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1 Intr oduction
We consider the direct solution of a set of linear equations

AX = B, (1.1)

where the matriA arises from a finite-element calculation and igdasparse, and unsymmetric.

We require the user to specify the number of finite-element nodes, and the number of variables at
each of the nodes. This allows considerable storage aciérefy gains for any problem that has

a significant number of nodes with more than one variable. The analysis is performed in terms of
the supewariables formed by the sets of variables at the nodesvilMefer also to ‘superows’

and ‘supeircolumns’ for the corresponding sets of rows and columns.

Thek-th finite element gives rise to a matrix

AW (1.2)

that is zero except in a small number of rows and columns. It may be represented by a list of indi-
ces of the nodes associated with the finite element and a square full matrix whose order is the total
number of variables at the nodes. Because of nodal quantities, such as masses, springs and damg.
ers, which are often used to modify the diagonal of the matniwe allow for an additional diag-

onal matrixAg to give the overall form

m
A=Y AY A, (1.3)
k=1

Note that the structure is symmetric.

We use the multifrontal method (see, for example [6] and [7]), which is a variant of Gaussian
elimination and produces the triangular factorization of a permutatidn of

Our approach is to assume initially that any diagonal entry is suitable as a pivot. This allows us to
use exactly the same pivot choice strategies as for the symmetric and positive-definiteecase. W
permit the user to supply a symmetric permutation in the form of an ordering for the nodes, but
normally this is chosen automatically by MA46 from the structure of the matrix. In pivota) order
the matrix is

A = PAP!, (1.4)

wherePg is the permutation matrix corresponding to the node order supplied by the user or gener-
ated by MA46. The order of the variables within any node is not chandgegd by

Given such a permutation, and again working only with the matrix structure, we construct a tree
that has a node for each finite-element node. The links of this tree are determined by the structure
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of the superows when pivotal. If the éfdiagonal entry of supaow i that is earliest in the pivot
sequence is in supeolumnj, nodel has nod¢ as its parent. It is straightforward to show that any
other of-diagonal entry of supaow i corresponds to an ancestor of nadeollowing Liu [15],

we refer to this as the elimination tree.

We will associate each finite element with the tree node corresponding to the finite-element node
that is first in the pivot sequence among the nodes of the element. Because each element matrix is
full, all the other nodes of the element must correspond to ancestors.

Suppose we consider the matrix obtained by summing the elements associated with a leaf node of
the elimination tree. The supmw and supecolumn corresponding to the variables of the leaf
node will be the same as for the matkixthat is, they are fully-summed.é/¢an take advantage

of the fact that elimination steps

-1

may be performed before all the assembly steps

K
ajj < & +ai§ ) (1.6)

are complete. It is necessary only that the terms in the triple product be fully-sumenednW
therefore perform the elimination operations within a full temporary matrix (the frontal matrix) of
order the number of variables associated with the nodes of the entries in the pivobwupbe

pivot rows and columns are stored away and the Schur complement is added into the frontal
matrix. Once all the elimination operations of the node have been completed, we are left with a
reduced matrix that has a status like that of an element matrix; we will refer to it as a generated
element matrix, keep it in temporary storage, and associate it with the parent node.

There is considerable freedom in the ordering of the operations. What is required is that all the
operations at the children of a node be completed before those at themsitieplify the ogan-

ization of temporary storage, we postorder the nodes following a depth-first search of the elimina-
tion tree. This allows a stack to be used to hold the generated elements awaiting assembly

In the elimination tree, suppose there is a sequence of ngdgsny, ... ,n, such that, for = 1,
2, ...,k

(a) noden; has nodey;_; as its only child and

(b) the entries of the pivot supeyw at noden; are the dfdiagonal entries of the pivot row at
noden;_y,

then the corresponding rows and columns can be treated as blocks with no loss of $harsity
elimination tree may be condensed by gneg each such chain of nodes into a supernode, and we
call the resulting tree the supernode elimination tremkitg with such blocks allows us to take
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advantage of the additionalfiefency associated with the use of full-matrix code and the BLAS
(Basic Linear Algebra Subprograms) [4,5,12] during factorization.

If a supernode has one or more original elements as children, the code must somehow access rea
data supplied by the us&kle have chosen to use reverse communication. The code must be called
NB times, where NB is the number of supernodes with which original elements are associated. On
each return the user is told which original element matrices are required. This avoids having to
store all the original element matrices. Of course, the user may choose to store them all, but other
alternatives may be convenient, such as generating them as required or holding them in a file.

For numerical stabilityit is necessary to introduce further row and column interchanges into this
process. It is usual for sparse unsymmetric matrices to require every pivot to satisfy the relative
pivot tolerance

[ay| = ulax |a
i >l

, 2.7)

whereu is a fixed parameteand this is what we do. The pivots must be chosen from the square
submatrix that is fully-summed and we choose as many as possible, which may leave a few rows
and columns uneliminated. Such rows and columns are simply passed to the parent as part of the
generated element matrix. If we use the nota®@mdQ for the permutation matrices of the row

and column interchanges introduced for stabith final factorization is

- PAO = T
LU = PAQ = PPAP.Q, (1.8)
whereL is lower triangular ant is upper triangular

The subroutines are named according to the naming convention of the Harwell Subroutine
Library [2]. We describe the single-precision versions which have names that commence with
MA46 and have one more lettdihe corresponding double-precision versions have the additional
letter D. The code itself is available from AEAchnologyHarwell; the contact is Dr Scott Rob-

erts or Mr Richard Lee, AEAechnology Bldg 552, Harwell, Didcot, Oxon OX10RA, tel (44)

1235 434714 or (44) 1235 435690, Fax (44) 1235 434136, email: scott.roberts@aeat.co.uk or
richard.lee@aeat.co.uk, who will provide details of price and conditions of use.

There are four subroutines that are called directly by the user:

Initialize . MAA46I provides default values for the arrays CNTL and ICNTL that together control
the execution of the package. For details, see appendix B.

Analyse MA46A is called to analyse the sparsity pattern. If a pivot order is not provided by the
user the routine chooses one. It then prepares data structures for assembly and factor-
ization, and computes the number of assembly steps NB.
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Factorize. MA46B assembles and factorizes the mafixased on the information computed by
MA46A and chooses permutatioRsandQ for numerical stabilityThe routine must
be called NB times in order to assemble and factorize the matrix. The routine may be
called for several finite-element matride®svith the same sparsity pattern without the
need for a new call to MA46A. This is common practice in non-linear finite-element
packages, for instance when a Newton-Raphson iterative scheme is used.

Solve MA46C uses the factorization produced by MA46B to solve the equaXeB. Note
that several right-hand side matridg@snay be solved for the same matfixvithout
the need for a new sequence of calls to MA46B. This is common practice in linear
finite-element packages when several load cases are analysed.

2 MAA46A: analysis

This section describes the analyse subroutine MA46A. MA46A is logically divided into three
parts: preparation, pivot order choice, and tree construction and tree analysis.

2.1 Preparation
We require the user to provide:

The number of finite elements, NELS.
The number of finite-element nodes, NNODS.
The number of variables, NEQNS.

An array |IELT that holds the list of nodes for element 1, followed by the list of nodes for
element 2, etc.

An array IPIEIT of length NELS+1 that holds the position in TEbf the first node of ele-
menti, fori =1, 2,..., NELS, and the first unused position inTlIEL

An array NAR of length NNODS that holds the number of variables at nddei = 1, 2,
..., NNODS.

Optionally, the first NNODS locations of an array KEERay be set to specify the pivot
order The node to be used in positioof the pivot order must be placed in KE&B, i =
1, 2,..., NNODS.

The routine first checks the validity of the input data and exits with an appropriate error message
if errors are found. Then the routine proceeds with three preparatory steps.

The first step is to compute the number of finite-element nodes that are active (have one or more
variables) and the total number of variables. This provides a check on the value NEQNS provided
by the userlf the total number of variables is not equal to NEQNS, the routine exits with an
appropriate error message.

The second step is to order the active nodes ahead of the others. This permutation of the nodes is
done regardless of whether or not a pivot order is provided. When it is provided, the relative order
of the nodes with variables is retained. This permutation information is saved iRKEERRBuUb-
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array denoted BSPERM. BSPERM is thus, in this stage of the analysis, the permutation from the
initial order to the order provided by the u#BPERM is needed in order to find the indices that
the user associated with the finite-element nodes.

The third step is to compute a representation of the element-node connectivity information pro-
vided by the user in the array pair IPTELELT. The representation consists of four sub-arrays
that are tailored for &€tient execution of the ordering step, if requested, and the subsequent tree
construction and tree analysis. The first two arrays are denoted XELNOD, ELNOD and give a
compressed version of IPIELIELT, that is, a compressed element-node connectivity structure.
The compression is done in order to disregard the nodes that have no variables. The two last
arrays are denoted XNODEL, NODEL and give the node-element connectivity and may be
regarded as the inverse arrays to XELNOD, ELNOD. The four arrays are referred to as the
implicit adjacency structure, or as the implicit graph structure, of the assemblgcieEahatrix

A. Note that the implicit adjacency structure represents the nodal structure of tha@ecwef
matrix and not the variable structure.

2.2 Pivot order choice

A pivot order does not need to be chosen if it is provided by thelndbis case, the internal per-
mutation arrays PERM and INVP are set to the ider@itiierwise, the routine MA46F is used to
compute an ordering of the nodes that is stored in the arrays PERM and INVP by means of a mini-
mum-degree type algorithm. The minimum-degree algorithm symbolically simulates the factori-
zation of a sparse matrix. For each step in the algorithm, a node of minimum degree is chosen and
eliminated. This symbolic elimination procedure is performed on some graph representation of
the sparse matrix structure and creates a sequence of graphs, which are usually referred to as elim:
ination graphs. MA46F uses a generalized element representation of this sequence of elimination
graphs. The benefit is that the storage needed is no more than that needed for the original struc-
ture.

We have chosen to minimize the ‘external degree’, that is to choose each pivot supervariable to
minimize the number of entries in the pivot row that lie outside the pivot block. This was intro-
duced by Liu [13], who found that the number of entries in the factors was between 3% and 7%
less than with ‘true minimum degree’ for his test problems. AmgBiayis and Dufreport cases

with bigger gains, including one with a reduction of over 50% in the number of entries in the fac-
tors [1].

The code implements a standard minimum-external-degree algorithm. That is, for each node of
minimum external degree, the routine performs a graph elimination step and a degree update step.
The routine is implemented to exploit indistinguishable nodes [13] (indistinguishable nodes are
nodes that have the same list of connected elements) and uses incomplete degree update [10]
That is, the routine does a rgerof nodes that have the same adjacency set in the current elimina-
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tion graph and does not update the degree of nodes that are known not to be of minimum external
degree after a degree update step. Incomplete degree update is often implemented as a search fc
outmatched nodes [13] (an outmatched node is a node whose list of connected elements includes
all those connected to a neighbouring node). Since the routine uses an element representation, it is
customary to formulate both the requirements in terms of generated elements. In most implemen-
tations of the minimum-degree algorithm, a simplified search for outmatched nodes is used. In
this implementation, a complete search is used since the search procedure iBciemy iafa
generated element setting and often produces orderings of higher.quality

By default, the standard minimum-external-degree algorithm is extended with a multiple-elimina-
tion step as described by Liu [13]. Multiple-elimination allows more than one node of minimum
external degree to be eliminated before the degree update step. The consequence is that more tha
one generated element may egeein a multiple-elimination step. The nodes must be independ-
ent, that is no node may be involved in a new generated element other than its own.

An option is an extension of the multiple-elimination version of the minimum-external-degree
algorithm to include independent nodes of degree exceeding the minimum byspacted
amount. After all the nodes of minimum external degree have been eliminated the algorithm con-
tinues its search for independent nodes with external degree one tvghleigher and so on until

the limit is reached, and eliminates these nodes together with the minimum external degree nodes
in a multiple-elimination step.

2.3 Tree construction and tee analysis

When the preparation and pivot ordering steps have been completed, the routine continues with
the tree construction and tree analysis, which consists of six steps. All the steps use the implicit
adjacency structure that was computed in the preparation stage and the internal permutation
arrays PERM and INV.PThe steps are implemented separately with modularity in mind, which
will make it easy to change parts of the code should new and better algorithms appear

The first step is to compute the finite-element node-based elimination tree and the corresponding
postordering. The work is done by the routine MA46G. At first glance, it might be assumed that
the nodal elimination tree is not needed since the routine attempts to amalgamate nodes to make
supernodes and the associated supernode elimination tree. This is true, but there is no great cos
associated with the computation of the nodal elimination tree and the subsequent steps in the
matrix analysis are morefigient if the structure is present. The method used to compute the
elimination tree and its postordering is straightforward and is described in [15].

The second step is to compute the number of entries in the pivot rows at each node. The algorithm
used is due to Gilbert, Ng and Peytoh][IThe algorithm is implemented in routine MA46H. For
efficiency, it makes use of the postordered nodal elimination tree in addition to the implicit adja-
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cency structure.

In step three, after the pivot row lengths are known, the nodes are grouped into supernodes by
routine MA46J, as explained on page 2. Such supernodes were introduced bpdRREid [6]
and called ‘fundamental supernodes’ by Ashcraft and Grimes [3].

The fourth step is the computation of an optimal postordering of the supernode elimination tree.
We use a result of Liu [14]. Suppose the children of a node{idye= 1, 2, ..., k, that the size of

the generated element at nad#g is g[i], and that the temporary stack space needed when work-

ing on noden[i] is gi]. Liu showed that the total stack size needed for work on all the children is
minimized if they are ordered so tisfif-g[i], i = 1, 2, ..., kis a monotonic decreasing sequence.
Such an ordering can therefore be determined, along with the total stack space needed, provided
gi] andg[i] are known for all the children. Any postorder following a depth-first search allows us

to do this.

Pivoting due to numerical stability considerations may increase the size of the frontal and gener-
ated element matrices. This implies that the order found during the analysis stage need not be the
best when the matrix is factorizedeWave, howevenot found it feasible to try any kind of sub-
optimization during the factorization. Our numerical experiments indicate that the size of the
working stack storage changes little and we believe that the order found is close to the best overall
order that may be computed after the factorization has been completed.

The fifth step is to update the internal permutation vectors PERM and INVP and the representa-
tion of the supernodal elimination tree to correspond with the supernode postordering computed
in step four This step is done by routine MA46L.

The sixth and final step is to compute the number of assembly steps and some factorization statis-
tics. The step also updates BSPERM by the information collected in the internal permutation
arrays PERM and INVP during the previous matrix analysis steps. The work is done by routine
MA46M. The number of assembly steps may be less than the number of supernodes found in step
three, since there may be many nodes that have no original elements associated witrethem. W
often see that the number of assembly steps is between 50-75% of the number of supernodes.
Therefore, we have found it convenient to compute an assembly tree in order to reduce the
number of calls to MA46B. The assembly tree consists of amalgamated supernodes and the start
of a new node in the assembly tree is defined by the need for original finite-elembcieotef

The routine checks each supernode to see if it needscmyes from finite elements. If not, its
right-most child in the supernode elimination tree isgedrinto it and thus an assembly tree is
created. The procedure used to create the assembly tree assures that the postorder of the supe
nodal elimination tree is maintained as required by the stack management in routine MA46B.
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3 MAA46B: assembly and factorization

Before we start the description of MA46B, we give a skeleton of the basic multifrontal factoriza-
tion algorithm in order to motivate the fdifent choices we have made in the development and
implementation of the code. The skeleton of the factorization is shown in Figure 3.1.

Note that the algorithm needs to process the supernodes in postorder for the internal stack man-
agement to work. In order to facilitate such an arrangement, we assume that a supernode elimina-
tion tree representation in postorder is available for the factorization algorithm.

We observe from Figure 3.1 that no distinction has been made between original finite-element
matrices and generated element matrices and that an implementation of the algorithm will need
data from the user for each supernode. That is, if we wergémiae the factorization as is in
Figure 3.1, MA46B would have to be called for each supernode, unless tfieieasf were
assembled into the factor submatrices in advance. This latter option would need pre-allocated
storage for the triangular factors, which is not practical in a code where pivoting may alter the
sizes. In addition, this arrangement would exclude the possibility of overlap between the stack
and the triangular factors if we store the finalized triangular factors, the current frontal matrix, and
the stack all in the same arr&uch an overlap is implemented in MA46B in order to reduce the
total storage needed.

In addition to the observation made in the previous paragraph, we use the following three obser-
vations to further refine the factorization algorithm:

1. Previously fully-summed variables that were not eliminated for stability reasons appear
naturally in the leading part of the generated element matrices to be assembled into the cur-
rent frontal matrix. These sets of variables must be disjoint since they arrive from disjoint
subtrees in the supernode elimination tree, and thus they may be assembled directly into the
index list in the symbolic assembly step.

2. Newly fully-summed variables are on entry to the factorization step still in the order arising
from the analysis stage.

3. Row and column pivoting in the fully-summed part of the frontal matrix doesfect #ie
order of the other rows and columns of the frontal matrix.

Figure 3.2 showthefinal assembly and factorization algorithm. The implementation is based on
calls to MA46B for each assembly step, and thus it is the part of the algorithm that starts with
“For each supernode in the assembly step do” that is found inside MA46B. Note that the algo-
rithm needs the supernodes in postorder for the internal management of the stack to work and that
many details have been removed in order to make Figure 3.2 easy to read.

3.1 The symbolic assembly

The assembly starts with the computation of the indices of the variables that are active in the cur-
rent step. This process is denoted symbolic assembly arghisized in two parts:
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For each supernode in postorater
Merge the index lists of the children of the supernode to form the index list of the frontal matrix;
Allocate space on top of the working stack for the frontal matrix of the supernode and initialize it to z¢
For each child of the supernode

Pop the generated element matrix associated with the chilibadtack and assembile it into the
frontal matrix of the supernode;

End For
Perform the eliminations that are possible on the fully-summed rows and columns;
Move the L/U submatrices associated with the performed eliminations to permanent storage for the f
Move the generated element of the supernode to the top of the stack;
End For

Figure 3.1:  Skeleton of the factorization algorithm.

For each assembly stejp
For each supernode in the assembly skep

I Symbolic assembly
Merge the index lists of the children of the supernode to form the index list of the frontal matrix;
I Actual assembly
Allocate space on top of the stack for the parent frontal matrix and initialize it to zero;
For each generated element cldid

Assemble the generated element of the child into the parent frontal matrix;
End For
If this supernode is the first in the assembly gtep do

For each original finite element that participate in this assemblydstep

Assemble the original finite-element matrix into the parent frontal matrix;

End For
End If
I Elimination
Perform elimination of the fully-summed rows and columns that may be eliminated;
I Management of the triangular factors and the stack

Move the L/U submatrices computed in the elimination step to permanent storage for the
submatrices;

Compress the generated element matrix and move it to the new top of the stack;
End For
End For

Figure 3.2:  Final version of the assembly and factorization algorithm.

() the index lists of the children of the current supernode argeddogether to form the
index list of the parent, and

(i) if the supernode is the first in an assembly step, index lists from original finite elements
are meged with the parent list.

Since there may be a need to usedagonal pivots, we prepare by generating column indices for

the fully-summed part, as well as row indices for the generated element. If at least one of the
incoming generated elements hadedént row and column indices or arf-dfagonal pivot is
selected, we need to keep the column indices for the rows and columns of the factors that are
associated with the supernode.
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D Finalized triangular factor submatrices.

I:I Free space.

- The frontal matrix.

I:I Previously generated elements.

Figure 3.3:  The structure of the workspace for triangular factors and the stack after assembly but before the
eliminations have been carried out.

3.2 The numerical assembly

The active frontal matrix is stored on the top of the stack. Before the assembly process starts,
workspace on top of the stack is allocated for the frontal matrix and it is initialized to zero. The
frontal matrix is then assembled and finally the eliminations that are possible are performed on the
matrix. Figure 3.3 shows the structure of the workspace after assembly but before the eliminations
have been carried out.

As for the symbolic assembly step, the actual assembly step is divided into two separate parts:

(i) assembly of coéitients from generated element matrices, and

(i) if the supernode is the first in an assembly step, assembly éciere$s from original
finite-element matrices.

3.3 The actual factorization

For each assembly step, one or more supernode elimination steps are carried out. These block fac-
torization steps involve eliminations of the fully-summed rows and columns of the frontal matrix.
Each block factorization step isgamized around the pivot search and subsequent submatrix
update. The pivot search is done within the block of fully-summed rows and columns that are not
yet eliminated. For better numerical stabjlitye choose the Igest of-diagonal entry of the fully-
summed part of the column even if the diagonal element satisfies the criterion for pivot choice.
This in contrast to how the MA37 package from the Harwell Subroutine Library [2] selects the
next pivot in such a case.

Initially, we planned to provide to the user two versions of the factorization:

(i) aversion based on matrix-vector updates, i.e. Level 2 BLAS, and

(i) a version based on matrix-matrix updates, i.e. Level 3 BLAS.
The final testing showed, howeyérnat this was not necessary since the matrix-matrix version is
the overall best.

10
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D Previous triangular factor submatrices.

- The new triangular factors.
I:I Free space.
- The new generated element matrix on top of the stack.

I:I Previously generated elements.

Figure 3.4:  The structure of the workspace for triangular factors and stack after the eliminations and workspace
compression.

In order to make good use of cache memoey ask the user to provide its size in ICNTL(8) (see
Appendix B), and divide the matrix-matrix update into blocks. Both versions use standard BLAS
routines, that is, |_AMAX, SCAL, SWP, GER, TRSM, and _GEMM in the most demand-
ing sections of the elimination. Let the frontal matrixfoand have ordedr Further let it havek
fully-summed rows and columns.e/énsure that these are at the frori.of

The matrix-vector update kernel is implemented as follows: in elimination, stéygrel <j <k,

a pivot is selected frof(j:k, j:K), and permuted to positid¥(j, j). The pivot search and the per-
mutations are done by the Level 1 BLAS routines |_AMAX and ABWhe next step is to scale
the column vectoF(j+1:f, j) with the pivot using the Level 1 BLAS routine _ SCAL and then the
trailing submatrix=(j+ 1., j+ 1.f) is rank-one updated by Level 2 BLAS routine _GER.

As many such elimination steps as possible are performed and the resulting matrix is passed as the
generated element matrix to the parent in the supernode elimination tree.

For the unblocked matrix-matrix update kernel, in elimination jstegpivot is selected from the
submatrixF(j:k, j:K), permuted to th&(j, j) position and the columR(j+1:f, j) is scaled by the
pivot inverse, exactly as for the matrix-vector update kernel. Now the Level 2 BLAS routine
_GER is restricted to a rank-one update of the subniafrx:f, j+1:K). After all possible such
elimination steps are completed, s$asteps, we perform forward solves on the subm&fixl,

k+ 1:f) using the Level 3 BLAS routine _TRSM, and finally update the subnt&trxd.:f, k+1:f)

using the Level 3 BLAS routine _GEMM. The resulting mak{+1:f, [+1:f) is passed as the
generated element matrix to the parent in the supernode elimination tree.

We introduced the blocked version of the factorization algorithm in order to increase the amount
of Level 3 BLAS work and avoid swapping between cache and main mentaylock sizé&b

11
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is chosen so thatkb + 1) f<ICNTL (8), to ensure that a block column fits in the cache. W
commence processing as if only the fkistrows and columns were fully-summed. Once this is
complete, we regard the nédi rows and columns as fully-summed and process these together
with any we were unable to pivot upon while processing the first bloelkcdminue in this way

with one more block okb rows and columns at a time. The treatment is essentially the same as
we would have obtained had we limited the gasrinto supervariables to blocks of dibe

After a factorization step has been completed, the newly computed submatrices of the triangular
factors are moved from the frontal matrix to permanent storage and the generated element matrix
is moved to the top of the stack. During its movement, the generated element matrix is com-
pressed in order to eliminate the unused space above the columns. Figure 3.4 shows the structure
of the workspace after the eliminations and workspace compression have been carried out.

4 MAA46C: solve

In contrast to MA46A and MA46B, there is no use of finite-element input to the solution routine
MA46C. The reason is that the solve step, and thus MA46C, then has a cleaner interface. The
organization of the solve routine is, howevbased on the supernode elimination tree which
means that the equations are solved as a sequence of submatrix solves. The forward elimination is
driven by traversal of the supernode elimination tree in a postorder and the backward elimination
Is driven by traversal of the supernode elimination tree in the inverse btdd6C may be

called more than once for the same triangular factors. On each call, the number of right-hand sides
(columns of B) must be specified in NRHS. Both the forward and backward elimination steps use
matrix-matrix computational kernels, i.e. Level 3 BLAS, when NRHS>1. It should be noted that

B is involved in this matrix-matrix product and that the kernels become nianerdfwith an
increased number of columns in B. When there is one right-hand side, i.e. NRHS=1, Level 2
BLAS routines are used since this gives an improvement over the Level 3 BLAS because there is
less administration overhead.

5 Performance results

For performance testing, we have taken a subset of the problems in the Harwell-Boeing collec-
tion, see [8], and some problems collected from structural engineering applications at Det Norske
Veritas Research ASable 5.1 shows a summary of the problems and those from the Harwell-
Boeing collection are marked with superscript a. The storage format of the problems from the
Harwell-Boeing collection does not take advantage of the fact that there may be more than one
variable at a finite-element node. This means that all nodes in these problems have at most one
variable and that the matrix analysis of MA46 may perform worse than usual for finite-element
problems. There are, howeyenany performance results available for these matrices, see for

12
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Table 5.1:  The test problems

Problem Description Number of  Number of
variables elements
1 3D model of a container ship. 10,110 3,431
2 CEGB2802. 2,694 108
3 CEGB2914. 2,859 128
4 CEGB3024. 2,996 551
5 CEGB3306. 3,222 791
6 3D model of a corrugated plate field. 18,010 3,152
7 3D model of a flywheel. 4,368 248
8 LOCK1074. 1,038 323
9 LOCK2232. 2,208 944
10 LOCK349F. 3,416 684
1 LOCK 700" 691 324
12 MAN5976%, 5,882 784
13 3D model of part of a condeep cylinder 15,449 977
14 3D model of a sandwich bedm 2,508 3,429

a. See [8] for a description of the problems taken from the Harwell-Boeing collection.
b. The 3D model of the beam consists of randomly distributed 2-noded beam elements.

instance [9], and this choice of problems makes it easier to compare the performance of MA46
with other packages. On the other hand, the problems from Det Naskas\Research AS are
presented to MA46 as we expect the code to be implemented in finite-element packages; they are
extracted directly from finite-element applications and most of the nodes have more than one var-
lable.

The matrices of dble 5.1 have been used to test the code on

1. a DEC 3000-400 with operating system OSF/1 V2.0 and using release V3.4-480 of the 77
compiler with the options -O5 and -fast. There are vendor versions of BLAS available on
this platform.

2. a SUN 4 with operating system Sun OS release 4.1.2 and using release SC 1.0 Fortran V1.4
of the f77 compiler with options -O3 -cg89 -dalign. There are no vendor version of BLAS
available on this platform.

3. one processor of a CrayMPI/8-128 using release 6.0 (6.52) of the CF77 compiling sys-
tem with default options. There are vendor versions of BLAS available on this platform.

Thedouble precisiowersion of MA46 was used on the DEC 3000-400 and SUN 4 and the single
precision version was used on the CraylF. The pseudo-random number generafd4from

the Harwell Subroutine Library [2] was used to generate values for the elemditieraaihatri-

ces and the right-hand sides. Each problem was run enough times for each combination of options
to take at least one second and the average CPU times in seconds are reported.

13
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Table 5.2:  Results from MA46A using default value O for ICNTL(5).

Problem Number of Number of Number of Size of factorization Stack size
variables  assemblies supernodes (thousands) (thousands)
integers reals with without
reordering reordering

1 10,110 791 828 98 2,196 756 2,059
2 2,694 86 163 15 267 80 177
3 2,859 98 192 19 361 204 235
4 2,996 398 657 18 111 19 39
5 3,222 382 510 11 69 23 28
6 18,010 929 1,653 136 2,825 991 1,545
7 4,368 152 271 40 1,167 793 971
8 1,038 101 112 6 61 30 47
9 2,208 293 293 10 73 10 42
10 3,416 274 401 22 223 87 110
11 691 117 126 4 26 31 36
12 5,882 499 956 44 489 197 242
13 15,449 564 1,051 150 5,522 3,763 5,180
14 2,508 811 811 15 64 12 34

Table 5.3: Results from MA46A, ICNTL(5)=-1 and ICNTL(5)=4.

ICNTL(5)=-1 ICNTL(5)=4
Problem Number of Numberof Size of factorization Number of Numberof Size of factorization
assemblies supernodes (thousands) assemblies supernodes (thousands)
integers reals integers reals

1 797 836 98 2,157 783 829 98 2,167
2 86 163 14 236 86 165 14 248
3 101 192 19 341 100 192 19 357
4 385 656 19 113 394 657 19 117
5 514 514 1 68 382 510 1 69
6 942 1,673 137 2,783 903 1,634 134 2,732
7 152 271 39 1,093 152 271 40 1,167
8 103 113 6 61 103 112 6 61
9 293 293 10 73 292 293 10 74
10 274 400 22 223 273 399 22 224
1 117 127 4 25 114 126 4 26
12 499 956 44 493 499 956 44 510
13 562 1,051 150 5,420 566 1,051 150 5,476
14 810 810 15 64 794 794 16 69

5.1 Matrix analysis options
Our first experiments concern the matrix analysis options of MA4GAh&Ve run the test prob-
lems for each of the options:

(1) standard minimum external degree, ICNTL(5)<0,
(2) multiple minimum external degree, ICNTL(5)=0, the default, and
(3) relaxed multiple minimum external degree, ICNTL(5)>0,

14
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Table 5.4:  Timing results from MA46A, CPU-seconds on DEC 3000-400.

Problem ICNTL(5)=-1 ICNTL(5)=0 ICNTL(5)=4

1 0.39 0.37 0.36
2 0.23 0.23 0.23
3 0.29 0.29 0.29
4 0.15 0.14 0.14
5 0.12 0.12 0.12
6 0.19 0.17 0.16
7 0.13 0.12 0.12
8 0.09 0.08 0.09
9 0.13 0.13 0.13
10 0.23 0.23 0.23
1 0.06 0.05 0.05
12 0.32 0.32 0.32
13 0.51 0.47 0.47
14 0.19 0.18 0.19

to see the é&ct on the number of block factorization steps and assembly steps; the size of the
index information, the triangular factors, and the working stack; and on the CPU ainhe 512
shows the results from MA46A for the default value of ICNTL(5).

We see from able 5.2 that the number of supernodes is often below 10% of the total number of
variables. High percentages are often found for problems that are mainly assembled from bar and
beam elements, such as the problems 5, 8, 9114hd 14.

The number of assembly steps is for most problems between 50-75% of the number of super-

nodes. Finite-element problems for which the value is higher usually have a high element-to-node

ratio. The most obvious example is problem 14 where there are more elements than nodes in the
finite-element mesh. The problems 1, 8, 9 ahdllLhave a relatively high element-to-node ratio

and this is reflected in the number of assembly steps being greater than 75% of the number of
supernodes.

For all the problems, we find that the number of indices stored to represent the triangular factors is
small compared with the number of reals for the triangular factors themselves.

In the final two columns ofdble 5.2, we show the stack sizes with and without reordering of the
children of each node. ®found that the additional CPU time for this reordering is negligible (not
measurable within the uncertainty of the timer). It is clear that this reordering is very worthwhile.

Table 5.3 shows the results from MA46A with the options ICNTL(5)=-1, 4. For almost all the
problems, the number of assembly steps, the number of supernodes and the number of indices
stored do not diér much from the values shown ialile 5.2.

We conclude that the options forféifent forms of the minimum-degree algorithm do not have a
big efect on these quantities. None of the algorithms is consistently better than the other two.

Table 5.4 shows the CPU-time consumptions in MA46A for the three forms of the minimum-

15
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Table 5.5: The efect of block size on factorization time. Results from DEC 3000-400.

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS
ICNTL(8)=-1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64
DXML F77BLAS DXML F77BLAS DXML F77BLAS DXML F77 BLAS
Problem BLAS BLAS BLAS BLAS

1 98.24 95.21 42.39 54.97 42.63 46.60 34.07 42.94
2 3.1 2.67 1.96 2.14 1.86 2.04 1.94 2.07
3 6.68 6.22 3.47 3.82 3.32 3.75 3.29 3.73
4 0.66 0.60 0.59 0.55 0.59 0.54 0.59 0.54
5 0.34 0.31 0.33 0.29 0.33 0.29 0.33 0.30
6 118.90 115.42 46.14 62.84 55.98 57.20 41.09 50.24
7 59.92 58.48 23.06 30.10 27.35 28.08 20.53 25.65
8 0.49 0.43 0.37 0.35 0.36 0.35 0.37 0.35
9 0.39 0.35 0.36 0.32 0.36 0.32 0.36 0.32
10 2.1 1.87 1.47 1.52 1.42 1.49 1.44 1.49
11 0.18 0.16 0.17 0.15 0.16 0.14 0.17 0.15
12 6.87 6.16 4.20 4.58 3.90 4.37 3.82 4.35
13 540.87 539.02 196.65 341.74 480.86 413.78 214.63 228.92
14 0.35 0.32 0.38 0.32 0.38 0.32 0.38 0.32

Table 5.6:  Solution times. Results from DEC 3000-400.

Problem Number of right-hand sides
NRHS=1 NRHS=3 NRHS=10 NRHS=50
DXML BLAS F77 BLAS DXML F77 DXML F77 DXML F77

BLAS BLAS BLAS BLAS BLAS BLAS

Level 2 Level3 Level2 Level3

1 0.69 1.13 0.62 0.65 1.62 1.29 291 3.58 10.64  17.08
2 0.09 0.15 0.08 0.09 0.21 0.16 0.38 0.42 1.35 1.93
3 0.12 0.20 0.1 0.1 0.28 0.21 0.50 0.55 1.82 2.59
4 0.07 0.1 0.06 0.07 0.17 0.12 0.33 0.30 1.22 1.43
5 0.05 0.07 0.05 0.05 0.12 0.09 0.22 0.21 0.83 1.02
6 0.92 1.52 0.83 0.85 2.14 1.68 3.81 4.55 13.65 21.54
7 0.35 0.67 0.32 0.32 0.91 0.65 153 1.79 5.20 8.61
8 0.03 0.04 0.02 0.03 0.06 0.05 0.12 0.12 0.42 0.57
9 0.04 0.06 0.04 0.04 0.10 0.07 0.18 0.18 0.65 0.83
10 0.10 0.15 0.09 0.09 0.22 0.17 0.41 0.42 151 1.97
1 0.01 0.02 0.01 0.01 0.04 0.03 0.07 0.07 0.25 0.33
12 0.20 0.33 0.18 0.19 0.48 0.36 0.88 0.92 3.27 4.37
13 1.62 2.80 1.46 1.49 3.79 3.38 6.36 10.07 22.64 49.30
14 0.06 0.09 0.05 0.06 0.15 0.10 0.29 0.26 1.08 1.22

external-degree algorithm. It may be seen that tHerdiices are not great.eWave therefore
decided not to &ér the ICNTL(5) < O option to users. The option ICNTL(5)>0 iewd to the

users since there are some problems, often very big problems modelled with solid finite-elements,
where it is better than the default option.
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5.2 Block size and factorization

In this section, we report thefect on the CPU time used to factorize the matricesabfels.1 of
using Level 2 BLAS and Level 3 BLAS with varying block sizes. The options are controlled by
ICNTL(8) and we have limited our trials to the values:

-1 Level 2 BLAS,

0 Level 3 BLAS without blocking,
32 Level 3 BLAS with block columns of size less than 32 kbytes, and
64 Level 3 BLAS with block columns of size less than 64 kbytes.

We also consider thefett of using vendesupplied BLAS. The most important BLAS routines
for MA46B and MA46C are _TRSM and _GEMM. In the Fortran 77 versions, we have made the
following modifications in order to improve their performance: _TRSM has been modified to use
level-two unrolling in its inner loop:
DO82, | =K+ 1, M
B(1,J) = B(l,J) - TEMP1*A(I, K)

B(1,J+1) = B(l,J+1) - TEMP2*A(I, K)
82  CONTI NUE

and _GEMM has been modified to use level-eight unrolling in its inner loop:
DO 78, | =1, M
c(1,J) =C(1,Jd) + TEMPL*A(l, L) + TEMP2*A(I, L+1)

& + TEMP3*A(I, L+2) + TEMP4A*A(I, L+3)

& + TEMP5*A(I, L+4) + TEMP6*A(I, L+5)

& + TEMP7*A(I, L+6) + TEMP8*A(I, L+7)

78  CONTI NUE

The choice of unrolling level is dependent of the computer architecture. For MA46, the two above

code segments give the best performance on DEC 3000-400 and SUN 4.

The results from runs on the DEC 3000-400 are summarizeabiesr5.5 and 5.6. Here and in
Tables 5.7, 5.8 and 5.9, we show the best result for each problem in bold. The columns labelled
DXML BLAS show the results when the venesupplied versions of the BLAS routines are used

and the other columns show the results of using our modified Fortran 77 source. On this machine,
the size of the local cache memory is 64 kbytes and we therefore expect the option ICNTL(8)=64
to perform best. Using the Fortran 77 BLAS, this option is the be&téages and is very near the

best (within 8%) in all the others.

On the smaller problems, we must expect that all the fully assembled columns will often fit into
the cache anywago blocking will have little ééct. In fact, with no blocking, some overheads in
the factorization routine are avoided, but tHeafon timing is not great. These remarks may be
verified in the table.

It may also be seen imable 5.5 that the vendsupplied Level 3 BLAS outperform the Fortran
Level 3 BLAS for most of the bigger problems. For the smaller problems our modified Fortran 77

17
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Table 5.7:  The efect of block size on factorization time, and average solution times for NRHS=3.
Results from SUN 4.

Factorization time Solution time
Level 2 BLAS Level 3BLAS Level 3BLAS Level 3BLAS Level 2 BLAS Level 3BLAS
Problem ICNTL(8)=-1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64

1 404.73 331.34 239.36 241.49 2.40 2.23
2 18.54 13.00 12.24 1241 0.29 0.25
3 33.89 24.76 21.36 21.61 0.40 0.34
4 3.41 3.09 3.17 3.07 0.21 0.17
5 1.79 1.58 1.58 1.60 0.14 0.12
6 490.75 394.59 297.22 299.56 3.29 2.97
7 238.70 194.06 142.15 143.75 1.13 1.1
8 2.60 2.14 2.13 2.14 0.08 0.07
9 2.02 1.77 1.81 1.79 0.13 0.10
10 11.70 9.04 8.61 8.62 0.30 0.26
1 1.04 0.91 0.89 0.88 0.05 0.04
12 40.54 30.12 25.68 25.80 0.65 0.56
13 1951.39 1607.49 1589.05 1149.34 15.20 9.31
14 1.84 1.82 1.77 1.74 0.16 0.14

Table 5.8: The efect of block size on factorization time. Results from CraMR

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS
ICNTL(8)=-1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64

Cray F77 Cray F77 Cray F77 Cray F77
Problem BLAS BLAS BLAS BLAS BLAS BLAS BLAS BLAS

1 6.35 10.19 6.33 8.59 7.71 8.90 6.82 8.44
2 0.48 0.72 0.49 0.70 0.49 0.71 0.49 0.71
3 0.74 1.13 0.74 1.04 0.77 1.06 0.75 1.04
4 0.23 0.32 0.25 0.37 0.25 0.37 0.25 0.37
5 0.17 0.23 0.18 0.27 0.18 0.27 0.18 0.27
6 7.92 12.52 7.60 10.67 9.86 11.13 8.33 10.63
7 3.76 5.75 3.54 4.79 4.56 4.98 3.91 4.78
8 0.12 0.17 0.12 0.18 0.12 0.18 0.12 0.18
9 0.16 0.22 0.17 0.25 0.17 0.25 0.17 0.25
10 0.42 0.61 0.44 0.65 0.45 0.66 0.44 0.65
11 0.06 0.08 0.07 0.10 0.07 0.10 0.07 0.10
12 0.98 1.48 1.00 1.46 1.04 1.49 1.01 1.46
13 28.35 42.84 26.62 34.53 61.05 43.55 36.06 34.73
14 0.17 0.23 0.19 0.28 0.20 0.28 0.20 0.28

source is competitive which seems to indicate that the vendor was concentrating on performance
for bigger cases.

From Table 5.5, we see that the results with Level 2 BLAS were almost always worse and often
significantly worse than those with Level 3 BLAS. Except for problem 14 where the Level 2
BLAS are as fast as Level 3 BLAS, for no case was the best time obtained with Level 2 BLAS.

In order to study the fect of vendorsupplied Level 3 BLAS more carefullwe have tabulated
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Table 5.9:  Average solution times for NRHS=3. Results from CrayiF¥

Level 2 BLAS Level 3 BLAS

Cray F77 Cray F77

Problem BLAS BLAS BLAS BLAS
1 0.069 0.133 0.060 0.099
2 0.014 0.026 0.01 0.017
3 0.016 0.031 0.013 0.021
4 0.025 0.059 0.017 0.031
5 0.020 0.047 0.013 0.025
6 0.106 0.219 0.092 0.153
7 0.031 0.054 0.028 0.043
8 0.006 0.013 0.005 0.008
9 0.013 0.030 0.009 0.016
10 0.021 0.045 0.016 0.027
11 0.005 0.012 0.004 0.006
12 0.045 0.099 0.033 0.058
13 0.130 0.224 0.118 0.179
14 0.026 0.065 0.017 0.033

the solution times for dérent number of right-hand sides iable 5.6. It can be seen that our
Fortran BLAS are faster than DXML BLAS when there are few right-hand sides and that the
opposite is true when there are many right-hand sides.

Results for the SUN 4 are shown iable 5.7. Here we find that ICNTL(8)=64 is best or near best
in all cases. ¥ndor supplied BLAS were not available on this machine and only Fortran 77 BLAS
were used.

Results for the Cray-WIP are shown in dbles 5.8 and 5.9. This computer does not use cache
memory and we therefore do not expect blocking to be helpfubbte®.8, we can see that this
indeed is the case. The vendor versions of BLAS are usually better here. An exception is for prob-
lem 13 where our modified Fortran 77 source is better than the vendor versions for ICNTL(8)=32,
64, but the best performance is obtained for the unblocked Level 3 BLAS when vendor supplied
BLAS are used. For the Craye also see that Level 2 BLAS are competitive with Level 3 BLAS.
Level 2 BLAS are best for the smaller problems and Level 3 BLAS are best for the bigger prob-
lems, but with small mgins in both cases.able 5.9 shows a comparison between Level 2 and
Level 3 BLAS for the solution step. NRHS was set to 3 and we have reported the average solution
times. W can see that vendor supplied Level 3 BLAS are consistently the best on all the prob-
lems.

We conclude that the block strategy of MA46B works as expected on the probleaideob1l

on all the three platforms we considerece Wave decided not tofef the Level 2 BLAS option

to users because its performance is inferior to the Level 3 BLAS option except for small problems
on the Craywhere the dference is slight.

The most important BLAS routines in MA46B are _ TRSM and _ GEMM and we recommend that
vendor supplied versions of at least these two should be used when available.
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Table 5.10: Comparison between MA37 and MA46. CPU-time consumptions for MA37 divided by the
best corresponding results for MA46.

DEC 3000-400 SUN 4 Cray Y-MP

Problem Analyse Factorize Solve Analyse Factorize Solve  Analyse Factorize Solve

1 13.73 3.67 1.53 11.49 2.02 1.19 6.99 3.18 1.32
2 4.37 2.57 1.44 3.63 1.79 1.05 2.07 4.1 1.37
3 4.34 2.90 1.59 3.62 2.06 1.10 2.08 3.93 1.35
4 2.29 2.71 1.16 1.85 2.03 0.92 1.47 3.25 0.91
5 2.28 2.22 0.94 1.98 1.72 0.83 1.42 3.18 1.01
6 29.82 10.07 2.18 21.61 4.85 3.57 16.17 5.73 1.56
7 21.74 4.81 1.79 18.29 2.46 1.18 10.95 3.59 152
8 3.22 2.72 1.36 2.92 1.92 1.04 1.70 4.53 1.13
9 2.48 2.48 1.06 212 1.83 0.92 1.46 3.71 1.02

10 3.33 2.73 141 2.88 1.99 1.06 1.73 4.02 1.27
1 2.26 2.41 0.80 2.19 1.78 0.82 1.36 4.03 0.99
12 2.93 4.77 1.65 2.35 3.00 1.20 1.64 3.81 1.1
13 19.09 3.71 1.60 15.84 2.16 1.98 9.67 2.77 1.46
14 0.87 1.61 0.79 0.86 1.24 0.68 0.66 2.19 0.79

Table 5.11: Comparison between MA37 and MA46 on the number of indices anticipated in analyse and
stored in factorize for each problem. Also compared is the length of the array for the
triangular factors and stack as anticipated in analyse and needed in factorize. The results are
obtained on DEC 3000-400. Default options are used for both packages.

ANALYSE FACTORIZE
Size of factorization (thousands) Size of factorization (thousands)
integers reals, including stack integers reals, including stack
Problem  MA46 MA37 MA46 MA37 MA46 MA37 MA46 MA37

1 98 201 4,820 4,848 108 201 4,854 4,839
2 15 29 565 563 18 29 570 566
3 19 39 851 903 22 39 858 907
4 19 40 231 279 21 40 235 281
5 1 24 149 154 15 24 152 156
6 136 296 6,156 10,781 154 296 6,211 10,445
7 40 82 2,719 3,395 44 82 2,738 3,355
8 6 13 135 153 7 13 136 154
9 10 21 149 198 13 21 153 199
10 22 47 480 541 26 47 485 542
1 4 8 68 83 5 8 69 84
12 44 94 1,100 1,465 50 94 1,118 1,451
13 150 307 12,476 14,815 166 307 12,545 14,713

14 16 32 133 133 18 33 135 135
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5.3 Comparison with MA37

To evaluate the @€iency of the new code we have compared it to the MA37 package [7] from the
Harwell Subroutine Library [2].

The main diferences between MA37 and MA46 are that MA37:

(a) creates an explicit graph structure based on variables and an assemlfi@drdaattrix,

(b) makes no use of Level 2 and Level 3 BLAS in the computationally expensive parts of the
code,

(c) always holds both row and columns indices of frontal matrices, and

(d) does not reorder siblings in the tree to reduce the size of the stack.
Our numerical experiments were run with default options for both codefiawe always com-
pared MA37 to the best result for MA46, regardless if this result was obtained with vendor ver-
sions of the BLAS or with our modified Fortran 77 BLAS. This applies for DEC 3000-400 and
Cray Y-MP. MA37 does workspace compressions in the AMBE and RCTORIZE steps only
when this is necessary and in the tests we made sure that the integer and real work arrays were
great enough to avoid this.eMid not make provisions to avoid workspace compressions in the
ANALYSE step of MA46, and theAETORIZE step of MA46 always does a compression of the
workspace after a block factorization step is finished.

Table 5.10 shows the CPU-time consumptions on all three computers for MA37 InNYA¥AL
FACTORIZE and SOVE divided by the corresponding results obtained by MA46 and shown in
Tables 5.5, 5.6, 5.7, 5.8 and 5.9 respectively

We see that MA46 is faster than MA37 in all the three steps for most of the problems considered
on all three computers. In ANMSE, only problem 14 is performed faster by MA37 than MA46.
The reason is that this is a problem with many elements, which makes theYSHEAdtep of

MA46 expensive. In KCTORIZE, MA46 performs better than MA37 for all the problems.

Table 5.1 shows a comparison between MA46 and MA37 on the size of the integer array needed
for the triangular factors, and the length of the work array neededdm®RIZE. We show both

the sizes anticipated by ANAISE on the assumption of no interchanges and the actual sizes.
Almost all the results favour MA46. The ordering routine of MA37 is a standard minimum degree
ordering that is comparable with the one obtained for ICNTL(5)=-1 in MA46 except that it uses
true degree instead of external degree. The results from the analysis obtained by MA37 on the
problems reflects this since they are like the results showahble B.3. The diérence in the

length of the work array for the two routines must therefore be attributed to the requirement for
the stack that is needed in MA37B. This is consistent with the results showhlen5[2 where

we saw that the stack was muclgkrwithout reordering of siblings.

We have recorded the numerical errors in the resulting solution and due to the fact that MA46
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Table 5.12: Comparison between MA37 and MA46 on the relative numerical errors. The results are
obtained on DEC 3000-400. Default options are used for both packages.

right-hand side 1 right-hand side 2 right-hand side 3
B(i,1)=i B(i,2)=1 B(i,3)=[-1,1]
Problem MA46 MA37 MA46 MA37 MA46 MA37
1 4.3E-14 2.4E-13 3.9E-14 2.2E-13 4.7E-14 2.8E-13
2 1.3E-14 4.8E-14 1.2E-14 4.6E-14 2.1E-14 7.6E-14
3 3.1E-14 7.4E-14 2.4E-14 1.3E-13 3.9E-14 1.2E-13
4 7.8E-15 5.9E-14 2.6E-14 5.6E-14 7.1E-15 4.4E-14
5 6.5E-15 1.2E-14 9.7E-15 2.3E-14 8.5E-15 3.7E-14
6 2.5E-13 3.6E-13 7.6E-14 2.6E-12 4.8E-13 2.8E-12
7 4.5E-14 3.3E-13 7.3E-14 3.7E-13 6.3E-14 2.4E-13
8 6.4E-15 3.9E-14 9.7E-15 6.7E-14 8.0E-15 1.9E-14
9 3.0E-14 3.5E-14 9.4E-15 4.1E-14 6.0E-15 1.9E-14
10 1.4E-14 1.2E-13 1.3E-14 3.9E-14 2.7E-14 4.4E-14
1 1.6E-14 3.1E-14 2.5E-14 1.9E-14 1.0E-14 2.4E-14
12 1.8E-14 1.1E-13 2.9E-14 1.4E-13 3.2E-14 1.4E-13
13 1.1E-13 4.1E-13 1.6E-13 1.6E-12 1.6E-13 9.7E-13
14 1.0E-14 8.5E-14 1.2E-14 4.9E-14 6.9E-15 4.7E-14

always chooses the tgst element in a column as the next pivot, we get reduced errors compared
with MA37. The reduced error in the solution for MA46 over MA37 is maintained on all the three
platforms that we consideredafile 5.12 shows the errors as computed on DEC 3000-400 for
three vectors stored i, i.e. NRHS=3, with componentsiB() =i, B(, 2) = 1, and B( 3) a
pseudo-random number in [-1,1] generated by the Harwell Subroutine LibraryAQ4¢2F.

The relative numerical errors are computed as:

_ Ib-Ax|

€ = TIAK (5.1)

where the max norm is used dnd refer to one column iB andX, respectively

6 Summary and conclusions

This report has described the implementation of a new code for the solution of sets of linear equa-
tions where the matrices and the structure are of finite-element foemhawé given a brief
description of the input philosophy and the design of the code. The numerical experiments show
that the code performs well and that it is faster than the code MA37 from the Harwell Subroutine
Library [2].
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Appendix A. Auxiliary r outines and data structues used in MA46

This appendix describes the auxiliary routines and the main internal data structures of the MA46
package. The package consists of two set of subroutines MA46 and MA56. The former includes

the usercallable routines along with auxilliary routines, while the latter includes only auxilliary
routines needed by the package.
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Tables A.1 and A.2 list the auxiliary routines of the MA46 package and explain their tasks.

Table A.1: The MA46* auxiliary routines.

Routine Task

MA46D Given a permutation, it computes the inverse permutation.

MA46E Given an element-node connectivity structure, it computes the corresponding node-element
connectivity structure.

MA46F It computes a minimum-degree ordering of the nodes.

MA46G It computes the nodal elimination tree and the corresponding postordering.

MA46H It computes the length of each nodal column in the triangular factorthe row length of the

triangular factotJ.

MA46J Given the nodal postordered elimination tree and the column length of the triangulak féctor
computes the corresponding fundamental supernode partition of the nodes. It also computes
the adjacency set representation of the supernode elimination tree.

MA46K Given the supernode elimination tree, it computes an optimal or a standard depth-first pos-
torder of the supernode elimination tree.

MA46L It updates the permutation and the supernode elimination tree after a depth-first search of the
supernode elimination tree as performed by MA46K.

MA46M It computes the number of assembly steps, the assembly sequence of the elements, the element
assembly tree, and does the final updates of the permutation vectors and the supernode parti-
tion. In addition it computes factorization statistics.

MA46N It performs a symbolic assembly step of generated elements in a block elimination step.

MA460 It performs a symbolic assembly step of original finite elements in an assembly step.

MA46P It finalizes the index information needed for a supernode in a block elimination step.

MA46Q It performs codicient assembly of generated elements into the frontal matrix in a block elimi-
nation step.

MA46R It performs codfcient assembly of original finite elements into the frontal matrix in an assem-
bly step.

MA46S It performs pivot search in a block elimination step.

MA46T It prints triangular factors to standard output unit defined by ICNTL(2).

MA46U It performs the block forward substitution steps of the right-hand sides.

MA46V It checks the forward solved right-hand sides for consistency with the matrix system in case of
a rank deficient system.

MA46W It performs the block backward substitution steps of the right-hand sides.

MA46X Called from MA46T to print an M times N matrix to standard output defined by ICNTL(2).

MA46Y It copies an integer vector from vector IX to vector IY

MA46Z It updates the permutation given a permutation increment.
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Table A.2:

Routine
MAS56A
MA56B
MA56C
MA56D

MAS6E
MAS6F

MAS6G

MAS56H

MAS6I

MA56J
MAS56K

MAS6L

MAS56M
MAS6N
MA560

MAS56P

RAL-TR-96-010

The MA56* auxiliary routines.

Task
It initializes data structures for the minimum-degree routine.
It updates the graph representation due to the elimination of a minimum-degree node.
It updates the degree of nodes after a multiple elimination step in the minimum-degree routine.

After the nodes are eliminated in the minimum-degree routine, it computes the final permuta-
tion of the nodes.

It computes the nodal elimination tree.

It computes the first child-sibling vectors of the nodal elimination tree to facilitate fast postor-
dering of the tree.

It postorders the nodal elimination tree by a depth-first search and computes the corresponding
permutation increment

It updates the permutation with the increment computed by the depth-first search of the nodal
elimination tree.

It computes the adjacency set representation of an elimination tree represented as a parent vec-
tor.

It sorts a list of integers in decreasing order of their keys using insertion sort.

It computes the stack storage for a non-trivial supernode, i.e. an updated postordering of the
supernode elimination tree.

Given the information computed by MA56K, it computes a postordering of the supernode
elimination.

It sorts a list of integers into ascending order
It compresses lists held by MA56B for the generated elements and adjusts the pointers.

It computes the leftmost unexplored children of a node in an elimination tree in connection
with depth-first search of the tree.

It computes the right sibling of a child in an elimination tree in connection with depth-first
search of the tree.
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Tables A.3, A.4 and A.5 show the structure of the calls in MA46A, MA46B and MA46C, includ-
ing the calls to the BLAS routines that are used in the package.

Table A.3: Structure of the calls in MA46A.

User called 1. Level 2. Level 3. Level
MA46A [ MA46D
MA46E
MA46F —| MAS6A
MA56B — MAS56N
MA56C
MAS56D
MA46G | MAS6E
MAS6F
MA56G
MA56H
MA46H
MA46J | MAS56I
MA46K —] MA56J
MAS56K — MA46Y
MAS56L — MAS560
L——  wmasep
MA46L ] MA46D
MA46Y
MA56M
MA46Z
MA46M
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Table A.4: Structure of the calls in MA46B.

User called 1. Level 2. Level

MA46B ] MA46D

MA46N

MA460

MA46P

MA46Q

MA46R

MA46S — I_AMAX

_SCAL

_GER

_TRSM

_GEMM

MA46T — MA46X

Table A.5: Structure of the calls in MA46C.

User called 1. Level 2. Level
MA46C | MA46T — MA46X
MA46U | _TRSM
1 GeEmMm

MA46V
MA46W — _GEMM
—— | _TRSM
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Table A.6 defines the parameter array MiIRRhat is stored in the first 50 locations of KEEP

Table A.6:

Location

© 00N O WN B

NNVNRNRNNMNNNNNRRRRRRRRPR R
O ~NOOARWNRPRLOWOO®®~NO®OMWNRERPO

29
30
31

Definition of the sub array MMER stored in the first 50 locations of KE&PThe length of
MNPAR currently in use is 31.

Name

STAGE
NB
NSUPER
NACTIV
NACTEQ
NNODS
NEQNS
NELS
NELNOD
NCOMPR
MAXSUP
MAXFRT
NOFSUB
NZEROU
NZSTCK
DPSTCK
KPUSED
MAXLIW
NELACT
LKEEPB
LFACT
LKEEPB
LFACT
TPSTCK
MAXFRT
MAXSUP
NOFSUB
NZEROU

NZSTCK
NELIMS
MAXLAW

Definition

Stage control.

Number of assembly steps.

Number of block factorization steps.

Number of nodes that is active ascomputed by MA46A.

Number of equations as computed by MA46A.

Number of nodes as input by the user

Number of equations as input by the user

Number of elements as input by the user

Length of the implicit graph representation arrays.

Number of workspace compressions performed by MA46F

The lagest supernode as computed by MA46A. (Block factorization node).
Order of the lagest front matrix as computed MA46A.

Number of indices needed to represent the factors as computed by MA46A.
Size of the upper triangular factor as computed by MA46A.

Size of the stack as computed by MA46A.

Depth of the stack.

Length of KEER after MA46A.

The maximum length of IW that was used in MA46A.

Number of elements that actually participate in the assembly

Length of KEEPB as anticipated in MA46A.

Length of FACT for triangular factors and stack as computed by MA46A.
Length of KEEPB after factorization.

Length of FACT for triangular factors.

Top of the stack.

Order of the lagest front matrix after factorization.

The lagest supernode after factorization. (Block factorization node).
The number of indices needed to represent the factors.

The number of real storage locations needed to hold the upper triangular fac-
tor U.

The maximal number of real storage locations needed to hold the stack.
Number of eliminations performed by MA46B.
Minimum length of RCT for successful factorization.
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Table A.7 shows the structure of KEEBN exit from MA46A, i. e. the form of the array as
passed to MA46B and MA46C, andfle A.8 explains the contents of each sub-array except for
MNPAR that is explained indble A.6.

Table A.7:

KEEPA

KEEPA

Table A.8:

Sub-array
XELSEQ

ELSEQ

BSPERM

XSUPER
XSIBL

SIBL

SUPLEN

XBLOCK

Structure of KEER on exit from MA46A.

MNPAR

XELSEQ

ELSEQ BSPERM XSUPER

XSIBL

SIBL

SUPLEN XBLOCK

Definition of the sub-arrays that are stored in KEBR exit from MA46A.

Length on entry Length on exit

NNODS+1

NELS

NNODS

NNODS+1
NNODS+1

NNODS+1

NNODS

NNODS+1

NB+1

NELACT

NNODS

NSUPER+1
NSUPER+1

NSUPER+1

NSUPER

NB+1

From Tables A.6 and A.8 we have:
length of KEER on entry to MA46A=NELS+7*NNODS+55, and:
length of KEER on exit from MA46A=NELACT+4*NSUPER+2*NB+NNODS+55.

Definition

Pointer to the list of original finite elements stored in
ELSEQ that are needed in the assembly istiEp
i=1:NB.

The lists of original finite elements that are needed in
each assembly step.

The new to old permutation of the nodes from the final
order of the nodes computed by MA46A to the order of
the nodes as input by the user

The supernode partition related to the variables.

Pointer to the supernode elimination tree adjacency set
that is stored in SIBL for each supernode.

The lists of supernode children belonging to supernode
i, fori=1:NSUPER.

IP=SIBL[NSUPER+1] gives the number of supernodes
that are roots of connected trees in the supernode elimi-
nation tree, and these roots are found in locations
SIBL[NSUPER-IP+1] to SIBL[NSUPER].

The column length of each supernode in the triangular
factorL or the length of each row in the triangular fac-
tor U.

The assembly tree partition of the supernodes. l.e. the
structure of the assembly tree.
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Tables A.9 shows the structure of KEEPB on exit from MA46B, aidelTA.10 explains the con-
tent of each sub-array

Table A.9:

KEEPB

Structure of KEEPB on exit from MA46B.

XFINDX FINDX

Table A.10: Definition of the sub-arrays that are stored in KEEPB on exit from MA46B.

Sub-array
XFINDX

FINDX

Length on entry Length on exit  Definition

NSUPER NSUPER XFINDX[i] points to the start in FINDX for the index
information stored for supernode, or block elimination
stepi.

FLIMIT2 MAXSUBP See HBble A.1 for a definition of the quantities that are

stored for each supernode, or block elimination step.

a. FLIMIT=3*NSUPER+NOFSUB+NACTEQ), see the explanation of these quantities in Table A.6.
b. For a diagonally dominant matrix we have MAXSUB=3*NSUPER+NOFSUB where NSUPER and MAX-
SUB are as anticipated by MA46A.

Table A.11:

Initial, intermediate and final structure of FINDX for supernode, or block eliminatiom step
in routine MA46B.

A[i]

B[i]

Cli] Row indices fori] Column indices fori]

Ali]

B[i]

Ci]

Row indices fori]

(i) it is set to the anticipated size of the front matrix for supernadecomputed in

MA46A.

(i) after symbolic assembly of generated element indices it is updated with the number
of delayed eliminations received from its incoming children, i.e. it holds the active size
of the new frontal matrix. If at least one child had negative valueabi |4, then Af] is

also negated to signal that column indices for the variables in the supernode need be
stored as well as the row indices.

(iii) after numerical eliminations in supernodi¢ is not changed if A] was already set

to a negative value in step (ii), if it was positive from (ii) it is set to a negative value if at
least one dfdiagonal pivot was selected.

(i) it is set to the anticipated number of delayed eliminations to be received from the chil-
dren of the supernode, i.e.iB{0.

(ii) after symbolic assembly of generated elements it is incremented with the total
number of delayed eliminations that have been received from its incoming children
which is its final form.

(i) it is set to the size of the supernode, i.e. to the number of eliminations to be performed
in the supernode, i.e. GEXSUPER]+1]-XSUPERJ].

(ii) after symbolic assembly it is set to the number of indices found .so far
(iii) after elimination it holds the number of eliminations performed.

After elimination of supernode, or block elimination stégholds the global row indices
in ascending order for the supernode and the column of L below the supernode.
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Table A.11: Initial, intermediate and final structure of FINDX for supernode, or block eliminatiom step
in routine MA46B.

Column indices fori] ~ After elimination of supernode, or block elimination sitépis not stored if A is posi-
tive. If A[i] is negative it holds the column indices for the pivots found during the elimi-
nation of the supernode. The number of pivots foundiis C[

[l The block pivot.

[ ] The pivot rows and columns.

[ ] The generated element.

. The row and column indices that are
saved.

Figure A.1: The figure shows a frontal matrix after the eliminations have been carried out and shows the
row and column indices that are saved when at least &d@&gbnal pivot was selected.

32



RAL-TR-96-010

Table A.12 defines the contents &CT on exit from MA46B and Figure A.2 shows the finalized
L andU blocks and indicates the workspace compression that is performed in MA46 after each
supernode, or block elimination step has been carried out.

Table A.12: The contents of &CT on exit from MA46B. Thd./U factors are stored as a sequence of
submatrices.

FACT | L/u[a] o) | wuEr | uuig s | L/U[NSUPER]

[ TheL block.
[ Theu block.

[ ] The generated element.

Figure A.2: ThelL andU blocks of the finalized frontal matrix.

The workspace compression is done as follows: (il thieck is moved from the frontal matrix to

the final storage for supernode submatrices, (ii\uHdock is moved and compressed, and (iii)

the generated element is moved to the new stack top and compressed at the same time. It is the
space between the column of the finalizedlock segments, or between the column segments of

the generated element, that is taken into account and freed after every elimination step.
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Appendix B. The specification document for MA46

In this appendix, we include a copy of the specification document for MA46. The code itself is
available from AEA €chnology Harwell; the contact is Dr Scott Roberts or Mr Richard Lee,
AEA Technology Bldg 552, Harwell, Didcot, Oxon OX10RA, tel (44) 1235 434714 or (44)

1235 435690, Fax (44) 1235 434136, email: scott.roberts@aeat.co.uk or richard.lee@aeat.co.uk,
who will provide details of price and conditions of use.
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@ AEA CLRC
HSL MA46

HARWELL SUBROUTINELIBRARY SPECIFICAION Releasel2 (1995)

1 SUMMARY

To solveone or more set of sparseunsymmetric linear equations Ax =B from finite-element applications,
using a multifrontal elimination scheme.The matrix A mustbeinput by elementsandbe of theform

- ®)
A=SA
2

whereA® is nonzeroonly in thoserows andcolumnsthatcorrespondo variablesof the nodesof the k-th element.
Optionally, the usermay passan additionalmatrix A ; of coefficientsfor the diagonal A is thenof theform

A= AG+A
kZl g
Theright-handside B shouldbe assembledhroughthe summation
B=S B®,

beforecalling the solutionroutine.

ATTRIBUTES — Versions: MM6A, MMGBAD. Calls: MA56, GEMVI _GEMV, _GER, | _AMAX, SCAL, SWAP, _TRSM
_TRSV. Origin: A.C. DamhaugDet NorskeVeritasResearctAS andJ.K. Reid, RutherfordAppletonLaboratory.
Date: Septembefl995.Conditions on external use: (i), (i), (iii) and(iv).

2 HOW TO USETHE PACKAGE

2.1 Argument lists and calling sequences
Therearefour routinesthatcanbe calledby the user:
(a) MAd6l /| D setsdefaultvaluesfor the control parametersor the otherroutines.

(b) MMBA/ AD acceptsthe matrix patternby element-nodeconnectivity lists and choosesdiagonal pivots for
Gaussiareliminationto preservesparsitywhile disregardinghumericalvalues.lt alsoconstructsnformation
for the numericalfactorizationto be performedby MA6B/ BD. The usermay provide a pivot sequenceyy
meansof nodenumbersjn which casethe necessarynformationfor MAM6B/ BD will be generated.

(c) MA46B/ BD factorizesthe finite-elementmatrix A by NB calls, whereNB is the numberof assemblysteps
computeddy routineMA46A/ AD. For all theelementsnvolving anode thevariablesatthenodemustbein the
sameorder.The actualpivot sequencenay differ from that specifiedby MAA6A/ AD or providedby the user,
dueto numericalstability considerations.

(d) MM6C/ CD usesthe factors generatedby MAA6B/ BD to solve the set of linear equations.The solution
overwritesthe right-handside.

Normally, the userwill call MA461 /1 D prior to the call of any otherroutinein the packagelf non-defaultvalues
for any of the control parametersirerequired they shouldbe setimmediatelyafterthe call to MA461 /| D. A call to
MA46C/ CD mustbe precededy a call to MA46B/ BD, whichin turnmustbe precededy a call to MA46A/ AD. Sincethe
information passedfrom one routine to the next is not corruptedby the second,severalsequence®f calls to
MA46B/ BD for matriceswith the samesparsitypatternbut differentvaluesmayfollow asinglecall to MMA6A/ AD, and
similarly MMA6C/ CD canbe usedrepeatedlyto solvefor differentsetsof right-handsidesB.

2.1.1To setdefault valuesfor control parameters

The single precision version
CALL MA461 ( CNTL, | CNTL)

The double precision version
CALL MA461 D( CNTL, | CNTL)

CNTL is aREAL (DOUBLE PRECI SI ONin the D version)arrayof length2 thatneednot be setby theuser.Onreturn
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it containsdefaultvalues.For furtherinformationseeSection2.2.
| CNTL is an| NTEGER arrayof length10 that neednot be sethy the user.On returnit containsdefaultvalues.For
furtherinformationseeSection2.2.
2.1.2To perform ordering and generateassemblytree
The single precision version
CALL MAABA(NELS, NNCDS, NEQNS, | Pl ELT, | ELT, LI ELT, | VAR, NB, KEEPA, LKEEPA,
$ I WLIWICNTL, RINFO | NFO)
The double precision version

CALL MAABAD( NELS, NNODS, NEQNS, | Pl ELT, | ELT, LI ELT, | VAR, NB, KEEPA, LKEEPA,
$ | WLIWICNTL, RI NFO, | NFO)

NELS is anl NTEGER variablethatmustbe setby theuserto thelargestintegerthatis usedto indexafinite element.
It is not alteredby the routine.

NNCDS is anl NTEGER variablethatmustbe setby the userto thelargestintegerthatis usedto indexafinite-element
node.lt is not alteredby theroutine.

NEQNS is anl NTEGER variablethatmustbe setby the userto the numberof variableslt is notalteredby theroutine.

| PILELT isanl NTECGER arrayof lengthNELS+1. It mustbe setby the usersothatthe nodesconnectedo element
arein | ELT(1 PIELT(I)), I ELT(IPIELT(1)+1),..., 1 ELT(I PIELT(I1+1)-1) forl =1,2,... ,NELS. It
is not alteredby theroutine.

| ELT isanl NTEGER arrayof lengthLl ELT thatmustbe setby the userto containthelists of nodesin eachelement.
Its lengthmustbe atleastl Pl ELT( NELS+1) -1. It is not alteredby theroutine.

LI ELT is anl NTEGER variablethatmustbe setby the userto thelengthof | ELT. It is not alteredby theroutine.

I VAR is an| NTEGER arrayof length NNCDS that mustbe setby the user.It givesthe numberof variablesfor each
node.It may containvaluesequalto zero.A node,l, | =1, 2,... , NNODS that has| VAR(1) =0 is not
processedt is not alteredby theroutine.

NB isanl NTEGER variablethatneednot be setby theuser.On exit it holdsthe numberof assemblystepsneeded
to factorthe matrix. This variablemustbe preservedetweenra call to MAA6A/ AD anda sequencef callsto

MA46B/ BD.
KEEPA is anl NTECGER arrayof lengthat leastNELS+7* NNCDS+55. If the userwishesto providean orderingfor the
nodestheindexof thenodein positioni mustbeplacedin KEEPA(i ) ,i = 1,2,... ,NNODSandl CNTL( 4)

mustbe setto 1. The givenorderis likely to be replacedby onethatis equivalentapartfrom reorderingof

additionsandsubtractionsOtherwise KEEPA neednot be setby theuser.On exit, KEEPA containsjn locations
KEEPA(51: 51+NB) , a pointerarrayinto KEEPA for the sequencef finite elementseededn eachassembly
step.For assemblystep,I BL, IBL = 1, 2, ... , NB, theindex of the first elementrequiredby MA46B/ BD is

found in location KEEPA(KEEPA(IBL)+NB+51) and the last element index is found in location
KEEPA( KEEPA( | BL+1) —1+NB+51) . The number of elements neededin assembly step I BL is thus
KEEPA( 50+1 BL+1) —KEEPA( 50+ BL) . KEEPA must be preservedbetweena call to MM6A/ AD and other
routines.

LKEEPA is an| NTEGER variablethatmustbe setby the userto the lengthof KEEPA. It is not alteredby the routine.

I W isanl NTEGER arrayof lengthL| Wthatneednot be setby the user.It is usedasworkspaceby the routine.lts
length must be at least maxl,,l,), where |, = 3*NELS+2* NNODS+4*L| ELT+8* NEQNS+2 (or
NELS+NNCDS+2* LI ELT+2 if the pivot orderis specifiedin KEEPA), andl, = NELS+11* NNODS+2* L| ELT+5.

LI W is anl NTEGER variablethatmustbe setby the userto thelengthof | W It is not alteredby theroutine.

| CNTL isanl NTEGER arrayof length10 thatcontainscontrolparameterandmustbe setby theuser.Defaultvalues
for the componentsnay be setby a call to MA461 / | D. Detailsof the control parametergaregivenin Section
2.2.1t is not alteredby theroutine.

RI NFO is a REAL (DOUBLE PREC! SI ON in the D version)arrayof length6 thatneednot be setby the user.For the
meaningof the valuesof component®f Rl NFO setby MAA6A/ AD, seeSection2.2.

I NFO is anl NTEGER arrayof length16 thatneednot be setby the user.On returnfrom MA46A/ AD, a valueof zero
for I NFQ( 1) indicatesthatthe routine hasperformedsuccessfullyFor nonzerovalues,seeSection2.3. For
the meaningof the valueof othercomponent®f | NFO setby MM6A/ AD, seeSection2.2.
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2.1.3To factorize a matrix

To factorizethe matrix, MA46B/ BD usesreversecommunicationwhich meanghatthe routinemustbe calledby
the userNB times,whereNB is the numberof assemblystepsdeterminecby MM6A/ AD. In eachcall, the usermust
passa specifiedsequencef finite-elementcoefficientmatricesto the routine.

The single precision version

CALL MA46B( 1 BL, NELS, NNODS, | PI ELT, | ELT, LI ELT, | VAR, KEEPA, LKEEPA, KEEPB,
$ LKEEPB, ELMAT, A, LA, AD, LAD, | W LI W CNTL, | CNTL, RI NFO, | NFO)

The double precision version
CALL MA46BD( I BL, NELS, NNODS, | PI ELT, | ELT, LI ELT, | VAR, KEEPA, LKEEPA, KEEPB,

$ LKEEPB, ELMAT, A, LA, AD, LAD, | W LI W CNTL, | CNTL, RI NFO, | NFO)
I BL isanl NTEGER variablethatmustbesetby theuserto the currentassemblystep.Callsto theroutinemustbein
theorderl BL = 1,2,... ,NB. It is notalteredby theroutine.

NELS , NNODS, | PI ELT, | ELT, LI ELT andl VAR areasin the precedingcall to MA46A/ AD andtheir valuesmustnot
havechangedTheyarenot alteredby theroutine.

KEEPA is anl NTEGER arrayof lengthLKEEPA. It mustbeason exit from MAA6A/ AD. It is not alteredby theroutine.

LKEEPA is an| NTEGER variablethat mustbe setby the userto the lengthof KEEPA. It mustbe at leastasgreatas
I NFQ(2) asoutputfrom MA46A/ AD (seeSection2.2). It is not alteredby theroutine.

KEEPB is an| NTEGER array of lengthat leastLKEEPB that neednot be setby the user.It is usedasworkspaceby
MA46B/ BD andon exit holdsintegerindexinformationon the matrix factors.lt mustbe preservedy the user
betweerthe callsto this routineandsubsequentallsto MA46C/ CD.

LKEEPB is an| NTEGER variablethat mustbe setby the userto the lengthof KEEPB. It mustbe at leastasgreatas
I NFQ( 8) asoutputfrom MAMAGA/ AD (seeSection2.2). A greatervalue is recommendedbecausenumerical
pivoting may increasestoragerequirementsit is not alteredby theroutine.

ELMAT is a REAL (DOUBLE PRECI SI ON in the D version)array that must be setby the userto hold the element
coefficientmatricesfor this assemblystep,columnby columnin the sequencalefinedby KEEPA( FI RST) ,
KEEPA(FI RST+1), ..., KEEPA(LAST), where FIRST = KEEPA(IBL)+51+NB and LAST =
KEEPA( | BL+1) +50+NB. It is not alteredby theroutine.

A is a REAL (DOUBLE PRECI SI ONin the D version)arrayof lengthLA thatneednot be seton the first entryto
MA46B/ BD. It mustbe preservedetweerthecallsto MA46B/ BD andfor subsequentallsto MA6C/ CD. Onexit
from eachintermediatecall, Awill holdtheentriesof thefactorsof thematrix A thathavebeencompletedOn
exit from thefinal call, A holdsthefactorsneedecby MA46C/ CD.

LA isanl NTEGER variablethatmustbe setby the userto thelengthof A. It mustbe atleastasgreatas! NFQ( 9)
as output from MAM6A/ AD (see Section2.2). It is advisableto allow a greatervalue becausethe use of
numericalpivoting may increasestoragerequirementslt is not alteredby the routine.

AD isaREAL (DOUBLE PRECI SI ONin the D version)arrayof lengthLAD thatneednotbesetif | CNTL( 10) hasits
defaultvalue(seeSection2.2). Otherwise jts NEQNS first positionsmusthold the coefficientsfor the diagonal
of A. It is assumedy the routine that variablesat nodesare storedconsecutivelyandthat nodesarein the
initial order. MA46B/ BD altersthe order of the entriesaccordingto the tentative pivot order computedby
MA46A/ AD.

LAD isanl NTEGER variablethatmustbesetby theuserto thelengthof AD. It mustbesetto atleastl if | CNTL( 10)
hasits defaultvalue.Otherwisejt mustbe setto a valueasleastasgreatasNEQNS asinputto MAMGA/ AD.

I W isanl NTEGER arrayof lengthLl Wthatneednot be setby the user.It is usedasworkspaceby the routine.

LI W is an | NTEGER variable that must be set by the userto the length of | W It must be at leastas greatas
3* ( NNODS+NEQNS) +1. NNODS andNEQNS areasinputto MM6A/ AD. It is not alteredby the routine.

CNTL is a REAL (DOUBLE PRECI SI ON in the D version)arrayof length2 that containscontrol parametersandmust
be sethy theuser.Defaultvaluesfor the componentsnaybe setby a call to MA461 / | D. Detailsof the control
parametersregivenin Section2.2. 1t is not alteredby theroutine.

| CNTL isanl NTEGER arrayof length10 thatcontainscontrolparameterandmustbesetby theuser.Defaultvalues
for the componentsnay be setby a call to MA461 / | D. Detailsof the control parametergaregivenin Section
2.2.1t is not alteredby theroutine.
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RI NFO is a REAL (DOUBLE PREC! SI ON in the D version)arrayof length6 thatneednot be setby the user.For the
meaningof the valuesof component®f Rl NFO setby MA46B/ BD, seeSection2.2.

I NFO is anl NTEGER arrayof length16 thatneednot be setby the user.On returnfrom MA46B/ BD, a valueof zero
for I NFQ( 1) indicatesthatthe routine hasperformedsuccessfullyFor nonzerovalues,seeSection2.3. For
the meaningof the valueof othercomponent®f | NFO setby MM6B/ BD, seeSection2.2.

2.1.4To solveequations,given the factorization
The single precision version

CALL MA46C( 1 VAR, NNODS, KEEPA, LKEEPA, KEEPB, LKEEPB, A, LA, B, LDB, NRHS,
$ | WLIWRW LRW | CNTL, | NFO)

The double precision version

CALL MA46CD( | VAR, NNODS, KEEPA, LKEEPA, KEEPB, LKEEPB, A, LA, B, LDB, NRHS,
$ [ WLI'WRWLRW I CNTL, | NFO)

NNCDS and| VAR areasin the precedingcall to MM6A/ AD andtheir valuesmustnot havechangedThey are not
alteredby theroutine.

KEEPA is an | NTEGER array of length at leastLKEEPA. The first | NFQ(2) componentsnustbe ason exit from
MA46B/ BD.

LKEEPA is an| NTEGER variablethat mustbe setby the userto the lengthof KEEPA. It mustbe at leastasgreatas
I NFQ(2) asoutputfrom MA46A/ AD (seeSection2.2). It is not alteredby theroutine.

KEEPB is an | NTEGER array of length at leastLKEEPB. The first | NFQ(8) componentanustbe ason exit from
MA46B/ BD.

LKEEPB is an| NTEGER variablethat mustbe setby the userto the lengthof KEEPB. It mustbe at leastasgreatas
I NFQ( 8) asoutputfrom MA46B/ BD (seeSection2.2). It is not alteredby theroutine.

A is a REAL (DOUBLE PRECI SI ON in the D version)arrayof lengthLA that mustbe unchangedincethe call to
MA46B/ BD. It is not alteredby theroutine.

LA isanl NTEGER variablethatmustbe setby the userto thelengthof A. It mustbe atleastasgreatas! NFQ( 9)
asoutputfrom MA46B/ BD which maybesmallerthanpredictedn MAA6A/ AD (seeSection2.2).1t is notaltered
by theroutine.

B is a REAL (DOUBLE PRECI SI ONin the D version)array of leadingdimensionLDB, whosefirst NRHS columns
must be set by the userto hold the right-handsides.It is assumedhat the right-handside is passedo
MA6C/ CDin the input nodeorderwith the variablesat eachnodestoredconsecutivelyOn exit, the solution
overwritesthe right handsideandthe initial nodalorderwith variablesat eachnodestoredconsecutivelyis
maintained.

LDB isanl NTEGER variablethatmustbe setby theuserto theleadingdimensiorof B. It mustbeatleastasgreatas
NEQNS. It is not alteredby theroutine.

NRHS is anl NTEGER variablethatmustbe setby the userto hold the numberof right handsidesto be solvedin this
call to MM6C/ CD. It is not alteredby theroutine.

I W isanl NTEGER arrayof lengthLl Wthatneednot be setby the user.It is usedasworkspacéey theroutineand
mustbe preservedetweerthe callsto theroutine.

LI W is an | NTEGER variable that must be set by the userto the length of | W It must be at leastas greatas
NNCODS+NEQNS+1. NNODS andNEQNS areasinputto MM6A/ AD. It is not alteredby theroutine.

RW isaREAL (DOUBLE PRECI SI ONin theD version)work arrayof lengthasleastasgreatasl NFQ( 15) asoutput
from MA46B/ BD, thatneednot be setby the user.lt is usedasworkspaceby the routine.

LRW is anl NTEGER variablethatmustbe setby the userto thelengthof RW It is not alteredby theroutine.

| CNTL isanl NTEGER arrayof length10 thatcontainscontrolparameterandmustbesetby theuser.Defaultvalues
for the componentsnay be setby a call to MA46I / | D. Detailsof the control parameteraregivenin Section
2.2.1t is not alteredby theroutine.

I NFO is anl NTEGER arrayof length16 thatneednot be setby the user.On returnfrom MA46C/ CD, a valueof zero
for I NFQ( 1) indicatesthatthe routine hasperformedsuccessfullyFor nonzerovalues,seeSection2.3. For
the meaningof the valueof othercomponent®f | NFO setby MM6C/ CD, seeSection2.2.
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2.2 Arrays for control and information

The elementwf the arraysCNTL and| CNTL controlthe actionof MA6A/ AD, MA46B/ BD andMA46C/ CD. Default
valuesfor theelementsaresetby MA461 / | D. Theelementof thearraysRl NFOandl NFO provideinformationonthe
actionof MM6A/ AD, MM6B/ BD andMA46C/ CD.

CNTL(1) hasdefaultvalue0.1andis usedfor pivoting by MA46B/ BD. Valuesgreaterthanl.0 aretreatedas1.0and
lessthanzeroaszero.

CNTL(2) hasdefaultvaluezero.If it is setto a positivevalue,MA46B/ BD will treatany pivot whosemodulusis less
thanCNTL(2) aszero.

| CNTL(1) hasdefaultvalue6 andholdsthe unit numberto which the errormessagearesent.
| CNTL(2) hasdefaultvalue6 andholdsthe unit numberto whichwarningmessageandadditionalprinting is sent.
| CNTL(3) is usedby theroutinesto control printing. It hasdefaultvalue 1. Possiblevaluesare:

0 No printing.

1 Errormessagesnly.

2 Errorandwarningmessagesnly.

3 Scalarparametersainda few entriesof arrayson entry andexit from routines.

4  All parameteraluesprintedon entryandexit from routines.

| CNTL(4) hasdefaultvalueO. It mustbe setby the userto avalueof 1 whencalling MAM6A/ ADif a pivot sequence
is beingsuppliedby the userin array KEEPA.

| CNTL(5) hasdefaultvalueO. This optionis relatedto the nodeorderingstepof MAMBA/ AD. If thevalueis zeroor
less,the minimum externaldegreealgorithmis used.Multiple eliminationis usedwhenthe valueis zero.If
valueis greaterthanzero,multiple eliminationis still in effect, butthe minimumexternaldegreeconditionis
relaxed(seeSection4).

| CNTL( 6) hasdefaultvalue 0. With this value, MM6A/ AD reordersthe assemblystepsto reducethe temporary
working storagerequiredby MA46B/ BD while computingthe triangular factors. If | CNTL(6) is setto 1,
MA46A/ AD usesa standarddepthfirst postorderingof the assemblysteps.

| CNTL( 7) hasdefaultvalueO. It is ignoredin the presentversion,buttheintentionis for alaterversionto havethe
option of amalgamatingreenodesinto supernodesgvenif this introducesadditionalstructuralzeros.

| CNTL( 8) hasdefaultvalue64. MA46B/ BDis written to makegooduseof the cachememoryif its sizein kBytesis
ICNTL(8). Settingthe valueto zerowill meanthattheroutineassumeshatthe computethasno cache.

| CNTL(9) hasdefaultvalueO. It is ignoredin the presenwersion,buttheintentionis for alaterversionto havethe
option of usingindirectaddressingn the solve stepof MAA6C/ CD.

| CNTL(10) hasdefaultvalue 0. This meansthat no diagonalmatrix A, is usedto specify the diagonalmatrix
nonzerocoefficients,otherwisel CNTL( 10) mustbesetto 1.

RINFQ(1) gives the number of floating-point additions used to assemblethe original finite-element matrix
coefficients.

RINFQ( 2) givesthe numberof floating-pointadditionsusedto assembldhe generatecelementsf the tentative
pivot sequencealculatedoy MAA7A/ AD is acceptableumerically.

RINFQ( 3) givesthe sumof floating-pointadditions,multiplicationsanddivisionsusedto factorizethe matrix if it
thetentativepivot sequencealculatecoy MA47A/ AD is acceptableumerically.

RI NFQ(4) givesthenumberof floating-pointadditionsusedto assembléhe generate@lementsn MA46B/ BD.

RI NFQ(5) givesthe sumof floating-pointadditions,multiplicationsand divisions usedto factorizethe matrix in
MA46B/ BD.

RI NFQ( 6) givesthe sumof floating-pointadditions,multiplicationsand divisions usedto solve one setof linear
equationsgn MAA6C CD.

I NFQ( 1) hasthevaluezeroif thecall wassuccessfulandanegativevaluein theeventof anerror(seeSection2.3).

I NFQ(2) givestherequiredsizeof KEEPA in MA46B/ BD andMA46C/ CD on exit from MAABA/ AD if | NFQ( 1) =0. If
I NFQ( 1) =-1 it givestherequiredsize of KEEPA neededn MAA6A/ AD.
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I NFQ(3) givesthe sizeof | Wthathasbeenusedin MAA6A/ AD or in MAA6B/ BD if | NFO( 1) =0. If I NFQ( 1) =-1 it
givestherequiredsizeof | Wneededn MAM6A/ AD. If | NFQ( 1) =6 it givesthe requiredsizeof | Wneededn
MA46B/ BD.

I NFQ(4) givesthe numberof entriesout of rangefor | NFQ( 1) =-2.

I NFQ(5) givesthe numberof duplicateentriesfor | NFQ( 1) =-2.

I NFQ(6) givesthe numberof activenodescomputedoy MAA6A/ AD if | NFQ( 1) =0.
I NFQ(7) givesthe numberof variablescomputedby MAM6A/ AD if | NFQ( 1) =0.

I NFQ(8) givestheminimumrequiredengthof KEEPB in MA46B/ BD on exit from MA6A/ AD andtherequiredength
of KEEPB in MA46C/ CD on exit from MAA6B/ BDif | NFQ( 1) =0. If | NFQ( 1) =—6 onexit from MA46B/ BDit gives
the minimumrequirediengthof KEEPB for a successfuéxit.

I NFQ(9) givestheminimumrequirediengthof Ain MA46BD on exit from MAA6A/ AD andtherequiredliengthof Ain
MAM6C/ CD on exit from MAA6B/ BD if | NFQ(1)=0. If | NFO(1)=-7 on exit from MA6B/BD it gives the
minimum requiredlengthof A for a successfuéxit.

I NFQ(10) givestheorderof thelargestfront matrixif | NFQ( 1) =0.
I NFQ( 11
I NFQ( 12
I NFQ( 13
I NFQ( 14
I NFQ( 15
I NFQO( 16

) givesthe numberindicesin thefactorizedmatrix if | NFQ( 1) =0.

) givesthe numberof entriesin the factorizedmatrixif 1 NFQ( 1) =0.

) givesthe numberof assemblystepsif | NFQ( 1) =0.

) givesthe numberof elementsf | NFQ( 1) =0.

) givesthesizeof thelargestfront matrix thatoccuredin the factorizationstepif | NFQ( 1) =0.
) givesthe numberof eliminationsdoneby MA46BD if | NFQ( 1) =0.

2.3Error diagnostics

A successfuleturnfrom MA6A/ AD or MA46B/ BD is indicatedby a value of | NFQ( 1) equalto zero. Possible
nonzerovaluesfor | NFQ( 1) aregivenbelow.

A nonzerdflag valueis associateavith an errormessagéhatwill be outputon unit | CNTL( 1) .
-1 Thelengthof KEEPA and/orl Wis not greatenough(MA46A/ AD).
- 2 Entriesin KEEPA areout of rangeand/orareduplicateg MA46A/ AD).

-3 NEQNS lessthanthe numberof variablescomputedby MM6A/ AD or the numberof variablescomputeds less
thanone (MAA6A/ AD).

-4 Indicesoutof rangein | ELT (MA46A/ AD).
-5 NELS < 0, and/orNNCDS < 0, and/orNEQNS < 0 (MAMA6A/ AD).
-6 Thelengthof KEEPB and/orl Wis not greatenough (MA46B/ BD).
-7 Thelengthof A is not greatenough(MA46B/ BD).
- 8 Errorfrom previouslycalledroutineis not cleared(MA6B/ BD or MM46C/ CD) .
-9 Errorin thesymbolicassemblystepin MA6B/ BD. SignalsthatKEEPA mayhavebeenalteredbeforethecall to
MA46B/ BD.
2.4 Singular systems

If the matrix is singular, MA6B/ BD factorizesa nonsingularsubmatrix.A warning messagés written if the
right-handsideis not consistentvith the factorization.

3 GENERAL INFORMATION
Useof common: None.

Other routines called directly: ~ MAA6D/ DD, MAMGE/ ED, MAA6F/ FD, MM6G GD, MAM46H HD, MA46J/ JD,
MA46K/ KD, MA46L/ LD, MA46M MD, MM 6N ND, MA46Q OD, MA46P/ PD, MM6Q QD, MM6R/ RD, MA46S/ SD,
MA46T/ TD, MA46U/ UD, MA46V/ VD, MAME6W VD, MA46X/ XD, MA46Y/ YD, MM6Z/ ZD, MA56A/ AD, MA56B/ BD,
MAS6C/ CD, MA56D/ DD, MAS6E/ ED, MAS6F/ FD, MAS6G GD, MAS6H HD, MAS61 / | D, MA56J/ JD, MAS6K/ KD,
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MAS6L/ LD, MAS6M MD, MAS6N ND, MAS6Q OD and MA56P/ PD.

The packageausesthe BasicLinear AlgebraSubprogram$GEMM DGEMM SGEMV/ DGEWV, SGER/ DGER,
SSCAL/ DSCAL, | SAMAX/ | DAMAX, STRSM DTRSMand SSWAP/ DSWAP.

Input/output: Error messagesn unit | CNTL( 1) . Warningmessageandadditionalprinting on unit | CNTL( 2) .
Eachhasdefaultvalue®.

4 METHOD

Themethodusedis a directmethodusingmultifrontal sparsezaussiarelimination. The matrix structures passed
to the routine in the form of element-nodeconnectivity lists. The matrix analysestep (MM7A/ AD) usesthis
‘unassembledform to find the orderingof the nodes,andto build the necessarynformationfor the factoriseand
solve steps.The orderingis donewith the minimum degreeheuristic. It is possibleto relax this by altering the
defaultvaluegivenby | CNTL( 5) . Settingit greatethanzerohastheeffectof allowing nodeswith degred CNTL( 5)
greaterthanthe minimum to be eliminatedtogetherwith the nodesof minimum degree Sometimesthis helpsto
reducethe size of the decompositionThe final assemblytreeis reorderedn an attemptto reducethe size of the
working stack. The default value of option | CNTL( 6) gives this and is recommendedThe factorization step
(MA47B/ BD) is providedby theanalysestepwith atentativepivot sequenceyhich it usesexceptwhenthiswould be
numerically unstable. The numericalstability criterion is the relative pivot tolerancegiven by CNTL( 1), with a
defaultvalueof 0.1.In generaljncreasingts valuegivesa morestablefactorization butincreasesn the sizeof the
decompositionA valueof 1.0 givespartial pivoting asdefinedfor the densematrix case.

Reference  A.C. Damhaugand J.K. Reid (1994) MA46, a FORTRAN code for direct solution of sparse
unsymmetridinear systemf equationdrom finite-elementapplicationsRutherfordAppletonLaboratoryReport,
to appear.

5 EXAMPLE OF USE

We give an exampleof the coderequiredto solve a setof equationsusing the MM6 package.The example
illustratesthe useof MA46 whenno input orderandadditionaldiagonalmatrix A is providedby theuser.Thereare
two right-handsidesto solvefor.

We wish to solvethe following simplefinite-elementproblemin which the finite-elementmeshconsistsof four
4-nodedelementswith two degree®f freedomat eachnode.Thenodesl, 4, and7 areassumedaonstrainedyhich
meanghatthey do not contributeto the matrix systemto be solved.

7 8 9
1 2

U 3 6
3 4

L P 3

Theinputto theroutineis then:

NELS =4
NNODS = 9
NEQNS = 12
LIELT = 16
IVAR =10,2,2,0,2,2,0,2,2]
IPIELT = [1,5,9, 13, 17]
|ELT = [4,5,8.7,5,6,09,8 1,25, 4,2 3,6,5]
Thefour elementamatricesA® (1<k<4) are
5[4 4. 3. 4. 5. 4. 3. 4.
3.1 4 3 4 2 4 3
2823 % 6|2 3 6 2 3 4 7 2
gl2 3 4 4 3.2 1.5 43 2 6.1,
39231 914 3. 2 3 4. 4. 3 4.
3.1. 3 2 3 1 4 3
812 3.6.1 2 3. 6. 2
3.2 1.5 3 2 1. 5
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204 4. 3. 4. 5 4. 3. 4
31 4 3 4 2 4 3
2613: é: i: g: 3236 23 47 2
s[5 342 321543 26|,
2344 6|2 323 4 43 4
31323 14 3
50236 1236 2
32153215

wherethe nodenumbersareindicatedby the integersbeforeeachmatrix (columnsareidentified symmetricallyto
rows). Thetwo right-handsidevectorsb® (1<k<2) are

2 /0. 2 |0.
0. 0.
3| L 3] 0.
0. 1
5] 0. 5] 0.
0. 0.1,
6] 1L 6] O.
0. 2.
8] 0. 8] o.
0. 0.
911 910.
0. 1
wherethe nodenumbersareindicatedby the integersbeforeeachvector.
Thefollowing programis usedto solvethis problem.
| NTEGER NELS , NNCDS ,  NEQNS , LIELT
PARAMETER ( NELS = 4, NNODS = 9, NEQNS = 12, LIELT = 16 )
| NTEGER | VAR(NNCDS), | PI ELT(NELS+1), |ELT(LIELT)
| NTEGER KEEPA(200), KEEPB(200), |W300), XELMAT(10),
$ ELSI ZE( 10)
| NTEGER NB , LKEEPA, LIW , LKEEPB, LA , LAD ,
$ IBL , IPEL , LDB , NRHS , LRW , LAMAX ,
$ LELMAT, L1 , L2 | , J , K ,
$ MNPAR , NODE , NVAR |, XELSEQ ELEMNT, ELSEQ ,
$ LORDER, | STRT , |STORP
PARAMETER ( LAMAX = 200, LELMAT = 200, MNPAR = 50 )
DOUBLE PRECI SI ON' ELMAT(LELMAT), A(LAMAX), AD(NEQNS), B(NEQNS, 2),
$ RW NEQNS) , RELVAT( LELNMAT)
| NTEGER | CNTL(10), | NFQ(16)
DOUBLE PRECI SION CNTL(2), RINFQ(6)
NRHS=2
K e e e e e e e e e e e e e e m—. -
* READ I N THE DATA SET.
*
READ(5, ' (1013)") (IVAR(I), =1, NNODS)
READ(5,' (1013)") (IPIELT(1), =1, NELS+1)
READ(5,' (1013)"') (IELT(1),1=1, LIELT)
READ(5, ' (8F5.0)") (ELMAT(1),1=1, 160)
READ(5,' (12F5.0)") ((B(I1,J),1=1, NEQNS), J=1, NRHS)
K o e e e e e e e e e e e e e e m e e e e e e e e e e e e e e e e m . —
* COWPUTE THE ORDER OF THE ELEMENT MATRI CES.
*
DO 200 I =1, NELS
ELSI ZE(1) = 0
DO 100 J = IPIELT(I), IPIELT(I+1)-1
NCDE = | ELT(J)
NVAR = | VAR( NODE)

IF ( NVAR .GT. 0)

100 CONTI NUE
200 CONTI NUE
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CALL MA46I D( CNTL, | CNTL)

* ANALYSE THE SPARSITY PATTERN BY A CALL TO MA46AD.
K e e o o e o e e e e e e e e e e e e e e e e e e e e e e
LKEEPA = NELS+7* NNODS+55
L1 3* NELS+2* NNODS+4* LI ELT+8* NEQNS+2

L2 NELS+11* NNODS+2* LI ELT+5

LI W MAX( L1, L2)

|F ( LKEEPA .GT. 200 .OR

$ LIW  .GTl. 300 ) GOTO 8000

CALL MA46AD( NELS, NNODS, NEQNS, | PI ELT, | ELT, LI ELT, | VAR, NB, KEEPA,
$ LKEEPA, | W LI W 1 CNTL, RI NFO, | NFO)
IF ( INFO(1) .NE. 0 ) GOTO 8000

I S
§
_|
T
i
m
—
m
i
3
>
2y
n
w
z
_|
T
m

MNPAR
XELSEQ+NB+1

XELMAT(1) = I PEL
DO 600 IBL = 1, NB
DO 500 | = KEEPA(XELSEQtI BL), KEEPA( XELSEQ+I BL+1)-1
ELEMNT = KEEPA( ELSEQ+!)
LORDER = ELSI ZE( ELEMNT)
K=20
DO 300 J = 1, ELEWNT-1
K = K + ELSI ZE(J) *ELSI ZE(J)
300 CONTI NUE
XELMAT( 1 BL+1) = XELMAT(IBL) + LORDER*LORDER
DO 400 J = | PEL, | PEL+LORDER* LORDER- 1
K=K+ 1
RELMAT(J) = ELMAT(K)
400 CONTI NUE
| PEL = | PEL + LORDER*LORDER
500 CONTI NUE
XELMAT( 1 BL+1) = I PEL

600 CONTI NUE
K e e e e e e e e e e e e e e e e e e e e e e
* SET UP THE STORAGE REQUI RED FOR MA46BD.
K e e e e e e e e m e e e e e e m e e e e e e m e e e, e,
LKEEPA = | NFQ(2)
LKEEPB = | NFQ(8)
LA = INFO(9)
LAD =

1
LIW 3* (NNCDS+NEQNS) + 1
IF ( LKEEPA .GT. 200 .OR

$ LKEEPB . GI. 200 . R
$ LA .GI. 200 .CR
$ LIW . GI. 300 ) GOTO 8000

DO 700 IBL = 1, NB
| PEL = XELMAT(IBL)
CALL MA46BD( 1 BL, NELS, NNODS, | PI ELT, | ELT, LI ELT, | VAR, KEEPA, LKEEPA,

$ KEEPB, LKEEPB, RELMAT( | PEL), A, LA, AD, LAD, | W LI W CNTL,
$ I CNTL, RI NFO, | NFO)
IF ( INFQ(1) .NE. 0 ) GOTO 8000
700 CONTI NUE

LKEEPB =
LA = INFQ(9)
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=
1

NNCDS + NEQONS + 1

LRW = I NFQ( 15)

IF ( LKEEPB .GI. 200 .OR

$ LA .GI. 200 .OR

$ LIW .GI. 300 .OR

$ LRW . GI. NEQNS ) GOTO 8000
LDB = NEQNS

CALL MA46CD( | VAR, NNODS, KEEPA, LKEEPA, KEEPB, LKEEPB, A, LA, B, LDB, NRHS,
$ I WLIWRWLRW I CNTL, | NFO)

| STOP = | STRT + | VAR(NCDE) - 1
DO 900 J = 1, NRHS
WRI TE(6,' (A 16,A16)")

$ " SOLUTI ON' VECTCR ', J, FOR NODE :', NODE
WRI TE(6, ' (45X, 1PE12.5)")
$ (B(1,J), | =I STRT, | STCP)
900 CONTI NUE
I STRT = ISTOP + 1
ELSE
WRI TE(6," (/A 16/)")
$ " NO VAR ABLES AT NCDE :', NODE
ENDI F
1000 CONTI NUE

VR TE(6,' (A 16)")

$' NUVBER OF ASSEMBLY STEPS ' INFQ(13)
WRI TE(6, ' (A 16)")
$' NUVBER OF ELI M NATI ONS PERFORVED ', INFO( 16)
VRI TE(6, ' (A 16)")
$' ORDER OF THE LARGEST FRONT MATRI X ' INFQ( 15)

VRI TE(6,' (A 16)")
$' LENGTH OF THE UPPER TRI ANGULAR FACTCR ', | NFQ(12)
VR TE(6, ' (A 16)")
$' SIZE OF THE | NDEX | NFORMATI ON ' INFO(11)

STOP
8000 CONTI NUE

VR TE(6,' (1015)") (INFO(1),1=1, 16)

STOP
END
The input datausedfor this problemis:
0 2 2 0 2 2 0 2 2
1 5 913 17
4 5 8 7 5 6 9 8 1 2
5 4 2 3 6 5
6. 2. 3. 4. 1. 5. 4. 3
2. 3. 4, 4, 3. 2. 3. 1
4. 4, 3. 4, 5. 4, 3. 4
3. 1. 4, 3. 4, 2. 4. 3
2. 3. 6. 2. 3. 4, 7. 2
3. 2. 1. 5. 4, 3. 2. 6
4. 3. 2. 3. 4, 4. 3. 4
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3. 1 3. 2. 3. 1. 4 3.
2. 3 6. 1. 2. 3. 6. 2.
3. 2 1. 5. 3. 2. 1. 5.
6. 2 3. 4 1. 5 4. 3.
2. 3 4, 4, 3. 2. 3. 1.
4, 4 3. 4. 5. 4. 3. 4.
3. 1 4, 3. 4, 2. 4. 3.
2. 3 6. 2. 3. 4, 7. 2.
3. 2 1. 5. 4. 3. 2. 6.
4, 3 2. 3. 4, 4, 3. 4,
3. 1 3. 2. 3. 1. 4, 3.
2. 3 6. 1. 2. 3. 6. 2.
3. 2 1. 5. 3. 2. 1. 5.
0. 0 1. 0. 0. 0. 1. 0. 0 0. 1. 0
0. 0 0. 1. 0. 0. 0. 2. 0 0 0. 1
The programproduceghe following output:
NO VARI ABLES AT NODE : 1
SOLUTI ON VECTOR 1 FOR NODE : 2
-9. 80559E- 01
- 8. 62854E- 02
SOLUTI ON VECTOR 2 FOR NODE : 2
6. 86096E- 01
9.45142E-02
SOLUTI ON VECTOR 1 FOR NODE : 3
- 6. 57556E- 01
-8. 17085E- 01
SOLUTI ON VECTOR 2 FOR NODE : 3
9. 30706E- 01
5. 84907E- 01
NO VARI ABLES AT NODE : 4
SOLUTI ON VECTOR 1 FOR NODE : 5
4. 80762E-01
7.99617E-01
SOLUTI ON VECTOR 2 FOR NODE : 5
-6.56310E- 01
-4.63449E-01
SOLUTI ON VECTOR 1 FOR NODE : 6
9. 15647E- 01
1. 17792E+00
SOLUTI ON VECTOR 2 FOR NODE : 6
-6.22518E-01
-9. 86380E- 01
NO VARI ABLES AT NODE : 7
SOLUTI ON VECTOR 1 FOR NODE : 8
-7.58728E- 01
- 8. 15599E- 01
SOLUTI ON VECTOR 2 FOR NODE : 8
4. 50445E- 01
8. 14764E- 01
SOLUTI ON VECTOR 1 FOR NODE : 9
- 1. 54214E+00
- 6. 42698E- 01
SOLUTI ON VECTOR 2 FOR NODE : 9
1. 68228E+00
2.91376E-01
NUMBER OF ASSEMBLY STEPS 2
NUVBER OF ELI M NATI ONS PERFORMED 12
ORDER OF THE LARCGEST FRONT MATRI X 8

LENGTH OF THE UPPER TRI ANGULAR FACTOR 62
SIZE OF THE | NDEX | NFORMATI ON 24
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