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Abstract

We describe an implementation of Level 3 BLAS based on the use of the matrix-
matrix multiplication kernel (GEMM). Blocking techniques are used to express the
BLAS in terms of operations involving triangular blocks and calls to GEMM. A princi-
pal advantage of this approach is that most manufacturers provide at least an efficient
serial version of GEMM so that our implementation can capture a significant percent-
age of the computer performance. A parameter which controls the blocking allows an
efficient exploitation of the memory hierarchy of the various target computers. Further-
more, this blocked version of Level 3 BLAS is naturally parallel. We present results on
the ALLTANT FX/80, the CONVEX (€220, the CRAY-2, and the IBM 3090/VF. For
GEMM, we always use the manufacturer-supplied versions. For the operations deal-
ing with triangular blocks, we use assembler or tuned Fortran (using looop-unrolling)
codes, depending on the efficiency of the available libraries.
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1 Introduction

This report describes an implementation of the Level 3 BLAS computational kernels
([9],[10]). This implementation is based on the use of the general matrix-matrix mul-
tiplication kernel GEMM. We show that this implementation is portable and is efficient
if there exists a tuned version of GEMM. We also show that it is a natural way of paral-
lelizing the BLAS kernels (a loop-level parallelism is sufficient). Therefore, it can be used
as a platform both for serial and parallel implementations of the Level 3 BLAS.

The very good ratio of flops over memory references makes the matrix-matrix multiplica-
tion kernel GEMM capable of attaining nearly the peak performance on most computers.
Therefore, we would like to take advantage of the efficiency of the GEMM kernel in order
to improve the Level 3 BLAS when dealing with large enough matrices. Our basic idea for
designing the Level 3 BLAS is to partition the computations across submatrices so that the
calculations can be expressed in terms of calls to GEMM and operations involving triangu-
lar matrices. Depending on the availability of tuned kernels in the manufacturer-supplied
libraries, we use assembler or tuned Fortran coded kernels for the operations on triangular
submatrices. The efficiency of this implementation (especially when dealing with large
enough matrices) is demonstrated on vector and parallel computers. We illustrate this on
the ALLIANT FX/80, the CONVEX (€220, the CRAY-2, and the IBM 3090-600/VF.

This study was originally motivated by the very poor performance of some of the Level
3 BLAS kernels supplied in the Scientific library on the ALLIANT FX/80 (especially
the symmetric rank-k update that is crucial for the performance of Cholesky factoriza-
tion). Our implementation combines the use of blocking and loop unrolling techniques.
We believe that these codes constitute a good approach for a first implementation of
the Level 3 BLAS on computers that do not provide a highly tuned version of the
Level 3 BLAS.

The implementation of the kernels using both blocking and loop unrolling is described in
Section 2 (examples of codes for the ALLIANT FX/80 are reported in the appendix). The
corresponding results on the ALLIANT are reported in Section 3. Section 4 presents the
results obtained on the other computers. We present conclusions in Section 5. All the
computations are performed using 64-bit arithmetic, i.e. we have considered the double
precision kernels (DGEMM, DSYMM, DSYRK, DSYR2K, DTRMM, and DTRSM) on the
ALLIANT, the CONVEX, and the IBM, and the single precision version on the CRAY-2.

The ALLIANT FX/80 has 8 processors which access the shared memory through a 512
Kbytes cache memory organized into 4 banks. The cache is direct mapped and connected
to the processors via a crossbar switch. The cache is connected to the main memory
by a memory bus capable of delivering half the bandwidth of that between cache and
processors. Fach processor contains eight 64-bit vector registers of length 32. The cycle
time is 85 ns. The peak performance is 23.6 Megaflops per CPU. A concurrency control
bus connects the processors to effect synchronizations. This characteristic plus the cache
management allows efficient parallelization of small granularity calculations using a loop-
based parallelism : the overheads remain limited and the load balancing is handled by the
hardware.



The CONVEX €220 has two vector processors. Each vector processor has 8 vector registers
of length 128 and one scalar unit that access data through a 4 Kbytes cache. The cycle
time of the machine is 40 ns, therefore the peak performance of one processor is 50 Mflops
and the peak performance of the configuration is 100 Mflops. The processors access the
shared memory via a crossbar switch (the memory size of our target computer is 128
Mbytes). The memory is interleaved and organized into banks (16 banks with 128 Mbytes
of memory). The memory bandwidth between the processors and the memory is 200 Mbits
per second.

The CRAY-2 is a four processor architecture with a relatively slow large main memory
and a faster but smaller local memory. It is important for efficiency to take advantage of
the local memory because it is the only way of reducing memory contention which is a
crucial factor on this machine. The memory is divided into 128 banks on the CRAY-2 and
bank conflict occurs if accesses are made to the same bank within 47 clock periods (we
use a CRAY-2 with a dynamic RAM memory). This memory contention is more likely
to occur when the computation is proceeding quickly (for example, with a high degree of
vectorization or parallelism). The management of the local memory can be done efficiently
only using assembler. The peak performance of each processor is 487.8 Megaflops. There
are eight 64-bit vector registers of length 64.

On the IBM 3090J, each processor accesses data through a 128 Kbytes cache memory.
The cost of accessing data from memory is roughly twice the cost of accessing data from
the cache. The main memory is divided in cache lines consisting of 256 bytes (thirty two
64-bit words). When one word of main memory is accessed all the cache line is loaded
into the cache. This cache line will flush another, so that it is important to make full use
of data in the cache ([21]). There are 8 vector registers of length 256 (16 vector registers
using single precision). Our experiments are performed on a configuration with six vector
facilities. The clock period is 14.5 ns, providing a peak performance of 138 Mflops for each
vector facility.

2 Block implementation of Level 3 BLAS

2.1 Efficient exploitation of the memory hierarchy

The ability of the memory to supply data to the processors at a sufficient rate is crucial
on most modern computers. This results in complex memory organizations, where the
memory is usually organized in a hierarchical manner. Therefore, the minimization of data
transfers between the levels of the memory hierarchy is a key issue for performance ([12],
[13]). The code performance can be substantially increased using a proper organization of
the calculations (to help the detection of chaining for example) and by using loop unrolling
and blocking techniques.

All the Level 3 BLAS kernels, except GEMM, involve upper or lower triangular matrices.
Therefore a reduction in vector length during the computation cannot be avoided. Addi-
tionally, triangular matrices, as compared to rectangular matrices, do not allow as efficient
access patterns to the various levels of the memory (such as cache or local memory) and



as efficient use of the data held in the vector registers. Our basic idea is to express all
the Level 3 BLAS kernels in terms of subkernels dealing with NB x NB submatrices that
involve GEMM operations in addition to operations dealing with triangular submatrices.
Of course, the relative efficiency of this approach depends on the availability of a highly
tuned GEMM and the efficiency of the implementation of the rest of the Level 3 BLAS.
This approach is machine independent : only the NB parameter, corresponding to the
block size, should be tuned according to the characteristics of the target machine. Both
the size of the cache and the length of the vector registers determine its optimal value.
Depending on the performance of the manufacturer-supplied library kernels on ALLIANT,
CONVEX, CRAY, and IBM, we use library or tuned Fortran versions of the Level 3 BLAS
for triangular matrices, the version of GEMM we use is always the manufacturer-supplied
one.

On the ALLIANT FX/80, for example, the memory hierarchy involves the vector registers,
the shared cache, and the central memory. Loop unrolling allows efficient reuse of the
operands in the vector registers, while blocking is used to perform the calculations on
submatrices that can fit in cache. The size of the submatrices is controlled by the blocking
parameter NB. One could say that loop unrolling is used to enhance the performance of
the kernels on small matrices, while blocking the computations allows us to handle large
matrices efficiently.

In the following sections, we describe the block implementation of the Level 3 BLAS. Our
blocked versions of the Level 3 BLAS will be termed SYMMP, TRSMP, TRMMP, SYRKP,
and SYR2KP to differentiate them from the unblocked Level 3 BLAS that will be used
on submatrices (in practice all these names are prefixed by S or D depending on whether
the routine is single or double precision).

For the sake of clarity, we comment only on one of the variants of the kernels and we
illustrate our blocking strategy on matrices that are only partitioned into four blocks. In
practice, the matrices are partitioned into NB x NB blocks where NB is chosen according
to the machine characteristics. For example, a 128 x 128 matrix will be partitioned into
16 blocks with NB equal to 32, while it will only be partitioned into 4 blocks if NB is equal
64.

2.2 Subroutine SYMM

SYMM performs one of the matrix-matrix operations :

C=a.AB+3.C, or C=a.BA+5.C

where a and 3 are scalars, A is a symmetric matrix (only the upper or lower triangular
parts are used) and B and C are m X n matrices.

We consider the following case (corresponding to the parameters “Left”, “Upper”):
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1. C1p < .01+ Ay 1By (SYMM)
2. C1p = Cii+a.Ay 9By, (GEMM)
3. Chp — B.C1o+ a.A11B1 (SYMM)
4. Cry — Cra+ a.Ay 5B, (GEMM)
5. 021 «— B.Cy1 + . A29B3 (SYMM)
6. C21 — Con + . Af 5B14 (GEMM)
7. Oy «— .02+ a. Ay 2B (SYMM)
)

8. C22 « Cag + . Al 3B (GEMM

Therefore, the SYMMP kernel can be expressed as a sequence of calls to the routines
SYMM and GEMM. The calculations of the submatrices of C is independent so that the
parallelization of this operation is straightforward. The codes corresponding to the blocked
and loop-unrolled versions of the symmetric matrix-matrix multiplication are reported in
the appendices.

2.3 Subroutine TRSM

TRSM solves one of the matrix equations :

A.X=a.B, At.X=0a.B, X.A=0.B, or X.At =a.B

where « is a scalar, X and B are m X n matrices and A is a unit, or non-unit, upper or
lower triangular matrix. B is overwritten by X.

We consider the following case (corresponding to the parameters “Left”, “No transpose”,
and “Upper”):

Aqp A Xip Xi2 |\ _ [ Bia Big
0 Ay X211 Xap Ba1 Bap

1. Solution of Ay X3 1=DB31 and By is overwritten by X3 (TRSM)
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Therefore, TRSMP can be computed as a sequence of triangular solutions (TRSM) and
matrix-matrix multiplications (GEMM). Previous experiments that we did on the CRAY-
2 ([7]) were performed using 2 x 2 diagonal blocks (where we were using a rank-two
update from the Harwell Subroutine Library). The block columns of the matrix X can be

computed simultaneously.

2.4 Subroutine TRMM

TRMM performs one of the matrix-matrix operations :

B=a.A.B, B=a.A!".B, or B=a.B.A, B=a.B.At

where a is a scalar, B is an m x n matrix, A is a unit, or non-unit, upper or lower

triangular matrix.

We consider the following case (corresponding to the parameters “Left”, “No transpose”,

and “Upper”):
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TRMMP is expressed as a sequence of GEMM and TRMM operations. The computations
of the submatrices of B within the same block row are independent.



2.5 Subroutine SYRK

SYRK performs one of the symmetric rank-k operations :

C=a.AA'+5.C, or C=a.A'A45.C

where a and 3 are scalars, C is an n X n symmetric matrix (only the upper or lower
triangular parts are updated), and A is a n x k matrix in the first case and a k X n

matrix in the second case.

We consider the following case (corresponding to “Upper”, and “No transpose”):
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Again, the symmetric rank-k update is expressed as a sequence of SYRK for updating the
diagonal blocks and GEMM for the other blocks. The updates of the submatrices of C

can be performed independently.

2.6 Subroutine SYR2K

SYR2K performs one of the symmetric rank-2k operations:

C=a.AB'*+a.BA'+3.C, or C=a.A'B+a.BtA+45.C

where a and 3 are scalars, C is an n X n symmetric matrix (only the upper or lower
triangular parts are updated) and A and B are n X k matrices in the first case and k x n

matrices in the second case.

We consider the following case (corresponding to “Upper”, and “No transpose”):
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L. Ciq = B.Cru+ a A Bl +a.BiiAf (SYR2K)
2. C11 <= Crq+ A1 2B] 5, + a.Bi oAl (SYR2K)
3. C1g = B.C12+ a.A11BS (GEMM)
4. Chp = Cip+ a-Bl,lAé,l (GEMM)
5. C12 « Cra+a.412B), (GEMM)
6. Cho2—Cipo+ Oé-Bl,zAtg,g (GEMM)
7. Gy — B.Cap+ a.Agy Bl + a.Byy AL, (SYR2K)
8. Uy — Uy + a-A2,zB§,2 + a.B2,2A§72 (SYR2K)

SYR2KP is expressed as a sequence of SYR2K for updating the diagonal triangular blocks,
and GEMM on on the other blocks. The update of the submatrices of C can be effected
simultaneously.

3 Numerical results on the ALLIANT FX/80

We use Version 5.0 of the Libalgebra Library. We only present results corresponding to the
best value of the blocking parameter (NB). Note that all the operations within the BLAS
kernels are parallelized using the loop-level parallelism and that the versions of Level 3
BLAS supplied in the ALLIANT Scientific Library are already parallelized. Therefore, all
our experiments on the ALLIANT FX/80 have been performed using eight processors.

3.1 Subroutine SYMM

We present in Table 3.1.1 and Table 3.1.2 the results we obtained for the case “Left” and
“Upper” for SYMMP (the results are similar for the other cases). The advantage of using
both the loop-unrolling and the blocking techniques is illustrated in the tables below. We
compare the performance of the unrolled version of SYMM (see code in the appendix) with
the performance of the unrolled and blocked version SYMMP. The unrolling depth is equal

10



Unrolled Blocked and unrolled
M/N | 32 64 96 128 | 32 64 96 128
32 110.8 12.3 12.5 12.7|10.7 11.7 11.4 11.8
64 | 16,5 16.9 16.9 17.1| 158 16.2 15.6 16.2
96 | 19.2 19.8 20.3 20.6 | 22.3 22.5 22.5 23.2
128 | 20.8 21.1 21.7 21.9|24.0 258 26.2 26.7

Table 3.1.1: Comparison in Mflops of loop-unrolled and blocked plus loop-unrolled versions
of SYMM (“Left”, “Upper”, NB = 64) using eight processors.

to 4, while the blocking parameter is set to 64 (chosen after extensive experimentation).
All the executions are made on eight processors.

The blocked version is more efficient as soon as the matrices are large enough (M greater
than 64), partly because of the more favourable memory access patterns and because of
the very well tuned version of GEMM supplied by ALLIANT. On small matrices, the calls
to GEMM and SYMM within SYMMP cause a slight performance degradation compared
to the unrolled code.

M=N | ALLIANT Version | Blocked Version
32 1.5 10.7
64 2.8 16.2
128 5.2 26.7
256 8.9 37.8
512 12.7 45.3
1024 16.2 52.1

Table 3.1.2: Performance in Mflops of DSYMMP (“Left” and “Upper”, NB = 64) using
eight processors.

The performance improvement of our tuned version over the version supplied by ALLIANT
is very impressive. Qur tuned code is much more efficient on small matrices because of the
loop-unrolling, while our blocking technique allows us to increase the performance when
dealing with large matrices. Therefore, DSYMMP is 10 times faster on small matrices and
4 to 5 five times faster on large matrices.

3.2 Subroutine TRSM

We present in Table 3.2.1 the results we obtained for the case “Left”, “No transpose”,
“Upper”, and “Unit” :

The ALLIANT-supplied version of DTRSM is well-tuned on small blocks, therefore our
blocked version is no better because of the additional overhead due to the calls to the
ALLIANT version of DTRSM within DTRSMP (and additional error tests on the input
parameters). Nevertheless, our blocked version is more efficient as soon as the matrices
are large enough, because of the use of DGEMM. We notice that the performance of the

11



M=N | ALLIANT Version | Blocked Version
32 14.3 13.7
64 36.4 35.7
128 56.9 50.2
256 54.4 58.8
512 50.7 65.4
1024 48.9 68.2

Table 3.2.1: Performance in Mflops of DTRSMP (“Left”, “No transpose”, “Upper”, and
“Unit”, NB = 64) using eight processors.

ALLIANT version decreases from matrices of order 128, while it continues to increase
using our blocked version. This is typically due to an increase in caches misses in the
ALLIANT version, while the blocked version has a more efficient reuse of data in the
cache.

3.3 Subroutine TRMM

We present in Table 3.3.1 the results we obtained for the case “Left”, “No transpose”,
“Upper”, “Unit”.

M=N | ALLIANT Version | Blocked Version
32 14.4 13.8
64 35.6 29.3
128 51.6 50.0
256 53.2 59.4
512 49.1 67.2
1024 48.3 70.5

Table 3.3.1: Performance in Mflops of DTRMMP (“Left”, “No transpose”, “Upper”, and
“Unit”, NB = 64) using eight processors.

As for the case of DTRSMP, the overhead of additional calls to DTRMMP from ALLIANT
in our blocked version makes it slightly slower on small matrices where the blocking does
not help. As soon as the matrices are large enough, the blocking produces a higher
performance than the ALLIANT version of DTRMM.

3.4 Subroutine SYRK

We present in Table 3.4.1 the results we obtained for the case “Upper”, “No transpose”.

The ALLIANT supplied DSYRK kernel is very poor. Note that the performance of this

kernel is crucial for the performance of blocked Cholesky factorization. Our Fortran tuned
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M=N | ALLIANT Version | Blocked Version
32 4.7 11.5
64 6.7 20.2
128 8.1 30.2
256 8.5 40.2
512 8.1 52.2
1024 7.3 59.1

Table 3.4.1: Performance in Mflops of DSYRKP (“Upper”, and “No transpose”, NB =
64) using eight processors.

version using loop-unrolling is very efficient on small matrices, and provides a very sub-
stantial improvement in performance. On large matrices, the blocked implementation of
SYRK is 8 times faster than the ALLIANT supplied version.

3.5 Subroutine SYR2K

We present in Table 3.5.1 the results we obtained for the case “Upper”, “No transpose”.

M=N | ALLIANT Version | Blocked Version
32 7.5 13.3
64 10.8 20.6
128 13.1 32.5
256 13.2 43.9
512 12.2 50.0
1024 11.1 57.3

Table 3.5.1: Performance in Mflops of DSYR2KP (“Upper”, and “No transpose”, NB =
64) using eight processors.

DSYR2K in the ALLIANT Library is slightly more efficient than DSYRK, but still per-
forms quite slowly. Our tuned version achieves much higher performance both on small
and large matrices.

3.6 Conclusions on the ALLIANT FX/80

Our blocked version of the Level 3 BLAS behaves similarly for all the variants of the kernels.
It shows a very good performance improvement over the one supplied within the ALLIANT
Scientific Library. This is especially true for the symmetric rank-k updates (SYRK and
SYR2K). In addition, our version is much more efficient on small matrices (SYMM, SYRK,
and SYR2K) which is of special interest for block linear algebra algorithms. We did not

13



perform experiments using single precision, but similar performance improvement should
be obtained.

As we have seen on the ALLIANT FX/80, the availability of an efficient manufacturer-
supplied version of GEMM allows us to obtain a better performance using loop unrolling
and blocking techniques. Our code is obviously portable, the efficiency will depend on the
performance of the manufacturer supplied GEMM and on the tuned Fortran codes used
for handling triangular blocks.

4 Experiments on the CONVEX C220, the CRAY-2, and
the IBM 3090-600J

We have run the same codes on the CONVEX €220, the CRAY-2, and the IBM 3090-600J.
This means that, when no highly-tuned versions of SYMM, SYRK, SYR2K, TRSM ,and
TRMM, are available for dealing with diagonal blocks within the blocked Level 3 BLAS,
we have used the same tuned Fortran code with loop-unrolling as on the ALLIANT FX/80.
No special attempt has been made for further tuning. Therefore, these tuned codes may
be far from optimal on these computers. On all the computers, the reported experiments
correspond to the same cases as on the ALLIANT FX/80.

4.1 Uniprocessor performance on the CONVEX C220

As on the Alliant FX/80, we have used a combination of tuned Fortran and manufacturer-
supplied kernels depending on the efficiency of the VECLIB Library (we used Version 5.0).
Note that we make no effort to adapt the tuned Fortran codes designed on the ALLIANT
for the CONVEX. We always make use of the matrix-matrix multiplication (DGEMM)
from VECLIB.

DSYMMP uses DSYMM and DGEMM from the VECLIB Library for the right variants,
while we use DGEMM from VECLIB and the tuned Fortran code for the left ones since
it is more efficient. For the same reason, we use tuned Fortran and DGEMM for the “No
transpose” variants of both DSYRKP and DSYR2KP, and the VECLIB routines for the
other ones. Finally, we use DTRMM and DTRSM from VECLIB.

We present in Table 4.1.1 a summary of the performance we have obtained on one processor
of the CONVEX (€220 using double precision.

The tuned Fortran version of DSYMM using loop-unrolling allows us to double the perfor-
mance of SYMM on small matrices. The symmetric updates, DSYRKP and DSYR2KP,
are more efficient on large matrices than the VECLIB supplied ones. Depending on the
variant considered, our blocked version of DTRSM is sometimes slightly less efficient than
the DTRSM from the VECLIB Library on small matrices because of the overhead we in-
troduce when calling DGEMM and DTRSM from the VECLIB Library within our blocked
code. Nevertheless, we always observe a gain of 2 when dealing with large enough matrices.

14



CONVEX Version Blocked Version

M=N 32 64 128 [ 256 | 512 [ 1024 | 32| 64| 128 256 [ 512 | 1024

SYMM | 6.2 | 9.2|13.8|17.6 | 20.0 | 21.2 || 12.0 | 14.0 | 17.5 | 19.8 | 21.5 | 27.2

SYRK 55| 82114 | 114|122 | 124 || 87| 13.0 | 20.1 | 25.3 | 30.0 | 33.0

SYR2K || 7.6 | 11.5 | 15.8 | 18.6 | 20.3 | 21.4 || 9.3 | 13.1 | 18.9 | 22.4 | 21.5 | 26.2

TRSM || 54| 7.1 11.1 |12.9 | 13.7 | 13.3 54 | 82| 13.719.7 262 | 29.9

TRMM | 5.1 | 7.6 | 10.8 | 12.8 | 13.9 | 14.3 51| 7.5(13.1]19.9|26.1| 30.8

Table 4.1.1: Performance comparison in Mflops of VECLIB and blocked versions of the
Level 3 BLAS on one processor of the CONVEX €220 with NB=64.

DTRMMP behaves in the same way as the triangular solver DTRSMP and we observe a
similar performance improvement when dealing with large enough matrices.

4.2 Performance on the CRAY-2

The CRAY SCILIB Library provides a complete set of highly tuned Level 3 BLAS ker-
nels. Therefore, we always use the CRAY kernels. Our intention was only to prove the
portability of our blocked Level 3 BLAS implementation rather than expecting an im-
provement over the CRAY uniprocessor version. Note that the CRAY kernels have been
designed using a modular design similar to our blocking strategy. Sheik and Liu ([25])
have used a certain number of subkernels (matrix-vector, matrix-matrix kernels, ...) for
implementing all the Level 2 and Level 3 BLAS. The CRAY microtasking directives have
been used for parallelizing the BLAS kernels. The code corresponding to the microtasked
version of SYMM is reported in Appendix A.3. The addition of a microtasking directive
on the outer loop of all the codes is sufficient. Note that automatic parallelization would
be sufficient, but the version of autotasking that we use does not allow the parallelization
of loops involving character variables. These experiments were done using Version 5.0 of
UNICOS, Version 6.0 now provides a parallel version of the Level 3 BLAS kernels.

We present in Table 4.2.1 the results corresponding to the CRAY and blocked versions of
the Level 3 BLAS. p corresponds to the number of processors in use.

As expected, there is no performance improvement on one processor when using our
blocked version but the degradation is slight. Note that the blocking strategy on this
computer aims at using as efficiently as possible the local memory of each processor. The
blocking of the Level 3 BLAS calculations done by CRAY code designers is obviously very
efficient. Our microtasked version of Level 3 BLAS only provides speed-ups when the
matrices are at least of order 128. This means that in order to guarantee speed-ups the
parallel kernels should include tests to decide if it is worthwhile to use several processors.
The number of processors used could also be selected according to the minimum granu-
larity required for efficient parallelization. Finally, we believe that, rather than a static
parallelization of the kernels, a self-scheduling technique would be better.
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SCILIB Version Blocked Version
M=N |p | 32] 64]128 256|512 1024 || 32| 64 ]128 [256 | 5121024
SYMM | 1 || 249 | 385 | 423 | 416 | 429 | 447 || 234 | 380 | 402 | 390 | 404 | 424
4 221 | 365 | 541 | 721 | 1090 | 1468
SYRK | 1| 126 | 260 | 305 | 336 | 348 | 361 || 114 | 243 | 286 | 303 | 318 | 310
4 127 | 261 | 456 | 666 | 906 | 1160
SYR2K | 1 || 165 | 293 | 335 | 384 | 411 | 424 | 142 | 279 | 329 | 355 | 377 | 387
4 143 | 271 | 482 | 785 | 1272 | 1357
TRSM |1 | 64| 104 | 168 | 244 | 317 | 373 || 57 [ 100 | 162 | 233 | 299 | 347
4 56 | 101 | 313 | 430 | 842 | 1168
TRMM | 1 || 237 [ 386 | 420 | 436 | 445 | 450 || 200 | 372 | 397 | 406 | 409 | 411
4 183 | 358 | 782 | 750 | 898 | 1073

Table 4.2.1: Performance comparison in Mflops of SCILIB and blocked uniprocessor and
multiprocessor versions of the Level 3 BLAS with NB = 64.

4.3 Uniprocessor performance on the IBM 3090-600J

The IBM ESSL Library (version 3) does not provide a complete version of the Level 3 BLAS
kernels. Only DGEMM and DTRSM are supplied. Therefore, we compare the performance
of the standard Fortran codes for DSYMM, DSYRK, DSYR2K, and DTRMM, and the
DTRSM code from ESSL, to the performance of our blocked versions. We have used the
tuned Fortran codes for DTRMM, DSYMM, DSYRK, and DSYR2K, and ESSL versions of
DGEMM and DTRSM. No attempt has been made to tune the Fortran codes specifically
for the IBM.

Standard Fortran/ESSL Blocked Version

M=N 32| 64| 128 ] 256 | 512 32] 64| 128 [ 256 | 512
SYMM [ 10.5 [ 16.9 | 25.7 [ 31.3 [ 35.4 || 13.9 | 23.9 [ 36.4 [ 50.6 | 64.7
SYRK || 9.8 |16.423.7]27.0]28.7 [ 185 | 32.1 | 47.3 | 62.7 [ 68.2
SYR2K | 14.5 | 23.8 [ 34.0 | 35.7 [ 38.6 || 19.0 | 31.9 | 44.1 | 56.3 | 58.6
TRSM || 17.8 | 35.9 | 67.9 | 83.0 [ 92.0 || 19.1 | 36.2 | 68.8 | 76.2 | 81.9
TRMM || 9.7 | 15.5 [ 22.6 [ 26.1 [ 27.5 | 9.3 | 15.7 | 20.4 | 35.9 [ 50.9

Table 4.3.1: Performance comparison in Mflops of blocked and standard Fortran versions
of the Level 3 BLAS (except for DTRSM from the ESSL Library), with NB = 128, on one

processor.

As expected, our blocked codes are more efficient than the standard Fortran version of
Level 3 BLAS as soon as the matrices are large enough. Note that Kagstrom and Ling
([16], [20]), and Mayes and Radicati ([21], [22]) have developed more efficient versions
of the Level 3 BLAS for the IBM 3090 using a similar blocking technique. They use
highly tuned Fortran versions of the kernels for the IBM, so that they reach much higher
performance than us. Our blocked version of DTRSM is slightly less efficient then the
DTRSM from the ESSL Library because of the overhead we introduce especially on small
matrices. We observe a gain of 2 using the other kernels when dealing with large enough
matrices.
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5 Conclusion

The Level 3 BLAS is a set of computational kernels targeted at matrix-matrix opera-
tions with the aim of providing efficient and portable implementations of algorithms on
high-performance computers, especially vector and parallel computers. The linear algebra

package LAPACK ([2]), for example, makes extensive use of the Level 3 BLAS.

We have described an efficient and portable implementation of the Level 3 BLAS on
parallel vector computers with a global shared memory. The development of a highly
tuned version of the complete set of Level 3 BLAS may be a considerable task. We have
shown here that significant MFlop rates can be achieved, only requiring a tuned version
of the matrix-matrix multiplication kernel GEMM. Our approach is based on the use of
a blocking technique that allows us to map the computational kernels efficiently into a
memory hierarchy. Therefore, the Level 3 BLAS are expressed as a sequence of matrix-
matrix multiplications (GEMM) and operations involving triangular blocks. An efficient
version of GEMM is all that is needed to obtain high performance on large matrices.
On small matrices (of order less than the blocking factor) the performance of the kernel
dealing with triangular matrices is crucial. Depending on the availability of highly tuned
manufacturer-supplied kernels, we use tuned Fortran or library kernels. In their paper on
GEMM-based Level 3 BLAS, Kagstrom, Ling, and Van Loan ([17]) use similar ideas. They
describe algorithms for the implementation of two Level 3 BLAS routines : SYRK and
TRSM. They use highly tuned matrix-matrix and GEMV-based operations and report on
experiments on a single processor of the IBM 3090/ VF.

This blocked version of Level 3 BLAS was initially tested on the ALLIANT FX/80. The
performance improvement over the ALLIANT supplied version varies from 1.5 for TRSM
and TRMM to 10 for SYRK. Note that these performance improvements, especially on
small matrices, have a strong effect on the performance of, for example, blocked linear
solvers that make use of these kernels ([2], see experiments in [23]).

We have also demonstrated the portability of such an approach on the CONVEX €220, the
CRAY-2, and the IBM 3090J. We have been able to improve the uniprocessor performance
of the Level 3 BLAS on the CONVEX (€220 compared to the versions supplied in the
VECLIB Library. On the CRAY-2, due to the high efficiency of the manufacturer-supplied
kernels we have not been able to improve performance on a single processor. Nevertheless,
we have demonstrated that a parallel version of the Level 3 BLAS, obtained by the insertion
of microtasking directives in our blocked codes was able to provide high performance and
significant speed-ups.

This implementation of the Level 3 BLAS is suitable as a platform for developing a tuned
version of the BLAS. It is also a straightforward way of parallelizing the Level 3 BLAS. It
basically only requires an efficient GEMM kernel often supplied by the manufacturer. The
combination of the blocking and loop unrolling techniques allows an efficient exploitation
of the memory hierarchy and only the blocking parameter is machine dependent. This
blocked implementation has been successfully used for developing both serial and parallel
tuned versions of the Level 3 BLAS for a 30-node BBN-TC2000 ([1]).
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6 Availability of codes

The codes described in the present paper are available using ftp anonymous on orion.cerfacs.fr
(138.63.200.33). The software is located in pub/blas/par_blocked. A compressed tarfile
called vector.mimd.tar.7Z contains the following codes :

o A set of test routines that check the correct execution and compute the Mflop rates
of the block implementation compared with the available uniprocessor version of the

Level 3 BLAS.
e The block implementation of the Level 3 BLAS.

e Tuned versions of the unblocked Level 3 BLAS.

We believe that these codes constitute a good platform for developing a complete set of
Level 3 BLAS for shared memory multiprocessors. The tuned uniprocessor code is really
the machine-dependent part of the software. Therefore, we advise the user to check the
availability of tuned serial codes before using our tuned Fortran codes. Note that the
design of a tuned uniprocessor Level 3 BLAS on computers where the processor accesses
data through a cache generally requires blocking. As a consequence, a tuned version of
the Level 3 BLAS for this type of architecture may use the same blocking ideas as in the
present paper, except that the ordering of loops will depend on considerations concerning
the efficient reuse of data held in cache. This may lead to a blocked implementation that
looks like the one we have described but where the ordering of loops is different and not
necessarily appropriate for parallelization. We are currently experimenting with these
ideas on a range of RISC-based workstations and will make any resulting code available
on anonymous ftp.
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A Appendix

We present here the double precision code for the blocked and the loop-unrolled versions
of SYMM which performs the operation :

C=a.A.B+3.C

where o and 3 are scalars, A is a symmetric matrix and B and C are m X n matrices,
in the case where only the upper triangular part of the symmetric matrix A is to be
referenced (“Left” and “Upper”).

A.1 Blocked code for DSYMMP

DO 701 =1, M, NB

NCOLA=MIN(M-I+1,NB)
DO 45 K=1,N,NB

NCOLB=MIN(N-K+1,NB)
CALL DSYMM(SIDE,UPLO,NCOLA,NCOLB,ALPHA A(L]),
$ LDA,B(L,K),LDB,BETA,C(LK),LDC)

45 CONTINUE
DO 60 J=1,1-NB,NB
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NLIGA=MIN(M-J+1,NB)
DO 55 K=1,N,NB

NCOLB=MIN(N-K+1,NB)
CALL DGEMM('T’,’N’,NCOLA,NCOLB,NLIGA,ALPHA,

$ A(JI),LDA,B(J,K),LDB,ONE,C(LK),LDC)
CALL DGEMM('N’’N’,NLIGA,NCOLB,NCOLA,ALPHA,
$ A(J1),LDA,B(LK),LDB,0ONE,C(J,K),LDC)
55 CONTINUE
60 CONTINUE

70 CONTINUE

This blocked code calls either a tuned Fortran code or a manufacturer supplied kernel for
DSYMM. DGEMM is in all cases manufacturer-supplied.

A.2 Unrolled version of SYMM on the ALLIANT FX/80

We present here a fraction of the Fortran code for the unrolled version of the subroutine
DSYMM on the ALLIANT FX/80. The code is unrolled to a depth of MODULO, which
is equal here to 4.

MODULO=4
M_MODULO=MOD(M,MODULO)

cvd$ nodepchk

cvd$ noconcur
DO 70,1 = 1,M-M_MODULO,MODULO

cvd$ nodepchk
cvd$ assoc
cvd$ concur

DO 60,J = 1,N

21



TEMP10(J) = ALPHA*B(I ,J)
TEMP11(J) = ALPHA*B(I+1,J)
TEMP12(J) = ALPHA*B(1+2,J)
TEMP13(J) = ALPHA*B(1+3,])
TEMP20(J) = ZERO
TEMP21(J) = ZERO
TEMP22(J) = ZERO
TEMP23(J) = ZERO

cvd$ nodepchk

cvd$ assoc
DO 50, K = 1, -1
C(K,J) = C(K,J)+TEMP10(J)*A(K,])
$ +TEMP11(J)*A(K,I+1)+TEMP12(J)*A(K,1+2)
5 + TEMP13(J)*A(K,I+3)
TEMP20(J)=TEMP20(J)+B(K,J)*A(K,I )
TEMP21(J)=TEMP21(J)+B(K,J)*A(K,1+1)
TEMP22(J)=TEMP22(J)+B(K,J)*A(K,I+2)
TEMP23(J)=TEMP23(J)+B(K,J)*A(K,[4+3)
50 CONTINUE
60 CONTINUE
cvd$ nodepchk
cvd$ assoc
cvd$ concur
DO 61,J = 1N

IF( BETA.EQ.ZERO )THEN

C(I,J) = TEMP10(J)*A(I ,I )+ALPHA*TEMP20(J)
C(I,J) = C(I ,J)+TEMP1L(J)*A(I I+1)

TEMP21(J) = TEMP21(J )+ B(I ,J)*A(I ,I+1)

C(I+1,J) = TEMP11(J)*A(I+1,1+1)+ALPHA*TEMP21(J)
C(I,J) = C(I ,J)+TEMP12(J)*A(I 1+2)

TEMP22(J) = TEMP22(J )+ B(I ,J)*A(I ,I4+2)

C(I+1,J) = C(I+1,J)+ TEMP12(J)*A(I+1,14+2)
TEMP22(J) = TEMP22(J )+ B(I+1,J)*A(I+1,14+2)
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C(14+2,J) = TEMP12(J)*A(I+2,1+2)+ ALPHA*TEMP22(J)
C(I,J) = C(I,J)+TEMP13(J)*A(I 1+3)

TEMP23(J) = TEMP23(J )+ B(I,J )*A(L ,I+3)

C(I+1,J) = C(I+1,J)+ TEMP13(J)*A(1+1,14+3)
TEMP23(J) = TEMP23(J )+ B(I+1,J )*A(I+1,1+3)
C(1+2,J) = C(1+2,J)+ TEMP13(J)*A(14+2,1+3)
TEMP23(J) = TEMP23(J )+ B(I+2,J )*A(I+42,1+3)
C(14+3,J) = TEMP13(J)*A(143,143)+ ALPHA*TEMP23(J)

ELSE

C(L,J) = BETA*C(L ,J) +

$ TEMP10(J )*A(I 1 )+ALPHA*TEMP20(J)
C(I,J) = C(I ,J)+TEMP11(J)*A(I JI+1)
TEMP21(J) = TEMP21(J)+ B( I ,J)*A(I ,I+1)
C(1+1, J) = BETA*C(I+1,J) +

$ TEMP11(J)*A(I+1,14+1)+ALPHA*TEMP21(J)
C(I,J) = C(I ,J)+TEMP12(J)*A(I 1+2)
TEMP22(J) = TEMP22(J)+ B( 1 ,J)*A(I ,14+2)
C(I+1,J) = C(I+1,J)+ TEMP12(J)*A(I+1,14+2)
TEMP22(J) = TEMP22(J)+ B( I+1,J)*A(I+1,14+2)
C(I4+2,J) = BETA*C(I+2,]) +

$ TEMP12(J)*A(I+2,1+2)+ALPHA*TEMP22(J)
C(1,J) = C(I J)+TEMP13(J)*A(L 1+3)
TEMP23(J) = TEMP23(J)+ B(I, J)*¥A(I ,I+3)
C(I+1,J) = C(I+1,J)+ TEMP13(J)*A(I+1,1+3)
TEMP23(J) = TEMP23(J)+ B(I+1, J)*A(I+1,1+3)
C(14+2,J) = C(I+2,J)+ TEMP13(J)*A(I1+2,14+3)
TEMP23(J) = TEMP23(J)+ B(I+2, J)*A(I+2,1+3)
C(I+3,J) = BETA*C(I+3,]) +

$ TEMP13(J)*A(143,14+3)+ ALPHA*TEMP23(J)

ENDIF
61 CONTINUE
70 CONTINUE
IF (M_.MODULO.NE.0) THEN

cvd$ nodepchk
cvd$ noconcur

DO 79,1 = M-M_MODULO+1,M
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cvd$ nodepchk
cvd$ assoc
cvd$ concur

DO 77,7 =1,N

TEMP10(J) = ALPHA*B( L,J)
TEMP20(J) = ZERO

cvd$ nodepchk

cvd$ assoc
DO75,K=1,1-1
C(KJ) = C(K,J) + TEMP10(J)*A( K, 1)
TEMP20(J) = TEMP20(J) + B( K,J)*A( K, 1)
75 CONTINUE
77 CONTINUE

cvd$ nodepchk
cvd$ assoc
cvd$ concur

DO 78,J =1, N
IF( BETA.EQ.ZERO )THEN
C(LJ) = TEMP10(J)*A(LL)+ALPHA*TEMP20(J)
ELSE

C(LJ) = BETA*C(LJ) +

$ TEMP10(J)*A(L1)+ALPHA*TEMP20(J)
ENDIF
78 CONTINUE
79 CONTINUE
END IF
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A.3 Microtasked version of SSYMMP on the CRAY-2

We present here the microtasked version of SSYMMP on the CRAY-2.

CMIC$ DO ALL SHARED(SIDE,UPLO,A,B,C,M,N,NB,ALPHA,BETA,LDA,LDB,LDC)
CMIC$1PRIVATE( I, K, J, NBCOLA, NBCOLB, NBLIGA )

DO 45 K=1,N,NB

NBCOLB=MIN(N-K+1,NB)
DO 701=1,M NB

NBCOLA = MIN(M-I+1,NB)

CALL SSYMM (SIDE,UPLO,
NBCOLA,NBCOLB,ALPHA, A(L]),
LDA,B(LK), LDB ,BETA,C(LK),LDC)

°9L L

DO 65 J=1,L.NB,NB

NBLIGA=MIN(M-J+1,NB)

CALL SGEMM('T’,N’,NBCOLA,NBCOLB,
NBLIGA, ALPHA, A(J,I),LDA,
B(J,K),LDB,ONE,C(LK),LDC)

CALL SGEMM(’N’,N’,NBLIGA,NBCOLB,
NBCOLA, ALPHA, A(J,I),LDA,
B(1,K),LDB,ONE,C(J,K),LDC)

°9L L

oL L

65 CONTINUE

70 CONTINUE

45 CONTINUE
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