-preconditioned GMRES

method.
n 22,764 69,285 208,965

ν = 0.02 35 (4.85/5.03) 53 (45.5/46.6) 83 (446/453)

ν = 0.004 31 (4.85/5.01) 42 (45.5/46.3) 60 (446/451)

ν = 0.001 32 (4.85/5.01) 42 (45.5/46.3) 55 (446/450)

Example 3.2.2. We now solve problem (3.13) on a cylinder domain Ω = {x2+y2 ≤ 1}×[0, 5] ⊂ R
3. We

set the convective field to be circular ~w = (wx, wy, wz) =

(

2y(1− x2),−2x(1− y2),
√

x2 + y2 sin x√
x2+y2

)

.

To avioid singularity of the wind function at the points (0, 0, z) we set wz = 0. The forcing term is chosen

to be f = 0 and we use Dirichlet boundary conditions uD = 0 for z = 0 and z = 5 (the bottom and the

top lids of the cylinder), and uD = 0 for x2 + y2 = 1 and x ≤ 0, uD = 1 for x2 + y2 = 1 and x > 0. In

Figure 3.5, we illustrate the solution for ν = 0.004 at z = 2.5 (the horizontal mid-plane).

This example was chosen because circular convective fields are known to be difficult to solve by iterative

solvers. In particular, performance of a geometric multigrid preconditioner depends crucially on the choice

17

Figure 3.5: Computed solution for Example 3.2.2, with ν = 0.004. Mid-plane cross-section Ω \ {z = 2.5}.

of smoother (see [9, p. 202]), with simple point smoothers proving to be a poor choice, especially in highly

convective examples. As in Example 3.2.1, we use the SUPG FEM3. The experiments reported on in

Tables 3.10 to 3.13 are analogous to those in Tables 3.6 to 3.8.

Table 3.10: Iteration counts and the setup and total execution times for the AMG-preconditioned GMRES

method for the RS1 and RS2 coarsening strategies and a range of values of the diffusivity parameter ν.

GS smoothing is used.

n 22,764 69,285 208,965

RS2 RS1 RS2 RS1 RS2 RS1

ν = 0.02 7 (0.32/0.57) 11 (0.09/0.26) 7 (1.32/2.19) 12 (0.33/0.93) 7 (5.13/8.31) 13 (1.18/3.46)

ν = 0.004 9 (0.29/0.60) 15 (0.09/0.34) 8 (1.20/2.22) 15 (0.35/1.17) 7 (4.74/7.96) 15 (1.27/4.07)

ν = 0.001 12 (0.28/0.69) 24 (0.10/0.50) 11 (1.19/2.53) 24 (0.38/1.74) 10 (4.48/8.94) 23 (1.40/6.01)

We observe from Table 3.10 that the iteration counts for RS2 coarsening are marginally better than

in the case of uni-directional wind (see Table 3.6). The same holds for RS1 coarsening with ν = 0.02 and

ν = 0.004, although the iteration counts in Example 3.2.2 are slightly larger than the corresponding counts

for Example 3.2.1. The only notable exception is for RS1 coarsening applied to a highly-convective case

(ν = 0.001), for which the iteration counts are considerably higher than in Example 3.2.1 (although even

in this case, the counts remain constant as n increases). The asymptotic behaviour of the total execution

times exhibits a similar pattern to Example 3.2.1, and is nearly optimal. We examined the error norms

‖x(k) − x̃‖2 for each computed solution and found that (with the same stopping criterion ‖rk‖2 < 10−6)

these norms are slightly larger than we found in Example 3.2.1 but, in all cases, were less than 10−3.

The results in Table 3.11 confirm control%damping = 0.8 as the optimal choice for the damping

parameter in DJ smoothing but for RS2 and ν = 0.001, the smaller value of 0.5 gave similar results. This

suggests that for even smaller values of ν, using a value of control%damping that is less than the default

might be preferable. However, the number of iterations required when using DJ was significantly larger

than for GS so that, even though each GS smoothing operation is more expensive, in terms of the total

execution time, using DJ was not advantageous here. Comparing the coarsening statistics (Table 3.12)

with the corresponding figures for Example 3.2.1 (Table 3.8), we see that they are strikingly similar.

3Note from Figure 3.5 that the method does not remove all the spurious oscillations from the solution (the solution values

lie between -0.2 and 1.2, although the imposed BCs should imply the solution range [0,1]).

18

Table 3.11: Iteration counts for the AMG-preconditioned GMRES method, using DJ smoothing, with a

range of values of damping and of the diffusivity parameter ν.

n 22,764 69,285 208,965

ν damping RS2 RS1 RS2 RS1 RS2 RS1

1 9 14 9 15 10 16

0.02 0.8 8 15 8 16 8 17

0.5 11 19 10 20 10 22

1 13 21 11 20 10 20

0.004 0.8 10 21 9 20 9 20

0.5 12 26 11 27 10 27

1 32 48 64 58 83 60

0.001 0.8 16 34 14 35 13 34

0.5 17 41 15 42 13 41

Table 3.12: Coarsening statistics for θ = 0.25 and ν = 0.001. nlevel is the number of coarse levels, cG is

the grid complexity, cA is the operator complexity, cS is the average matrix stencil size across all coarse

levels, and c
(1)
S is the average stencil size of the original coefficient matrix.

n 22,764 69,285 208,965

RS2 RS1 RS2 RS1 RS2 RS1

nlevel 16 9 17 10 20 11

cG 2.24 1.46 2.33 1.47 2.37 1.48

cA 5.56 2.09 6.39 2.13 6.83 2.12

cS 53.1 21.7 78.6 24.6 100.1 28.8

c
(1)
S

11.2 12.0 12.8

Finally, in Table 3.13 results are given for the ILU(0)-preconditioned GMRES method. In contrast to

the uni-directional wind example (see Table 3.9) the iteration counts deteriorate quite badly when either

n is increased or ν is decreased.

Table 3.13: Iteration counts and the setup and total execution times for the ILU(0)-preconditioned GMRES

method.
n 22,764 69,285 208,965

ν = 0.02 81 (4.83/5.41) 131 (45.41/49.27) 202 (445.34/471.68)

ν = 0.004 118 (4.83/5.83) 174 (45.41/51.37) 253 (445.34/483.11)

ν = 0.001 187 (4.83/6.90) 282 (45.41/58.61) 553 (445.34/591.61)

4 Concluding remarks and future directions

In this paper, we have described the design and development of an efficient Fortran 95 AMG code called

HSL MI20. We have employed HSL MI20 to demonstrate the use of AMG as a preconditioner for the linear

systems that arise from scalar elliptic problems in three dimensions. Another important application of

AMG is as a building block for the design of efficient block preconditioners (see, for example, [16, p. 337]).

Block preconditioning is a technique suitable for the discrete problems obtained from the approximation

of systems of PDEs, and/or PDEs in which the unknown functions are vector fields. Such problems arise

in modelling multi-physics problems, that is, problems with their constitutive parts coming from different

areas (e.g. fluid-solid interaction problems, magnetohydrodynamics, etc.). In such cases, each node in the

19

mesh is associated with several degrees of freedom corresponding to different physical quantities. A suitable

enumeration of the unknowns (whereby the unknowns of the same kind are enumerated consecutively),

yields a natural blocking of the underlying coefficient matrix. An effective approach to preconditioning

the resulting linear system is to approximately invert the diagonal blocks. AMG is frequently used

in this context to approximately invert some of the principal diagonal blocks or the associated Schur

complements (which are themselves, in some cases, close to scalar elliptic discrete operators, for which

AMG is ideally suited). Examples of effective block preconditioners based on AMG are given in [14] for

reservoir simulation, in [13] for linear elasticity, and in [9] for fluid mechanics. Currently, we are using

HSL MI20 to obtain a block preconditioner for the linear systems obtained from the FEM discretisation of

three dimensional fluid mechanics problems; we will report on this work in a separate paper.

A Matlab interface to HSL MI20 is currently being developed. This will make it very easy for Matlab

uses to experiment with the AMG method in a variety of different contexts. A prototype of the Matlab

interface has been already successfully used within an iterative method to solve a class of distributed

control problems: the AMG method was applied to a system that is a linear combination of a stiffness

matrix and a mass matrix [6].

5 Code availability

HSL MI20 is available now as part of the 2007 release of the mathematical software library HSL. All

use of HSL requires a licence; details of how to obtain a licence and the packages are available at

www.cse.clrc.ac.uk/nag/hsl/.

6 Acknowledgements

The finite element discretisation of both the diffusion problem and the convection-diffusion problem is

performed by the parallel Fortran code femFluidMechanics, which is designed for 3D simulations of

problems in fluid mechanics. The code was developed by Christopher Smethurst in the School of Computer

Science at the University of Manchester.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK User’s Guide (3rd edition). SIAM, 1999.

[2] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation,

31:333–390, 1977.

[3] M. Brezina, A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F. McCormick,

and J.W. Ruge. Algebraic multigrid based on element interpolation. SIAM J. Sci. Comput.,

22(5):1570–1592, 2000.

[4] W.L. Briggs, V. Emden Henson, and S.F. McCormick. A Multigrid Tutorial (2nd edition). SIAM,

2000.

[5] COMSOL. FEMLAB Version 2.3 Reference Manual. COMSOL, 2003.

[6] H. S. Dollar. Iterative solution of PDE-constrained optimization problems, 2007. University of

Manchester seminar, see ftp://ftp.numerical.rl.ac.uk/pub/talks/hsd.manchester.26X07.pdf.

[7] I.S. Duff and J.K. Reid. MA48, a Fortran code for direct solution of sparse unsymmetric linear

systems of equations. Report RAL-93-072, Rutherford Appleton Laboratory, 1993.

20

[8] I.S. Duff and J.K. Reid. The design of MA48, a code for the direct solution of sparse unsymmetric

linear systems of equations. ACM Trans. Mathematical Software, 22:187–226, 1996.

[9] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative Solvers. Oxford University

Press, 2005.

[10] HSL. A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.clrc.ac.uk/nag/hsl/.

[11] ISO/IEC. TR 15581(E): Information technology - Programming languages - Fortran - Enhanced data

type facilities (second edition), edited by Malcolm Cohen. Technical Report, ISO/IEC, 2001. ISO,

Geneva.

[12] J.E. Jones and P.M. Vassilevski. Amge based on element agglomeration. SIAM J. Sci. Comput.,

23(1):109–133, 2001.

[13] S. Mijalković and M. Mihajlović. A component decomposition preconditioning for 3d stress analysis

problems. Numer. Linear Algebra Appl., 9:567–583, 2002.

[14] C. Powell and D. Silvester. Optimal preconditioning for raviart-thomas mixed formulation of second-

order elliptic problems. SIAM J. Matrix Anal. Appl., 25:718–738, 2004.

[15] J.W. Ruge and K. Stuben. Algebraic multigrid. In S.F. McCormick, editor, Multigrid Methods,

volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, 1987.

[16] Y. Saad. Iterative Methods for Sparse Linear Systems (2nd edition). SIAM, 2003.

[17] H. De Sterck, U. Meier Yang, and J.J. Heys. Reducing complexity in parallel algebraic multigrid

preconditioners. SIAM J. Matrix Anal. Appl., 27:1019–1039, 2006.

[18] K. Stuben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oosterlee, and A. Schuller,

editors, Multigrid, pages 413–532. Academic Press, 2001.

21

