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1 Intr oduction
We consider the direct solution of a set of linear equations

, (1.1)

where the matrixA arises from a finite-element calculation and is large, sparse, and unsymmetric.

We require the user to specify the number of finite-element nodes, and the number of variables at

each of the nodes. This allows considerable storage and efficiency gains for any problem that has

a significant number of nodes with more than one variable. The analysis is performed in terms of

the super-variables formed by the sets of variables at the nodes. We will refer also to ‘super-rows’

and ‘super-columns’ for the corresponding sets of rows and columns.

Thek-th finite element gives rise to a matrix

(1.2)

that is zero except in a small number of rows and columns. It may be represented by a list of indi-

ces of the nodes associated with the finite element and a square full matrix whose order is the total

number of variables at the nodes. Because of nodal quantities, such as masses, springs and damp-

ers, which are often used to modify the diagonal of the matrixA, we allow for an additional diag-

onal matrixAd to give the overall form

. (1.3)

Note that the structure is symmetric.

We use the multifrontal method (see, for example [6] and [7]), which is a variant of Gaussian

elimination and produces the triangular factorization of a permutation ofA.

Our approach is to assume initially that any diagonal entry is suitable as a pivot. This allows us to

use exactly the same pivot choice strategies as for the symmetric and positive-definite case. We

permit the user to supply a symmetric permutation in the form of an ordering for the nodes, but

normally this is chosen automatically by MA46 from the structure of the matrix. In pivotal order,

the matrix is

, (1.4)

wherePs is the permutation matrix corresponding to the node order supplied by the user or gener-

ated by MA46. The order of the variables within any node is not changed byPs.

Given such a permutation, and again working only with the matrix structure, we construct a tree

that has a node for each finite-element node. The links of this tree are determined by the structure
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of the super-rows when pivotal. If the off-diagonal entry of super-row i that is earliest in the pivot

sequence is in super-columnj, nodei has nodej as its parent. It is straightforward to show that any

other off-diagonal entry of super-row i corresponds to an ancestor of nodei. Following Liu [15],

we refer to this as the elimination tree.

We will associate each finite element with the tree node corresponding to the finite-element node

that is first in the pivot sequence among the nodes of the element. Because each element matrix is

full, all the other nodes of the element must correspond to ancestors.

Suppose we consider the matrix obtained by summing the elements associated with a leaf node of

the elimination tree. The super-row and super-column corresponding to the variables of the leaf

node will be the same as for the matrixA, that is, they are fully-summed. We can take advantage

of the fact that elimination steps

(1.5)

may be performed before all the assembly steps

(1.6)

are complete. It is necessary only that the terms in the triple product be fully-summed. We can

therefore perform the elimination operations within a full temporary matrix (the frontal matrix) of

order the number of variables associated with the nodes of the entries in the pivot super-row. The

pivot rows and columns are stored away and the Schur complement is added into the frontal

matrix. Once all the elimination operations of the node have been completed, we are left with a

reduced matrix that has a status like that of an element matrix; we will refer to it as a generated

element matrix, keep it in temporary storage, and associate it with the parent node.

There is considerable freedom in the ordering of the operations. What is required is that all the

operations at the children of a node be completed before those at the node. To simplify the organ-

ization of temporary storage, we postorder the nodes following a depth-first search of the elimina-

tion tree. This allows a stack to be used to hold the generated elements awaiting assembly.

In the elimination tree, suppose there is a sequence of nodesn0, n1, n2, ... ,nk such that, fori = 1,

2, ... ,k,

(a) nodeni has nodeni-1 as its only child and

(b) the entries of the pivot super-row at nodeni are the off-diagonal entries of the pivot row at
nodeni-1,

then the corresponding rows and columns can be treated as blocks with no loss of sparsity. The

elimination tree may be condensed by merging each such chain of nodes into a supernode, and we

call the resulting tree the supernode elimination tree. Working with such blocks allows us to take

aij aij ailall
1− alj−←

aij aij aij
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advantage of the additional efficiency associated with the use of full-matrix code and the BLAS

(Basic Linear Algebra Subprograms) [4,5,12] during factorization.

If a supernode has one or more original elements as children, the code must somehow access real

data supplied by the user. We have chosen to use reverse communication. The code must be called

NB times, where NB is the number of supernodes with which original elements are associated. On

each return the user is told which original element matrices are required. This avoids having to

store all the original element matrices. Of course, the user may choose to store them all, but other

alternatives may be convenient, such as generating them as required or holding them in a file.

For numerical stability, it is necessary to introduce further row and column interchanges into this

process. It is usual for sparse unsymmetric matrices to require every pivot to satisfy the relative

pivot tolerance

, (1.7)

whereu is a fixed parameter, and this is what we do. The pivots must be chosen from the square

submatrix that is fully-summed and we choose as many as possible, which may leave a few rows

and columns uneliminated. Such rows and columns are simply passed to the parent as part of the

generated element matrix. If we use the notationP andQ for the permutation matrices of the row

and column interchanges introduced for stability, the final factorization is

, (1.8)

whereL is lower triangular andU is upper triangular.

The subroutines are named according to the naming convention of the Harwell Subroutine

Library [2]. We describe the single-precision versions which have names that commence with

MA46 and have one more letter. The corresponding double-precision versions have the additional

letter D. The code itself is available from AEA Technology, Harwell; the contact is Dr Scott Rob-

erts or Mr Richard Lee, AEA Technology, Bldg 552, Harwell, Didcot, Oxon OX11 0RA, tel (44)

1235 434714 or (44) 1235 435690, Fax (44) 1235 434136, email: scott.roberts@aeat.co.uk or

richard.lee@aeat.co.uk, who will provide details of price and conditions of use.

There are four subroutines that are called directly by the user:

Initialize . MA46I provides default values for the arrays CNTL and ICNTL that together control
the execution of the package. For details, see appendix B.

Analyse. MA46A is called to analyse the sparsity pattern. If a pivot order is not provided by the
user, the routine chooses one. It then prepares data structures for assembly and factor-
ization, and computes the number of assembly steps NB.

all u max
i l>

ail⋅≥
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Factorize. MA46B assembles and factorizes the matrixA based on the information computed by
MA46A and chooses permutationsP andQ for numerical stability. The routine must
be called NB times in order to assemble and factorize the matrix. The routine may be
called for several finite-element matricesA with the same sparsity pattern without the
need for a new call to MA46A. This is common practice in non-linear finite-element
packages, for instance when a Newton-Raphson iterative scheme is used.

Solve. MA46C uses the factorization produced by MA46B to solve the equationAX=B. Note
that several right-hand side matricesB may be solved for the same matrixA without
the need for a new sequence of calls to MA46B. This is common practice in linear
finite-element packages when several load cases are analysed.

2 MA46A: analysis
This section describes the analyse subroutine MA46A. MA46A is logically divided into three

parts: preparation, pivot order choice, and tree construction and tree analysis.

2.1 Preparation
We require the user to provide:

The number of finite elements, NELS.

The number of finite-element nodes, NNODS.

The number of variables, NEQNS.

An array IELT that holds the list of nodes for element 1, followed by the list of nodes for
element 2, etc.

An array IPIELT of length NELS+1 that holds the position in IELT of the first node of ele-
menti, for i = 1, 2,..., NELS, and the first unused position in IELT.

An array IVAR of length NNODS that holds the number of variables at nodei, for i = 1, 2,
... , NNODS.

Optionally, the first NNODS locations of an array KEEPA may be set to specify the pivot
order. The node to be used in positioni of the pivot order must be placed in KEEPA(i), i =
1, 2,..., NNODS.

The routine first checks the validity of the input data and exits with an appropriate error message

if errors are found. Then the routine proceeds with three preparatory steps.

The first step is to compute the number of finite-element nodes that are active (have one or more

variables) and the total number of variables. This provides a check on the value NEQNS provided

by the user. If the total number of variables is not equal to NEQNS, the routine exits with an

appropriate error message.

The second step is to order the active nodes ahead of the others. This permutation of the nodes is

done regardless of whether or not a pivot order is provided. When it is provided, the relative order

of the nodes with variables is retained. This permutation information is saved in KEEPA in a sub-
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array denoted BSPERM. BSPERM is thus, in this stage of the analysis, the permutation from the

initial order to the order provided by the user. BSPERM is needed in order to find the indices that

the user associated with the finite-element nodes.

The third step is to compute a representation of the element-node connectivity information pro-

vided by the user in the array pair IPIELT, IELT. The representation consists of four sub-arrays

that are tailored for efficient execution of the ordering step, if requested, and the subsequent tree

construction and tree analysis. The first two arrays are denoted XELNOD, ELNOD and give a

compressed version of IPIELT, IELT, that is, a compressed element-node connectivity structure.

The compression is done in order to disregard the nodes that have no variables. The two last

arrays are denoted XNODEL, NODEL and give the node-element connectivity and may be

regarded as the inverse arrays to XELNOD, ELNOD. The four arrays are referred to as the

implicit adjacency structure, or as the implicit graph structure, of the assembled coefficient matrix

A. Note that the implicit adjacency structure represents the nodal structure of the coefficient

matrix and not the variable structure.

2.2 Pivot order choice
A pivot order does not need to be chosen if it is provided by the user. In this case, the internal per-

mutation arrays PERM and INVP are set to the identity. Otherwise, the routine MA46F is used to

compute an ordering of the nodes that is stored in the arrays PERM and INVP by means of a mini-

mum-degree type algorithm. The minimum-degree algorithm symbolically simulates the factori-

zation of a sparse matrix. For each step in the algorithm, a node of minimum degree is chosen and

eliminated. This symbolic elimination procedure is performed on some graph representation of

the sparse matrix structure and creates a sequence of graphs, which are usually referred to as elim-

ination graphs. MA46F uses a generalized element representation of this sequence of elimination

graphs. The benefit is that the storage needed is no more than that needed for the original struc-

ture.

We have chosen to minimize the ‘external degree’, that is to choose each pivot supervariable to

minimize the number of entries in the pivot row that lie outside the pivot block. This was intro-

duced by Liu [13], who found that the number of entries in the factors was between 3% and 7%

less than with ‘true minimum degree’ for his test problems. Amestoy, Davis and Duff report cases

with bigger gains, including one with a reduction of over 50% in the number of entries in the fac-

tors [1].

The code implements a standard minimum-external-degree algorithm. That is, for each node of

minimum external degree, the routine performs a graph elimination step and a degree update step.

The routine is implemented to exploit indistinguishable nodes [13] (indistinguishable nodes are

nodes that have the same list of connected elements) and uses incomplete degree update [10].

That is, the routine does a merge of nodes that have the same adjacency set in the current elimina-
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tion graph and does not update the degree of nodes that are known not to be of minimum external

degree after a degree update step. Incomplete degree update is often implemented as a search for

outmatched nodes [13] (an outmatched node is a node whose list of connected elements includes

all those connected to a neighbouring node). Since the routine uses an element representation, it is

customary to formulate both the requirements in terms of generated elements. In most implemen-

tations of the minimum-degree algorithm, a simplified search for outmatched nodes is used. In

this implementation, a complete search is used since the search procedure is very efficient in a

generated element setting and often produces orderings of higher quality.

By default, the standard minimum-external-degree algorithm is extended with a multiple-elimina-

tion step as described by Liu [13]. Multiple-elimination allows more than one node of minimum

external degree to be eliminated before the degree update step. The consequence is that more than

one generated element may emerge in a multiple-elimination step. The nodes must be independ-

ent, that is no node may be involved in a new generated element other than its own.

An option is an extension of the multiple-elimination version of the minimum-external-degree

algorithm to include independent nodes of degree exceeding the minimum by a user-specified

amount. After all the nodes of minimum external degree have been eliminated the algorithm con-

tinues its search for independent nodes with external degree one higher, two higher and so on until

the limit is reached, and eliminates these nodes together with the minimum external degree nodes

in a multiple-elimination step.

2.3 Tree construction and tree analysis
When the preparation and pivot ordering steps have been completed, the routine continues with

the tree construction and tree analysis, which consists of six steps. All the steps use the implicit

adjacency structure that was computed in the preparation stage and the internal permutation

arrays PERM and INVP. The steps are implemented separately with modularity in mind, which

will make it easy to change parts of the code should new and better algorithms appear.

The first step is to compute the finite-element node-based elimination tree and the corresponding

postordering. The work is done by the routine MA46G. At first glance, it might be assumed that

the nodal elimination tree is not needed since the routine attempts to amalgamate nodes to make

supernodes and the associated supernode elimination tree. This is true, but there is no great cost

associated with the computation of the nodal elimination tree and the subsequent steps in the

matrix analysis are more efficient if the structure is present. The method used to compute the

elimination tree and its postordering is straightforward and is described in [15].

The second step is to compute the number of entries in the pivot rows at each node. The algorithm

used is due to Gilbert, Ng and Peyton [11]. The algorithm is implemented in routine MA46H. For

efficiency, it makes use of the postordered nodal elimination tree in addition to the implicit adja-
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cency structure.

In step three, after the pivot row lengths are known, the nodes are grouped into supernodes by

routine MA46J, as explained on page 2. Such supernodes were introduced by Duff and Reid [6]

and called ‘fundamental supernodes’ by Ashcraft and Grimes [3].

The fourth step is the computation of an optimal postordering of the supernode elimination tree.

We use a result of Liu [14]. Suppose the children of a node aren[i], i = 1, 2, ..., k, that the size of

the generated element at noden[i] is g[i], and that the temporary stack space needed when work-

ing on noden[i] is s[i]. Liu showed that the total stack size needed for work on all the children is

minimized if they are ordered so thats[i]-g[i], i = 1, 2, ... , k is a monotonic decreasing sequence.

Such an ordering can therefore be determined, along with the total stack space needed, provided

s[i] andg[i] are known for all the children. Any postorder following a depth-first search allows us

to do this.

Pivoting due to numerical stability considerations may increase the size of the frontal and gener-

ated element matrices. This implies that the order found during the analysis stage need not be the

best when the matrix is factorized. We have, however, not found it feasible to try any kind of sub-

optimization during the factorization. Our numerical experiments indicate that the size of the

working stack storage changes little and we believe that the order found is close to the best overall

order that may be computed after the factorization has been completed.

The fifth step is to update the internal permutation vectors PERM and INVP and the representa-

tion of the supernodal elimination tree to correspond with the supernode postordering computed

in step four. This step is done by routine MA46L.

The sixth and final step is to compute the number of assembly steps and some factorization statis-

tics. The step also updates BSPERM by the information collected in the internal permutation

arrays PERM and INVP during the previous matrix analysis steps. The work is done by routine

MA46M. The number of assembly steps may be less than the number of supernodes found in step

three, since there may be many nodes that have no original elements associated with them. We

often see that the number of assembly steps is between 50-75% of the number of supernodes.

Therefore, we have found it convenient to compute an assembly tree in order to reduce the

number of calls to MA46B. The assembly tree consists of amalgamated supernodes and the start

of a new node in the assembly tree is defined by the need for original finite-element coefficients.

The routine checks each supernode to see if it needs coefficients from finite elements. If not, its

right-most child in the supernode elimination tree is merged into it and thus an assembly tree is

created. The procedure used to create the assembly tree assures that the postorder of the super-

nodal elimination tree is maintained as required by the stack management in routine MA46B.
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3 MA46B: assembly and factorization
Before we start the description of MA46B, we give a skeleton of the basic multifrontal factoriza-

tion algorithm in order to motivate the different choices we have made in the development and

implementation of the code. The skeleton of the factorization is shown in Figure 3.1.

Note that the algorithm needs to process the supernodes in postorder for the internal stack man-

agement to work. In order to facilitate such an arrangement, we assume that a supernode elimina-

tion tree representation in postorder is available for the factorization algorithm.

We observe from Figure 3.1 that no distinction has been made between original finite-element

matrices and generated element matrices and that an implementation of the algorithm will need

data from the user for each supernode. That is, if we were to organize the factorization as is in

Figure 3.1, MA46B would have to be called for each supernode, unless the coefficients were

assembled into the factor submatrices in advance. This latter option would need pre-allocated

storage for the triangular factors, which is not practical in a code where pivoting may alter the

sizes. In addition, this arrangement would exclude the possibility of overlap between the stack

and the triangular factors if we store the finalized triangular factors, the current frontal matrix, and

the stack all in the same array. Such an overlap is implemented in MA46B in order to reduce the

total storage needed.

In addition to the observation made in the previous paragraph, we use the following three obser-

vations to further refine the factorization algorithm:

1. Previously fully-summed variables that were not eliminated for stability reasons appear
naturally in the leading part of the generated element matrices to be assembled into the cur-
rent frontal matrix. These sets of variables must be disjoint since they arrive from disjoint
subtrees in the supernode elimination tree, and thus they may be assembled directly into the
index list in the symbolic assembly step.

2. Newly fully-summed variables are on entry to the factorization step still in the order arising
from the analysis stage.

3. Row and column pivoting in the fully-summed part of the frontal matrix does not affect the
order of the other rows and columns of the frontal matrix.

Figure 3.2 shows thefinal assembly and factorization algorithm. The implementation is based on

calls to MA46B for each assembly step, and thus it is the part of the algorithm that starts with

“For each supernode in the assembly step do” that is found inside MA46B. Note that the algo-

rithm needs the supernodes in postorder for the internal management of the stack to work and that

many details have been removed in order to make Figure 3.2 easy to read.

3.1 The symbolic assembly
The assembly starts with the computation of the indices of the variables that are active in the cur-

rent step. This process is denoted symbolic assembly and is organized in two parts:
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(i) the index lists of the children of the current supernode are merged together to form the
index list of the parent, and

(ii) if the supernode is the first in an assembly step, index lists from original finite elements
are merged with the parent list.

Since there may be a need to use off-diagonal pivots, we prepare by generating column indices for

the fully-summed part, as well as row indices for the generated element. If at least one of the

incoming generated elements has different row and column indices or an off-diagonal pivot is

selected, we need to keep the column indices for the rows and columns of the factors that are

associated with the supernode.

Figure 3.1: Skeleton of the factorization algorithm.

Figure 3.2: Final version of the assembly and factorization algorithm.

For each supernode in postorderdo
Merge the index lists of the children of the supernode to form the index list of the frontal matrix;
Allocate space on top of the working stack for the frontal matrix of the supernode and initialize it to zero;
For each child of the supernodedo

Pop the generated element matrix associated with the child off the stack and assemble it into the
frontal matrix of the supernode;

End For
Perform the eliminations that are possible on the fully-summed rows and columns;
Move the L/U submatrices associated with the performed eliminations to permanent storage for the factors;
Move the generated element of the supernode to the top of the stack;

End For

For each assembly stepdo
For each supernode in the assembly stepdo

! Symbolic assembly
Merge the index lists of the children of the supernode to form the index list of the frontal matrix;
! Actual assembly
Allocate space on top of the stack for the parent frontal matrix and initialize it to zero;
For each generated element childdo

Assemble the generated element of the child into the parent frontal matrix;
End For
If  this supernode is the first in the assembly stepthen do

For each original finite element that participate in this assembly stepdo
Assemble the original finite-element matrix into the parent frontal matrix;

End For
End If
! Elimination
Perform elimination of the fully-summed rows and columns that may be eliminated;
! Management of the triangular factors and the stack
Move the L/U submatrices computed in the elimination step to permanent storage for the
submatrices;
Compress the generated element matrix and move it to the new top of the stack;

End For
End For



RAL-TR-96-010

10

3.2 The numerical assembly
The active frontal matrix is stored on the top of the stack. Before the assembly process starts,

workspace on top of the stack is allocated for the frontal matrix and it is initialized to zero. The

frontal matrix is then assembled and finally the eliminations that are possible are performed on the

matrix. Figure 3.3 shows the structure of the workspace after assembly but before the eliminations

have been carried out.

As for the symbolic assembly step, the actual assembly step is divided into two separate parts:

(i) assembly of coefficients from generated element matrices, and

(ii) if the supernode is the first in an assembly step, assembly of coefficients from original
finite-element matrices.

3.3 The actual factorization
For each assembly step, one or more supernode elimination steps are carried out. These block fac-

torization steps involve eliminations of the fully-summed rows and columns of the frontal matrix.

Each block factorization step is organized around the pivot search and subsequent submatrix

update. The pivot search is done within the block of fully-summed rows and columns that are not

yet eliminated. For better numerical stability, we choose the largest off-diagonal entry of the fully-

summed part of the column even if the diagonal element satisfies the criterion for pivot choice.

This in contrast to how the MA37 package from the Harwell Subroutine Library [2] selects the

next pivot in such a case.

Initially, we planned to provide to the user two versions of the factorization:

(i) a version based on matrix-vector updates, i.e. Level 2 BLAS, and

(ii) a version based on matrix-matrix updates, i.e. Level 3 BLAS.

The final testing showed, however, that this was not necessary since the matrix-matrix version is

the overall best.

Figure 3.3: The structure of the workspace for triangular factors and the stack after assembly but before the
eliminations have been carried out.

Finalized triangular factor submatrices.

Free space.

The frontal matrix.

Previously generated elements.
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In order to make good use of cache memory, we ask the user to provide its size in ICNTL(8) (see

Appendix B), and divide the matrix-matrix update into blocks. Both versions use standard BLAS

routines, that is, I_AMAX, _SCAL, _SWAP, _GER, _TRSM, and _GEMM in the most demand-

ing sections of the elimination. Let the frontal matrix beF and have orderf. Further, let it havek

fully-summed rows and columns. We ensure that these are at the front ofF.

The matrix-vector update kernel is implemented as follows: in elimination stepj, where ,

a pivot is selected fromF(j:k, j:k), and permuted to positionF(j, j). The pivot search and the per-

mutations are done by the Level 1 BLAS routines I_AMAX and _SWAP. The next step is to scale

the column vectorF(j+1:f, j) with the pivot using the Level 1 BLAS routine _SCAL and then the

trailing submatrixF(j+1:f, j+1:f) is rank-one updated by Level 2 BLAS routine _GER.

As many such elimination steps as possible are performed and the resulting matrix is passed as the

generated element matrix to the parent in the supernode elimination tree.

For the unblocked matrix-matrix update kernel, in elimination stepj, a pivot is selected from the

submatrixF(j:k, j:k), permuted to theF(j, j) position and the columnF(j+1:f, j) is scaled by the

pivot inverse, exactly as for the matrix-vector update kernel. Now the Level 2 BLAS routine

_GER is restricted to a rank-one update of the submatrixF(j+1:f, j+1:k). After all possible such

elimination steps are completed, sayl steps, we perform forward solves on the submatrix F(1:l,

k+1:f) using the Level 3 BLAS routine _TRSM, and finally update the submatrixF(l+1:f, k+1:f)

using the Level 3 BLAS routine _GEMM. The resulting matrixF(l+1:f, l+1:f) is passed as the

generated element matrix to the parent in the supernode elimination tree.

We introduced the blocked version of the factorization algorithm in order to increase the amount

of Level 3 BLAS work and avoid swapping between cache and main memory. The block sizekb

Figure 3.4: The structure of the workspace for triangular factors and stack after the eliminations and workspace
compression.

Previous triangular factor submatrices.

The new triangular factors.

Free space.

The new generated element matrix on top of the stack.

Previously generated elements.

1 j k≤ ≤
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is chosen so that , to ensure that a block column fits in the cache. We

commence processing as if only the firstkb rows and columns were fully-summed. Once this is

complete, we regard the nextkb rows and columns as fully-summed and process these together

with any we were unable to pivot upon while processing the first block. We continue in this way

with one more block ofkb rows and columns at a time. The treatment is essentially the same as

we would have obtained had we limited the merges into supervariables to blocks of sizekb.

After a factorization step has been completed, the newly computed submatrices of the triangular

factors are moved from the frontal matrix to permanent storage and the generated element matrix

is moved to the top of the stack. During its movement, the generated element matrix is com-

pressed in order to eliminate the unused space above the columns. Figure 3.4 shows the structure

of the workspace after the eliminations and workspace compression have been carried out.

4 MA46C: solve
In contrast to MA46A and MA46B, there is no use of finite-element input to the solution routine

MA46C. The reason is that the solve step, and thus MA46C, then has a cleaner interface. The

organization of the solve routine is, however, based on the supernode elimination tree which

means that the equations are solved as a sequence of submatrix solves. The forward elimination is

driven by traversal of the supernode elimination tree in a postorder and the backward elimination

is driven by traversal of the supernode elimination tree in the inverse order. MA46C may be

called more than once for the same triangular factors. On each call, the number of right-hand sides

(columns of B) must be specified in NRHS. Both the forward and backward elimination steps use

matrix-matrix computational kernels, i.e. Level 3 BLAS, when NRHS>1. It should be noted that

B is involved in this matrix-matrix product and that the kernels become more efficient with an

increased number of columns in B. When there is one right-hand side, i.e. NRHS=1, Level 2

BLAS routines are used since this gives an improvement over the Level 3 BLAS because there is

less administration overhead.

5 Performance results
For performance testing, we have taken a subset of the problems in the Harwell-Boeing collec-

tion, see [8], and some problems collected from structural engineering applications at Det Norske

Veritas Research AS. Table 5.1 shows a summary of the problems and those from the Harwell-

Boeing collection are marked with superscript a. The storage format of the problems from the

Harwell-Boeing collection does not take advantage of the fact that there may be more than one

variable at a finite-element node. This means that all nodes in these problems have at most one

variable and that the matrix analysis of MA46 may perform worse than usual for finite-element

problems. There are, however, many performance results available for these matrices, see for

kb 1+( ) f ICNTL 8( )≤
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instance [9], and this choice of problems makes it easier to compare the performance of MA46

with other packages. On the other hand, the problems from Det Norske Veritas Research AS are

presented to MA46 as we expect the code to be implemented in finite-element packages; they are

extracted directly from finite-element applications and most of the nodes have more than one var-

iable.

The matrices of Table 5.1 have been used to test the code on

1. a DEC 3000-400 with operating system OSF/1 V2.0 and using release V3.4-480 of the f77
compiler with the options -O5 and -fast. There are vendor versions of BLAS available on
this platform.

2. a SUN 4 with operating system Sun OS release 4.1.2 and using release SC 1.0 Fortran V1.4
of the f77 compiler with options -O3 -cg89 -dalign. There are no vendor version of BLAS
available on this platform.

3. one processor of a Cray Y-MPI/8-128 using release 6.0 (6.52) of the CF77 compiling sys-
tem with default options. There are vendor versions of BLAS available on this platform.

The double precision version of MA46 was used on the DEC 3000-400 and SUN 4 and the single

precision version was used on the Cray Y-MP. The pseudo-random number generator FA04 from

the Harwell Subroutine Library [2] was used to generate values for the element coefficient matri-

ces and the right-hand sides. Each problem was run enough times for each combination of options

to take at least one second and the average CPU times in seconds are reported.

a. See [8] for a description of the problems taken from the Harwell-Boeing collection.
b. The 3D model of the beam consists of randomly distributed 2-noded beam elements.

Table 5.1: The test problems

Problem Description Number of
variables

Number of
elements

1
2
3
4
5
6
7
8
9
10
11
12
13
14

3D model of a container ship.
CEGB2802a.
CEGB2919a.
CEGB3024a.
CEGB3306a.
3D model of a corrugated plate field.
3D model of a flywheel.
LOCK1074a.
LOCK2232a.
LOCK3491a.
LOCK 700a.
MAN5976a.
3D model of part of a condeep cylinder.
3D model of a sandwich beamb.

10,110
2,694
2,859
2,996
3,222

18,010
4,368
1,038
2,208
3,416

691
5,882

15,449
2,508

3,431
108
128
551
791

3,152
248
323
944
684
324
784
977

3,429
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5.1 Matrix analysis options
Our first experiments concern the matrix analysis options of MA46A. We have run the test prob-

lems for each of the options:

(1) standard minimum external degree, ICNTL(5)<0,

(2) multiple minimum external degree, ICNTL(5)=0, the default, and

(3) relaxed multiple minimum external degree, ICNTL(5)>0,

Table 5.2: Results from MA46A using default value 0 for ICNTL(5).

Problem Number of
variables

Number of
assemblies

Number of
supernodes

Size of factorization
(thousands)

Stack size
(thousands)

integers reals with
reordering

without
reordering

1
2
3
4
5
6
7
8
9
10
11
12
13
14

10,110
2,694
2,859
2,996
3,222

18,010
4,368
1,038
2,208
3,416

691
5,882

15,449
2,508

791
86
98

398
382
929
152
101
293
274
117
499
564
811

828
163
192
657
510

1,653
271
112
293
401
126
956

1,051
811

98
15
19
18
11

136
40
6

10
22
4

44
150
15

2,196
267
361
111
69

2,825
1,167

61
73

223
26

489
5,522

64

756
80

204
19
23

991
793
30
10
87
31

197
3,763

12

2,059
177
235
39
28

1,545
971
47
42

110
36

242
5,180

34

Table 5.3: Results from MA46A, ICNTL(5)=-1 and ICNTL(5)=4.

ICNTL(5)=-1 ICNTL(5)=4

Problem Number of
assemblies

Number of
supernodes

Size of factorization
(thousands)

Number of
assemblies

Number of
supernodes

Size of factorization
(thousands)

integers reals integers reals

1
2
3
4
5
6
7
8
9
10
11
12
13
14

797
86

101
385
514
942
152
103
293
274
117
499
562
810

836
163
192
656
514

1,673
271
113
293
400
127
956

1,051
810

98
14
19
19
11

137
39
6

10
22
4

44
150
15

2,157
236
341
113
68

2,783
1,093

61
73

223
25

493
5,420

64

783
86

100
394
382
903
152
103
292
273
114
499
566
794

829
165
192
657
510

1,634
271
112
293
399
126
956

1,051
794

98
14
19
19
11

134
40
6

10
22
4

44
150
16

2,167
248
357
117
69

2,732
1,167

61
74

224
26

510
5,476

69
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to see the effect on the number of block factorization steps and assembly steps; the size of the

index information, the triangular factors, and the working stack; and on the CPU time. Table 5.2

shows the results from MA46A for the default value of ICNTL(5).

We see from Table 5.2 that the number of supernodes is often below 10% of the total number of

variables. High percentages are often found for problems that are mainly assembled from bar and

beam elements, such as the problems 5, 8, 9, 10, 11 and 14.

The number of assembly steps is for most problems between 50-75% of the number of super-

nodes. Finite-element problems for which the value is higher usually have a high element-to-node

ratio. The most obvious example is problem 14 where there are more elements than nodes in the

finite-element mesh. The problems 1, 8, 9 and 11 all have a relatively high element-to-node ratio

and this is reflected in the number of assembly steps being greater than 75% of the number of

supernodes.

For all the problems, we find that the number of indices stored to represent the triangular factors is

small compared with the number of reals for the triangular factors themselves.

In the final two columns of Table 5.2, we show the stack sizes with and without reordering of the

children of each node. We found that the additional CPU time for this reordering is negligible (not

measurable within the uncertainty of the timer). It is clear that this reordering is very worthwhile.

Table 5.3 shows the results from MA46A with the options ICNTL(5)=-1, 4. For almost all the

problems, the number of assembly steps, the number of supernodes and the number of indices

stored do not differ much from the values shown in Table 5.2.

We conclude that the options for different forms of the minimum-degree algorithm do not have a

big effect on these quantities. None of the algorithms is consistently better than the other two.

Table 5.4 shows the CPU-time consumptions in MA46A for the three forms of the minimum-

Table 5.4: Timing results from MA46A, CPU-seconds on DEC 3000-400.

Problem ICNTL(5)=-1 ICNTL(5)=0 ICNTL(5)=4

1
2
3
4
5
6
7
8
9
10
11
12
13
14

0.39
0.23
0.29
0.15
0.12
0.19
0.13
0.09
0.13
0.23
0.06
0.32
0.51
0.19

0.37
0.23
0.29
0.14
0.12
0.17
0.12
0.08
0.13
0.23
0.05
0.32
0.47
0.18

0.36
0.23
0.29
0.14
0.12
0.16
0.12
0.09
0.13
0.23
0.05
0.32
0.47
0.19
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external-degree algorithm. It may be seen that the differences are not great. We have therefore

decided not to offer the ICNTL(5) < 0 option to users. The option ICNTL(5)>0 is offered to the

users since there are some problems, often very big problems modelled with solid finite-elements,

where it is better than the default option.

Table 5.5: The effect of block size on factorization time. Results from DEC 3000-400.

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS

ICNTL(8)=-1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64

Problem
DXML
BLAS

F77 BLAS DXML
BLAS

F77 BLAS DXML
BLAS

F77 BLAS DXML
BLAS

F77 BLAS

1
2
3
4
5
6
7
8
9
10
11
12
13
14

98.24
3.11
6.68
0.66
0.34

118.90
59.92
0.49
0.39
2.11
0.18
6.87

540.87
0.35

95.21
2.67
6.22
0.60
0.31

115.42
58.48
0.43
0.35
1.87
0.16
6.16

539.02
0.32

42.39
1.96
3.47
0.59
0.33

46.14
23.06
0.37
0.36
1.47
0.17
4.20

196.65
0.38

54.97
2.14
3.82
0.55
0.29

62.84
30.10
0.35
0.32
1.52
0.15
4.58

341.74
0.32

42.63
1.86
3.32
0.59
0.33

55.98
27.35
0.36
0.36
1.42
0.16
3.90

480.86
0.38

46.60
2.04
3.75
0.54
0.29

57.20
28.08
0.35
0.32
1.49
0.14
4.37

413.78
0.32

34.07
1.94
3.29
0.59
0.33

41.09
20.53
0.37
0.36
1.44
0.17
3.82

214.63
0.38

42.94
2.07
3.73
0.54
0.30

50.24
25.65
0.35
0.32
1.49
0.15
4.35

228.92
0.32

Table 5.6: Solution times. Results from DEC 3000-400.

Problem Number of right-hand sides

NRHS=1 NRHS=3 NRHS=10 NRHS=50

DXML BLAS F77 BLAS DXML
BLAS

F77
BLAS

DXML
BLAS

F77
BLAS

DXML
BLAS

F77
BLAS

Level 2 Level 3 Level 2 Level 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14

0.69
0.09
0.12
0.07
0.05
0.92
0.35
0.03
0.04
0.10
0.01
0.20
1.62
0.06

1.13
0.15
0.20
0.11
0.07
1.52
0.67
0.04
0.06
0.15
0.02
0.33
2.80
0.09

0.62
0.08
0.11
0.06
0.05
0.83
0.32
0.02
0.04
0.09
0.01
0.18
1.46
0.05

0.65
0.09
0.11
0.07
0.05
0.85
0.32
0.03
0.04
0.09
0.01
0.19
1.49
0.06

1.62
0.21
0.28
0.17
0.12
2.14
0.91
0.06
0.10
0.22
0.04
0.48
3.79
0.15

1.29
0.16
0.21
0.12
0.09
1.68
0.65
0.05
0.07
0.17
0.03
0.36
3.38
0.10

2.91
0.38
0.50
0.33
0.22
3.81
1.53
0.12
0.18
0.41
0.07
0.88
6.36
0.29

3.58
0.42
0.55
0.30
0.21
4.55
1.79
0.12
0.18
0.42
0.07
0.92

10.07
0.26

10.64
1.35
1.82
1.22
0.83

13.65
5.20
0.42
0.65
1.51
0.25
3.27

22.64
1.08

17.08
1.93
2.59
1.43
1.02

21.54
8.61
0.57
0.83
1.97
0.33
4.37

49.30
1.22
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5.2 Block size and factorization
In this section, we report the effect on the CPU time used to factorize the matrices of Table 5.1 of

using Level 2 BLAS and Level 3 BLAS with varying block sizes. The options are controlled by

ICNTL(8) and we have limited our trials to the values:

We also consider the effect of using vendor-supplied BLAS. The most important BLAS routines

for MA46B and MA46C are _TRSM and _GEMM. In the Fortran 77 versions, we have made the

following modifications in order to improve their performance: _TRSM has been modified to use

level-two unrolling in its inner loop:

DO 82, I = K + 1, M
B(I,J) = B(I,J) - TEMP1*A(I,K)
B(I,J+1) = B(I,J+1) - TEMP2*A(I,K)

82 CONTINUE

and _GEMM has been modified to use level-eight unrolling in its inner loop:

DO 78, I = 1, M
C(I,J) = C(I,J) + TEMP1*A(I,L) + TEMP2*A(I,L+1)

& + TEMP3*A(I,L+2) + TEMP4*A(I,L+3)
& + TEMP5*A(I,L+4) + TEMP6*A(I,L+5)
& + TEMP7*A(I,L+6) + TEMP8*A(I,L+7)

78 CONTINUE

The choice of unrolling level is dependent of the computer architecture. For MA46, the two above

code segments give the best performance on DEC 3000-400 and SUN 4.

The results from runs on the DEC 3000-400 are summarized in Tables 5.5 and 5.6. Here and in

Tables 5.7, 5.8 and 5.9, we show the best result for each problem in bold. The columns labelled

DXML BLAS show the results when the vendor-supplied versions of the BLAS routines are used

and the other columns show the results of using our modified Fortran 77 source. On this machine,

the size of the local cache memory is 64 kbytes and we therefore expect the option ICNTL(8)=64

to perform best. Using the Fortran 77 BLAS, this option is the best in 11 cases and is very near the

best (within 8%) in all the others.

On the smaller problems, we must expect that all the fully assembled columns will often fit into

the cache anyway, so blocking will have little effect. In fact, with no blocking, some overheads in

the factorization routine are avoided, but the effect on timing is not great. These remarks may be

verified in the table.

It may also be seen in Table 5.5 that the vendor-supplied Level 3 BLAS outperform the Fortran

Level 3 BLAS for most of the bigger problems. For the smaller problems our modified Fortran 77

-1
0

32
64

Level 2 BLAS,
Level 3 BLAS without blocking,
Level 3 BLAS with block columns of size less than 32 kbytes, and
Level 3 BLAS with block columns of size less than 64 kbytes.
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source is competitive which seems to indicate that the vendor was concentrating on performance

for bigger cases.

From Table 5.5, we see that the results with Level 2 BLAS were almost always worse and often

significantly worse than those with Level 3 BLAS. Except for problem 14 where the Level 2

BLAS are as fast as Level 3 BLAS, for no case was the best time obtained with Level 2 BLAS.

In order to study the effect of vendor-supplied Level 3 BLAS more carefully, we have tabulated

Table 5.7: The effect of block size on factorization time, and average solution times for NRHS=3.
Results from SUN 4.

Factorization time Solution time

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS Level 2 BLAS Level 3 BLAS

Problem ICNTL(8)=-1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64

1
2
3
4
5
6
7
8
9
10
11
12
13
14

404.73
18.54
33.89
3.41
1.79

490.75
238.70

2.60
2.02

11.70
1.04

40.54
1951.39

1.84

331.34
13.00
24.76
3.09
1.58

394.59
194.06

2.14
1.77
9.04
0.91

30.12
1607.49

1.82

239.36
12.24
21.36
3.17
1.58

297.22
142.15

2.13
1.81
8.61
0.89

25.68
1589.05

1.77

241.49
12.41
21.61
3.07
1.60

299.56
143.75

2.14
1.79
8.62
0.88

25.80
1149.34

1.74

2.40
0.29
0.40
0.21
0.14
3.29
1.13
0.08
0.13
0.30
0.05
0.65

15.20
0.16

2.23
0.25
0.34
0.17
0.12
2.97
1.11
0.07
0.10
0.26
0.04
0.56
9.31
0.14

Table 5.8: The effect of block size on factorization time. Results from Cray Y-MP.

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS

ICNTL(8)=-1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64

Problem
Cray

BLAS
F77

BLAS
Cray

BLAS
F77

BLAS
Cray

BLAS
F77

BLAS
Cray

BLAS
F77

BLAS

1
2
3
4
5
6
7
8
9
10
11
12
13
14

6.35
0.48
0.74
0.23
0.17
7.92
3.76
0.12
0.16
0.42
0.06
0.98

28.35
0.17

10.19
0.72
1.13
0.32
0.23

12.52
5.75
0.17
0.22
0.61
0.08
1.48

42.84
0.23

6.33
0.49
0.74
0.25
0.18
7.60
3.54
0.12
0.17
0.44
0.07
1.00

26.62
0.19

8.59
0.70
1.04
0.37
0.27

10.67
4.79
0.18
0.25
0.65
0.10
1.46

34.53
0.28

7.71
0.49
0.77
0.25
0.18
9.86
4.56
0.12
0.17
0.45
0.07
1.04

61.05
0.20

8.90
0.71
1.06
0.37
0.27

11.13
4.98
0.18
0.25
0.66
0.10
1.49

43.55
0.28

6.82
0.49
0.75
0.25
0.18
8.33
3.91
0.12
0.17
0.44
0.07
1.01

36.06
0.20

8.44
0.71
1.04
0.37
0.27

10.63
4.78
0.18
0.25
0.65
0.10
1.46

34.73
0.28
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the solution times for different number of right-hand sides in Table 5.6. It can be seen that our

Fortran BLAS are faster than DXML BLAS when there are few right-hand sides and that the

opposite is true when there are many right-hand sides.

Results for the SUN 4 are shown in Table 5.7. Here we find that ICNTL(8)=64 is best or near best

in all cases. Vendor supplied BLAS were not available on this machine and only Fortran 77 BLAS

were used.

Results for the Cray Y-MP are shown in Tables 5.8 and 5.9. This computer does not use cache

memory and we therefore do not expect blocking to be helpful. In Table 5.8, we can see that this

indeed is the case. The vendor versions of BLAS are usually better here. An exception is for prob-

lem 13 where our modified Fortran 77 source is better than the vendor versions for ICNTL(8)=32,

64, but the best performance is obtained for the unblocked Level 3 BLAS when vendor supplied

BLAS are used. For the Cray, we also see that Level 2 BLAS are competitive with Level 3 BLAS.

Level 2 BLAS are best for the smaller problems and Level 3 BLAS are best for the bigger prob-

lems, but with small margins in both cases. Table 5.9 shows a comparison between Level 2 and

Level 3 BLAS for the solution step. NRHS was set to 3 and we have reported the average solution

times. We can see that vendor supplied Level 3 BLAS are consistently the best on all the prob-

lems.

We conclude that the block strategy of MA46B works as expected on the problems of Table 5.1

on all the three platforms we considered. We have decided not to offer the Level 2 BLAS option

to users because its performance is inferior to the Level 3 BLAS option except for small problems

on the Cray, where the difference is slight.

The most important BLAS routines in MA46B are _TRSM and _GEMM and we recommend that

vendor supplied versions of at least these two should be used when available.

Table 5.9: Average solution times for NRHS=3. Results from Cray Y-MP.

Level 2 BLAS Level 3 BLAS

Problem
Cray

BLAS
F77

BLAS
Cray

BLAS
F77

BLAS

1
2
3
4
5
6
7
8
9
10
11
12
13
14

0.069
0.014
0.016
0.025
0.020
0.106
0.031
0.006
0.013
0.021
0.005
0.045
0.130
0.026

0.133
0.026
0.031
0.059
0.047
0.219
0.054
0.013
0.030
0.045
0.012
0.099
0.224
0.065

0.060
0.011
0.013
0.017
0.013
0.092
0.028
0.005
0.009
0.016
0.004
0.033
0.118
0.017

0.099
0.017
0.021
0.031
0.025
0.153
0.043
0.008
0.016
0.027
0.006
0.058
0.179
0.033
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Table 5.10: Comparison between MA37 and MA46. CPU-time consumptions for MA37 divided by the
best corresponding results for MA46.

DEC 3000-400 SUN 4 Cray Y-MP

Problem Analyse Factorize Solve Analyse Factorize Solve Analyse Factorize Solve

1
2
3
4
5
6
7
8
9
10
11
12
13
14

13.73
4.37
4.34
2.29
2.28

29.82
21.74
3.22
2.48
3.33
2.26
2.93

19.09
0.87

3.67
2.57
2.90
2.71
2.22

10.07
4.81
2.72
2.48
2.73
2.41
4.77
3.71
1.61

1.53
1.44
1.59
1.16
0.94
2.18
1.79
1.36
1.06
1.41
0.80
1.65
1.60
0.79

11.49
3.63
3.62
1.85
1.98

21.61
18.29
2.92
2.12
2.88
2.19
2.35

15.84
0.86

2.02
1.79
2.06
2.03
1.72
4.85
2.46
1.92
1.83
1.99
1.78
3.00
2.16
1.24

1.19
1.05
1.10
0.92
0.83
3.57
1.18
1.04
0.92
1.06
0.82
1.20
1.98
0.68

6.99
2.07
2.08
1.47
1.42

16.17
10.95
1.70
1.46
1.73
1.36
1.64
9.67
0.66

3.18
4.11
3.93
3.25
3.18
5.73
3.59
4.53
3.71
4.02
4.03
3.81
2.77
2.19

1.32
1.37
1.35
0.91
1.01
1.56
1.52
1.13
1.02
1.27
0.99
1.11
1.46
0.79

Table 5.11: Comparison between MA37 and MA46 on the number of indices anticipated in analyse and
stored in factorize for each problem. Also compared is the length of the array for the
triangular factors and stack as anticipated in analyse and needed in factorize. The results are
obtained on DEC 3000-400. Default options are used for both packages.

ANALYSE FACTORIZE

Size of factorization (thousands) Size of factorization (thousands)

integers reals, including stack integers reals, including stack

Problem MA46 MA37 MA46 MA37 MA46 MA37 MA46 MA37

1
2
3
4
5
6
7
8
9
10
11
12
13
14

98
15
19
19
11

136
40
6

10
22
4

44
150
16

201
29
39
40
24

296
82
13
21
47
8

94
307
32

4,820
565
851
231
149

6,156
2,719

135
149
480
68

1,100
12,476

133

4,848
563
903
279
154

10,781
3,395

153
198
541
83

1,465
14,815

133

108
18
22
21
15

154
44
7

13
26
5

50
166
18

201
29
39
40
24

296
82
13
21
47
8

94
307
33

4,854
570
858
235
152

6,211
2,738

136
153
485
69

1,118
12,545

135

4,839
566
907
281
156

10,445
3,355

154
199
542
84

1,451
14,713

135
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5.3 Comparison with MA37
To evaluate the efficiency of the new code we have compared it to the MA37 package [7] from the

Harwell Subroutine Library [2].

The main differences between MA37 and MA46 are that MA37:

(a) creates an explicit graph structure based on variables and an assembled coefficient matrix,

(b) makes no use of Level 2 and Level 3 BLAS in the computationally expensive parts of the
code,

(c) always holds both row and columns indices of frontal matrices, and

(d) does not reorder siblings in the tree to reduce the size of the stack.

Our numerical experiments were run with default options for both codes. We have always com-

pared MA37 to the best result for MA46, regardless if this result was obtained with vendor ver-

sions of the BLAS or with our modified Fortran 77 BLAS. This applies for DEC 3000-400 and

Cray Y-MP. MA37 does workspace compressions in the ANALYSE and FACTORIZE steps only

when this is necessary and in the tests we made sure that the integer and real work arrays were

great enough to avoid this. We did not make provisions to avoid workspace compressions in the

ANALYSE step of MA46, and the FACTORIZE step of MA46 always does a compression of the

workspace after a block factorization step is finished.

Table 5.10 shows the CPU-time consumptions on all three computers for MA37 in ANALYSE,

FACTORIZE and SOLVE divided by the corresponding results obtained by MA46 and shown in

Tables 5.5, 5.6, 5.7, 5.8 and 5.9 respectively.

We see that MA46 is faster than MA37 in all the three steps for most of the problems considered

on all three computers. In ANALYSE, only problem 14 is performed faster by MA37 than MA46.

The reason is that this is a problem with many elements, which makes the ANALYSE step of

MA46 expensive. In FACTORIZE, MA46 performs better than MA37 for all the problems.

Table 5.11 shows a comparison between MA46 and MA37 on the size of the integer array needed

for the triangular factors, and the length of the work array needed in FACTORIZE. We show both

the sizes anticipated by ANALYSE on the assumption of no interchanges and the actual sizes.

Almost all the results favour MA46. The ordering routine of MA37 is a standard minimum degree

ordering that is comparable with the one obtained for ICNTL(5)=-1 in MA46 except that it uses

true degree instead of external degree. The results from the analysis obtained by MA37 on the

problems reflects this since they are like the results shown in Table 5.3. The difference in the

length of the work array for the two routines must therefore be attributed to the requirement for

the stack that is needed in MA37B. This is consistent with the results shown in Table 5.2 where

we saw that the stack was much larger without reordering of siblings.

We have recorded the numerical errors in the resulting solution and due to the fact that MA46
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always chooses the largest element in a column as the next pivot, we get reduced errors compared

with MA37. The reduced error in the solution for MA46 over MA37 is maintained on all the three

platforms that we considered. Table 5.12 shows the errors as computed on DEC 3000-400 for

three vectors stored inB, i.e. NRHS=3, with components B(i, 1) = i, B(i, 2) = 1, and B(i, 3) a

pseudo-random number in [-1,1] generated by the Harwell Subroutine Library code FA04 [2].

The relative numerical errors are computed as:

, (5.1)

where the max norm is used andb, x refer to one column inB andX, respectively.

6 Summary and conclusions
This report has described the implementation of a new code for the solution of sets of linear equa-

tions where the matrices and the structure are of finite-element form. We have given a brief

description of the input philosophy and the design of the code. The numerical experiments show

that the code performs well and that it is faster than the code MA37 from the Harwell Subroutine

Library [2].

7 Acknowledgement
We would like to thank Iain Duff, Nick Gould and Jennifer Scott for useful discussions and

remarks that have improved the report.

Table 5.12: Comparison between MA37 and MA46 on the relative numerical errors. The results are
obtained on DEC 3000-400. Default options are used for both packages.

right-hand side 1
B(i,1)=i

right-hand side 2
B(i,2)=1

right-hand side 3
B(i,3)=[-1,1]

Problem MA46 MA37 MA46 MA37 MA46 MA37

1
2
3
4
5
6
7
8
9
10
11
12
13
14

4.3E-14
1.3E-14
3.1E-14
7.8E-15
6.5E-15
2.5E-13
4.5E-14
6.4E-15
3.0E-14
1.4E-14
1.6E-14
1.8E-14
1.1E-13
1.0E-14

2.4E-13
4.8E-14
7.4E-14
5.9E-14
1.2E-14
3.6E-13
3.3E-13
3.9E-14
3.5E-14
1.2E-13
3.1E-14
1.1E-13
4.1E-13
8.5E-14

3.9E-14
1.2E-14
2.4E-14
2.6E-14
9.7E-15
7.6E-14
7.3E-14
9.7E-15
9.4E-15
1.3E-14
2.5E-14
2.9E-14
1.6E-13
1.2E-14

2.2E-13
4.6E-14
1.3E-13
5.6E-14
2.3E-14
2.6E-12
3.7E-13
6.7E-14
4.1E-14
3.9E-14
1.9E-14
1.4E-13
1.6E-12
4.9E-14

4.7E-14
2.1E-14
3.9E-14
7.1E-15
8.5E-15
4.8E-13
6.3E-14
8.0E-15
6.0E-15
2.7E-14
1.0E-14
3.2E-14
1.6E-13
6.9E-15

2.8E-13
7.6E-14
1.2E-13
4.4E-14
3.7E-14
2.8E-12
2.4E-13
1.9E-14
1.9E-14
4.4E-14
2.4E-14
1.4E-13
9.7E-13
4.7E-14

ε b Ax−
Ax

=
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Appendix A. Auxiliary r outines and data structures used in MA46
This appendix describes the auxiliary routines and the main internal data structures of the MA46

package. The package consists of two set of subroutines MA46 and MA56. The former includes

the user-callable routines along with auxilliary routines, while the latter includes only auxilliary

routines needed by the package.
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Tables A.1 and A.2 list the auxiliary routines of the MA46 package and explain their tasks.

Table A.1: The MA46* auxiliary routines.

Routine Task

MA46D Given a permutation, it computes the inverse permutation.

MA46E Given an element-node connectivity structure, it computes the corresponding node-element
connectivity structure.

MA46F It computes a minimum-degree ordering of the nodes.

MA46G It computes the nodal elimination tree and the corresponding postordering.

MA46H It computes the length of each nodal column in the triangular factorL, or the row length of the
triangular factorU.

MA46J Given the nodal postordered elimination tree and the column length of the triangular factorL, it
computes the corresponding fundamental supernode partition of the nodes. It also computes
the adjacency set representation of the supernode elimination tree.

MA46K Given the supernode elimination tree, it computes an optimal or a standard depth-first pos-
torder of the supernode elimination tree.

MA46L It updates the permutation and the supernode elimination tree after a depth-first search of the
supernode elimination tree as performed by MA46K.

MA46M It computes the number of assembly steps, the assembly sequence of the elements, the element
assembly tree, and does the final updates of the permutation vectors and the supernode parti-
tion. In addition it computes factorization statistics.

MA46N It performs a symbolic assembly step of generated elements in a block elimination step.

MA46O It performs a symbolic assembly step of original finite elements in an assembly step.

MA46P It finalizes the index information needed for a supernode in a block elimination step.

MA46Q It performs coefficient assembly of generated elements into the frontal matrix in a block elimi-
nation step.

MA46R It performs coefficient assembly of original finite elements into the frontal matrix in an assem-
bly step.

MA46S It performs pivot search in a block elimination step.

MA46T It prints triangular factors to standard output unit defined by ICNTL(2).

MA46U It performs the block forward substitution steps of the right-hand sides.

MA46V It checks the forward solved right-hand sides for consistency with the matrix system in case of
a rank deficient system.

MA46W It performs the block backward substitution steps of the right-hand sides.

MA46X Called from MA46T to print an M times N matrix to standard output defined by ICNTL(2).

MA46Y It copies an integer vector from vector IX to vector IY.

MA46Z It updates the permutation given a permutation increment.



RAL-TR-96-010

26

Table A.2: The MA56* auxiliary routines.

Routine Task

MA56A It initializes data structures for the minimum-degree routine.

MA56B It updates the graph representation due to the elimination of a minimum-degree node.

MA56C It updates the degree of nodes after a multiple elimination step in the minimum-degree routine.

MA56D After the nodes are eliminated in the minimum-degree routine, it computes the final permuta-
tion of the nodes.

MA56E It computes the nodal elimination tree.

MA56F It computes the first child-sibling vectors of the nodal elimination tree to facilitate fast postor-
dering of the tree.

MA56G It postorders the nodal elimination tree by a depth-first search and computes the corresponding
permutation increment

MA56H It updates the permutation with the increment computed by the depth-first search of the nodal
elimination tree.

MA56I It computes the adjacency set representation of an elimination tree represented as a parent vec-
tor.

MA56J It sorts a list of integers in decreasing order of their keys using insertion sort.

MA56K It computes the stack storage for a non-trivial supernode, i.e. an updated postordering of the
supernode elimination tree.

MA56L Given the information computed by MA56K, it computes a postordering of the supernode
elimination.

MA56M It sorts a list of integers into ascending order.

MA56N It compresses lists held by MA56B for the generated elements and adjusts the pointers.

MA56O It computes the leftmost unexplored children of a node in an elimination tree in connection
with depth-first search of the tree.

MA56P It computes the right sibling of a child in an elimination tree in connection with depth-first
search of the tree.
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Tables A.3, A.4 and A.5 show the structure of the calls in MA46A, MA46B and MA46C, includ-

ing the calls to the BLAS routines that are used in the package.

Table A.3: Structure of the calls in MA46A.

User called 1. Level 2. Level 3. Level

MA46A MA46D

MA46E

MA46F MA56A

MA56B MA56N

MA56C

MA56D

MA46G MA56E

MA56F

MA56G

MA56H

MA46H

MA46J MA56I

MA46K MA56J

MA56K MA46Y

MA56L MA56O

MA56P

MA46L MA46D

MA46Y

MA56M

MA46Z

MA46M
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Table A.4: Structure of the calls in MA46B.

User called 1. Level 2. Level

MA46B MA46D

MA46N

MA46O

MA46P

MA46Q

MA46R

MA46S I_AMAX

_SWAP

_SCAL

_GER

_TRSM

_GEMM

MA46T MA46X

Table A.5: Structure of the calls in MA46C.

User called 1. Level 2. Level

MA46C MA46T MA46X

MA46U _TRSM

_GEMM

MA46V

MA46W _GEMM

_TRSM
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Table A.6 defines the parameter array MNPAR that is stored in the first 50 locations of KEEPA.

Table A.6: Definition of the sub array MNPAR stored in the first 50 locations of KEEPA. The length of
MNPAR currently in use is 31.

Location Name Definition

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

STAGE

NB

NSUPER

NACTIV

NACTEQ

NNODS

NEQNS

NELS

NELNOD

NCOMPR

MAXSUP

MAXFRT

NOFSUB

NZEROU

NZSTCK

DPSTCK

KPUSED

MAXLIW

NELACT

LKEEPB

LFACT

LKEEPB

LFACT

TPSTCK

MAXFRT

MAXSUP

NOFSUB

NZEROU

NZSTCK

NELIMS

MAXLA W

Stage control.

Number of assembly steps.

Number of block factorization steps.

Number of nodes that is active ascomputed by MA46A.

Number of equations as computed by MA46A.

Number of nodes as input by the user.

Number of equations as input by the user.

Number of elements as input by the user.

Length of the implicit graph representation arrays.

Number of workspace compressions performed by MA46F.

The largest supernode as computed by MA46A. (Block factorization node).

Order of the largest front matrix as computed MA46A.

Number of indices needed to represent the factors as computed by MA46A.

Size of the upper triangular factor as computed by MA46A.

Size of the stack as computed by MA46A.

Depth of the stack.

Length of KEEPA after MA46A.

The maximum length of IW that was used in MA46A.

Number of elements that actually participate in the assembly.

Length of KEEPB as anticipated in MA46A.

Length of FACT for triangular factors and stack as computed by MA46A.

Length of KEEPB after factorization.

Length of FACT for triangular factors.

Top of the stack.

Order of the largest front matrix after factorization.

The largest supernode after factorization. (Block factorization node).

The number of indices needed to represent the factors.

The number of real storage locations needed to hold the upper triangular fac-
tor U.

The maximal number of real storage locations needed to hold the stack.

Number of eliminations performed by MA46B.

Minimum length of FACT for successful factorization.
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Table A.7 shows the structure of KEEPA on exit from MA46A, i. e. the form of the array as

passed to MA46B and MA46C, and Table A.8 explains the contents of each sub-array except for

MNPAR that is explained in Table A.6.

From Tables A.6 and A.8 we have:

length of KEEPA on entry to MA46A=NELS+7*NNODS+55, and:

length of KEEPA on exit from MA46A=NELACT+4*NSUPER+2*NB+NNODS+55.

Table A.7: Structure of KEEPA on exit from MA46A.

KEEPA MNPAR XELSEQ ELSEQ BSPERM XSUPER

KEEPA XSIBL SIBL SUPLEN XBLOCK

Table A.8: Definition of the sub-arrays that are stored in KEEPA on exit from MA46A.

Sub-array Length on entry Length on exit Definition

XELSEQ NNODS+1 NB+1 Pointer to the list of original finite elements stored in
ELSEQ that are needed in the assembly step i, for
i=1:NB.

ELSEQ NELS NELACT The lists of original finite elements that are needed in
each assembly step.

BSPERM NNODS NNODS The new to old permutation of the nodes from the final
order of the nodes computed by MA46A to the order of
the nodes as input by the user.

XSUPER NNODS+1 NSUPER+1 The supernode partition related to the variables.

XSIBL NNODS+1 NSUPER+1 Pointer to the supernode elimination tree adjacency set
that is stored in SIBL for each supernode.

SIBL NNODS+1 NSUPER+1 The lists of supernode children belonging to supernode
i, for i=1:NSUPER.

IP=SIBL[NSUPER+1] gives the number of supernodes
that are roots of connected trees in the supernode elimi-
nation tree, and these roots are found in locations
SIBL[NSUPER-IP+1] to SIBL[NSUPER].

SUPLEN NNODS NSUPER The column length of each supernode in the triangular
factorL or the length of each row in the triangular fac-
tor U.

XBLOCK NNODS+1 NB+1 The assembly tree partition of the supernodes. I.e. the
structure of the assembly tree.
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Tables A.9 shows the structure of KEEPB on exit from MA46B, and Table A.10 explains the con-

tent of each sub-array.

a. FLIMIT=3*NSUPER+NOFSUB+NACTEQ, see the explanation of these quantities in Table A.6.
b. For a diagonally dominant matrix we have MAXSUB=3*NSUPER+NOFSUB where NSUPER and MAX-
SUB are as anticipated by MA46A.

Table A.9: Structure of KEEPB on exit from MA46B.

KEEPB XFINDX FINDX

Table A.10: Definition of the sub-arrays that are stored in KEEPB on exit from MA46B.

Sub-array Length on entry Length on exit Definition

XFINDX NSUPER NSUPER XFINDX[ i] points to the start in FINDX for the index
information stored for supernode, or block elimination
step i.

FINDX FLIMITa MAXSUBb See Table A.11 for a definition of the quantities that are
stored for each supernode, or block elimination step.

Table A.11: Initial, intermediate and final structure of FINDX for supernode, or block elimination stepi
in routine MA46B.

A[ i] B[i] C[i] Row indices for [i] Column indices for [i]

A[ i] (i) it is set to the anticipated size of the front matrix for supernodei as computed in
MA46A.

(ii) after symbolic assembly of generated element indices it is updated with the number
of delayed eliminations received from its incoming children, i.e. it holds the active size
of the new frontal matrix. If at least one child had negative value of A[child], then A[i] is
also negated to signal that column indices for the variables in the supernode need be
stored as well as the row indices.

(iii) after numerical eliminations in supernode i it is not changed if A[i] was already set
to a negative value in step (ii), if it was positive from (ii) it is set to a negative value if at
least one off-diagonal pivot was selected.

B[i] (i) it is set to the anticipated number of delayed eliminations to be received from the chil-
dren of the supernode, i.e. B[i]=0.

(ii) after symbolic assembly of generated elements it is incremented with the total
number of delayed eliminations that have been received from its incoming children
which is its final form.

C[i] (i) it is set to the size of the supernode, i.e. to the number of eliminations to be performed
in the supernode, i.e. C[i]=XSUPER[i+1]-XSUPER[i].

(ii) after symbolic assembly it is set to the number of indices found so far.

(iii) after elimination it holds the number of eliminations performed.

Row indices for [i] After elimination of supernode, or block elimination step i it holds the global row indices
in ascending order for the supernode and the column of L below the supernode.
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Column indices for [i] After elimination of supernode, or block elimination stepi it is not stored if A[i] is posi-
tive. If A[i] is negative it holds the column indices for the pivots found during the elimi-
nation of the supernode. The number of pivots found is C[i].

Figure A.1: The figure shows a frontal matrix after the eliminations have been carried out and shows the
row and column indices that are saved when at least one off-diagonal pivot was selected.

Table A.11: Initial, intermediate and final structure of FINDX for supernode, or block elimination stepi
in routine MA46B.

The block pivot.

The pivot rows and columns.

The generated element.

The row and column indices that are
saved.
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Table A.12 defines the contents of FACT on exit from MA46B and Figure A.2 shows the finalized

L andU blocks and indicates the workspace compression that is performed in MA46 after each

supernode, or block elimination step has been carried out.

The workspace compression is done as follows: (i) theL block is moved from the frontal matrix to

the final storage for supernode submatrices, (ii) theU block is moved and compressed, and (iii)

the generated element is moved to the new stack top and compressed at the same time. It is the

space between the column of the finalizedU block segments, or between the column segments of

the generated element, that is taken into account and freed after every elimination step.

Table A.12: The contents of FACT on exit from MA46B. TheL/U factors are stored as a sequence of
submatrices.

FACT L/U[1] L/U[2] L/U[3] L/U[4] L/U[5] . . . L/U[NSUPER]

Figure A.2: TheL andU blocks of the finalized frontal matrix.

TheL block.

TheU block.

The generated element.
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Appendix B. The specification document for MA46
In this appendix, we include a copy of the specification document for MA46. The code itself is

available from AEA Technology, Harwell; the contact is Dr Scott Roberts or Mr Richard Lee,

AEA Technology, Bldg 552, Harwell, Didcot, Oxon OX11 0RA, tel (44) 1235 434714 or (44)

1235 435690, Fax (44) 1235 434136, email: scott.roberts@aeat.co.uk or richard.lee@aeat.co.uk,

who will provide details of price and conditions of use.



HSL MA46
HARWELL SUBROUTINELIBRARY SPECIFICATION Release12 (1995)

1 SUMMARY

To solveone or more set of sparseunsymmetric linear equationsAx = B from finite-element applications,
using a multifrontal elimination scheme.Thematrix A mustbeinput by elementsandbeof theform

m
(k)A = A∑

k=1

(k)whereA is nonzeroonly in thoserowsandcolumnsthatcorrespondto variablesof thenodesof the k-th element.
Optionally,theusermaypassanadditionalmatrix A of coefficientsfor thediagonal.A is thenof theformd

m
(k)A = A +A∑ d

k=1

Theright-handsideB shouldbeassembledthroughthesummation
m

(k)B = B ,∑
k=1

beforecalling thesolutionroutine.

ATTRIBUTES — Versions:MA46A, MA46AD. Calls: MA56, _GEMM, _GEMV, _GER, I_AMAX, _SCAL, _SWAP, _TRSM,
_TRSV. Origin: A.C. Damhaug,Det NorskeVeritasResearchAS andJ.K. Reid,RutherfordAppletonLaboratory.
Date: September1995.Conditions on external use: (i), (ii), (iii) and(iv).

2 HOW TO USE THE PACKAGE

2.1Argument lists and calling sequences

Therearefour routinesthatcanbecalledby theuser:

(a) MA46I/ID setsdefaultvaluesfor thecontrolparametersfor theotherroutines.

(b) MA46A/AD acceptsthe matrix patternby element-nodeconnectivity lists and choosesdiagonalpivots for
Gaussianeliminationto preservesparsitywhile disregardingnumericalvalues.It alsoconstructsinformation
for the numericalfactorizationto be performedby MA46B/BD. The usermay provide a pivot sequenceby
meansof nodenumbers,in which casethenecessaryinformationfor MA46B/BD will begenerated.

(c) MA46B/BD factorizesthe finite-elementmatrix A by NB calls, whereNB is the numberof assemblysteps
computedby routineMA46A/AD. Forall theelementsinvolving anode,thevariablesat thenodemustbein the
sameorder.Theactualpivot sequencemaydiffer from thatspecifiedby MA46A/AD or providedby theuser,
dueto numericalstability considerations.

(d) MA46C/CD uses the factors generatedby MA46B/BD to solve the set of linear equations.The solution
overwritestheright-handside.

Normally, theuserwill call MA46I/ID prior to thecall of anyotherroutinein thepackage.If non-defaultvalues
for anyof thecontrolparametersarerequired,theyshouldbesetimmediatelyafter thecall to MA46I/ID. A call to
MA46C/CD mustbeprecededby acall to MA46B/BD, which in turnmustbeprecededby acall to MA46A/AD. Sincethe
information passedfrom one routine to the next is not corruptedby the second,severalsequencesof calls to
MA46B/BD for matriceswith thesamesparsitypatternbutdifferentvaluesmayfollow asinglecall to MA46A/AD, and
similarly MA46C/CD canbeusedrepeatedlyto solvefor differentsetsof right-handsidesB.

2.1.1To setdefault valuesfor control parameters

The single precision version
CALL MA46I(CNTL,ICNTL)

The double precision version
CALL MA46ID(CNTL,ICNTL)

CNTL is a REAL (DOUBLE PRECISION in theD version)arrayof length2 thatneednot besetby theuser.On return
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it containsdefaultvalues.For further informationseeSection2.2.

ICNTL is anINTEGER arrayof length10 thatneednot besetby theuser.On returnit containsdefaultvalues.For
further informationseeSection2.2.

2.1.2To perform ordering and generateassemblytree

The single precision version

CALL MA46A(NELS,NNODS,NEQNS,IPIELT,IELT,LIELT,IVAR,NB,KEEPA,LKEEPA,
$ IW,LIW,ICNTL,RINFO,INFO)

The double precision version

CALL MA46AD(NELS,NNODS,NEQNS,IPIELT,IELT,LIELT,IVAR,NB,KEEPA,LKEEPA,
$ IW,LIW,ICNTL,RINFO,INFO)

NELS is anINTEGER variablethatmustbesetby theuserto thelargestintegerthatis usedto indexa finite element.
It is not alteredby theroutine.

NNODS is anINTEGER variablethatmustbesetby theuserto thelargestintegerthatis usedto indexafinite-element
node.It is not alteredby theroutine.

NEQNS is anINTEGER variablethatmustbesetby theuserto thenumberof variables.It is notalteredby theroutine.

IPIELT is anINTEGER arrayof lengthNELS+1. It mustbesetby theusersothat thenodesconnectedto elementI
arein IELT(IPIELT(I)), IELT(IPIELT(I)+1), ..., IELT(IPIELT(I+1)–1) for I = 1, 2, ... , NELS. It
is not alteredby theroutine.

IELT is anINTEGER arrayof lengthLIELT thatmustbesetby theuserto containthelistsof nodesin eachelement.
Its lengthmustbeat leastIPIELT(NELS+1)–1. It is not alteredby theroutine.

LIELT is anINTEGER variablethatmustbesetby theuserto thelengthof IELT. It is not alteredby theroutine.

IVAR is anINTEGER arrayof lengthNNODS thatmustbesetby theuser.It givesthenumberof variablesfor each
node.It may containvaluesequal to zero.A node,I, I = 1, 2, ... , NNODS that hasIVAR(I)=0 is not
processed.It is not alteredby theroutine.

NB is anINTEGER variablethatneednot besetby theuser.On exit it holdsthenumberof assemblystepsneeded
to factor thematrix. This variablemustbepreservedbetweena call to MA46A/AD anda sequenceof calls to
MA46B/BD.

KEEPA is anINTEGER arrayof lengthat leastNELS+7*NNODS+55. If theuserwishesto provideanorderingfor the
nodes,theindexof thenodein positioni mustbeplacedin KEEPA(i), i = 1, 2, ... , NNODS andICNTL(4)
mustbe setto 1. The given orderis likely to be replacedby onethat is equivalentapartfrom reorderingof
additionsandsubtractions.Otherwise,KEEPA neednotbesetby theuser.Onexit,KEEPA contains,in locations
KEEPA(51:51+NB), a pointerarrayinto KEEPA for thesequenceof finite elementsneededin eachassembly
step.For assemblystep,IBL, IBL = 1, 2, ... , NB, the index of the first elementrequiredby MA46B/BD is
found in location KEEPA(KEEPA(IBL)+NB+51) and the last element index is found in location
KEEPA(KEEPA(IBL+1)–1+NB+51). The number of elements needed in assembly step IBL is thus
KEEPA(50+IBL+1)–KEEPA(50+IBL). KEEPA must be preservedbetweena call to MA46A/AD and other
routines.

LKEEPA is anINTEGER variablethatmustbesetby theuserto thelengthof KEEPA. It is not alteredby theroutine.

IW is anINTEGER arrayof lengthLIW thatneednot besetby theuser.It is usedasworkspaceby theroutine.Its
length must be at least max(l ,l ), where l = 3*NELS+2*NNODS+4*LIELT+8*NEQNS+2 (or1 2 1
NELS+NNODS+2*LIELT+2 if thepivot orderis specifiedin KEEPA), andl = NELS+11*NNODS+2*LIELT+5.2

LIW is anINTEGER variablethatmustbesetby theuserto thelengthof IW. It is not alteredby theroutine.

ICNTL is anINTEGER arrayof length10 thatcontainscontrolparametersandmustbesetby theuser.Defaultvalues
for thecomponentsmaybesetby a call to MA46I/ID. Detailsof thecontrolparametersaregiven in Section
2.2. It is not alteredby theroutine.

RINFO is a REAL (DOUBLE PRECISION in theD version)arrayof length6 thatneednot besetby theuser.For the
meaningof thevaluesof componentsof RINFO setby MA46A/AD, seeSection2.2.

INFO is anINTEGER arrayof length16 thatneednot besetby theuser.On returnfrom MA46A/AD, a valueof zero
for INFO(1) indicatesthat the routinehasperformedsuccessfully.For nonzerovalues,seeSection2.3. For
themeaningof thevalueof othercomponentsof INFO setby MA46A/AD, seeSection2.2.
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2.1.3To factorize a matrix

To factorizethematrix,MA46B/BD uses‘reversecommunication’which meansthattheroutinemustbecalledby
theuserNB times,whereNB is thenumberof assemblystepsdeterminedby MA46A/AD. In eachcall, theusermust
passa specifiedsequenceof finite-elementcoefficientmatricesto theroutine.

The single precision version

CALL MA46B(IBL,NELS,NNODS,IPIELT,IELT,LIELT,IVAR,KEEPA,LKEEPA,KEEPB,
$ LKEEPB,ELMAT,A,LA,AD,LAD,IW,LIW,CNTL,ICNTL,RINFO,INFO)

The double precision version

CALL MA46BD(IBL,NELS,NNODS,IPIELT,IELT,LIELT,IVAR,KEEPA,LKEEPA,KEEPB,
$ LKEEPB,ELMAT,A,LA,AD,LAD,IW,LIW,CNTL,ICNTL,RINFO,INFO)

IBL is anINTEGER variablethatmustbesetby theuserto thecurrentassemblystep.Callsto theroutinemustbein
theorderIBL = 1, 2, ... , NB . It is not alteredby theroutine.

NELS , NNODS, IPIELT, IELT, LIELT andIVAR areasin theprecedingcall to MA46A/AD andtheir valuesmustnot
havechanged.Theyarenot alteredby theroutine.

KEEPA is anINTEGER arrayof lengthLKEEPA. It mustbeason exit from MA46A/AD. It is not alteredby theroutine.

LKEEPA is anINTEGER variablethatmustbesetby theuserto the lengthof KEEPA. It mustbeat leastasgreatas
INFO(2) asoutputfrom MA46A/AD (seeSection2.2). It is not alteredby theroutine.

KEEPB is anINTEGER arrayof lengthat leastLKEEPB that neednot be setby the user.It is usedasworkspaceby
MA46B/BD andon exit holdsintegerindexinformationon thematrix factors.It mustbepreservedby theuser
betweenthecalls to this routineandsubsequentcalls to MA46C/CD.

LKEEPB is anINTEGER variablethatmustbesetby theuserto the lengthof KEEPB. It mustbeat leastasgreatas
INFO(8) as output from MA46A/AD (seeSection2.2). A greatervalue is recommendedbecausenumerical
pivoting mayincreasestoragerequirements.It is not alteredby theroutine.

ELMAT is a REAL (DOUBLE PRECISION in the D version)array that must be set by the userto hold the element
coefficientmatricesfor this assemblystep,columnby columnin the sequencedefinedby KEEPA(FIRST),
KEEPA(FIRST+1), ..., KEEPA(LAST), where FIRST = KEEPA(IBL)+51+NB and LAST =
KEEPA(IBL+1)+50+NB. It is not alteredby theroutine.

A is a REAL (DOUBLE PRECISION in theD version)arrayof lengthLA thatneednot beseton the first entry to
MA46B/BD. It mustbepreservedbetweenthecallsto MA46B/BD andfor subsequentcallsto MA46C/CD. Onexit
from eachintermediatecall,A will hold theentriesof thefactorsof thematrixA thathavebeencompleted.On
exit from thefinal call, A holdsthefactorsneededby MA46C/CD.

LA is anINTEGER variablethatmustbesetby theuserto thelengthof A. It mustbeat leastasgreatasINFO(9)
as output from MA46A/AD (seeSection2.2). It is advisableto allow a greatervalue becausethe use of
numericalpivoting mayincreasestoragerequirements.It is not alteredby theroutine.

AD is aREAL (DOUBLE PRECISION in theD version)arrayof lengthLAD thatneednotbesetif ICNTL(10) hasits
defaultvalue(seeSection2.2).Otherwise,its NEQNS first positionsmusthold thecoefficientsfor thediagonal
of A. It is assumedby the routinethat variablesat nodesarestoredconsecutivelyandthat nodesarein the
initial order.MA46B/BD alters the order of the entriesaccordingto the tentativepivot order computedby
MA46A/AD.

LAD is anINTEGER variablethatmustbesetby theuserto thelengthof AD. It mustbesetto at least1 if ICNTL(10)
hasits defaultvalue.Otherwise,it mustbesetto a valueasleastasgreatasNEQNS asinput to MA46A/AD.

IW is anINTEGER arrayof lengthLIW thatneednot besetby theuser.It is usedasworkspaceby theroutine.

LIW is an INTEGER variable that must be set by the user to the length of IW. It must be at least as greatas
3*(NNODS+NEQNS)+1. NNODS andNEQNS areasinput to MA46A/AD. It is not alteredby theroutine.

CNTL is a REAL (DOUBLE PRECISION in theD version)arrayof length2 thatcontainscontrolparametersandmust
besetby theuser.Defaultvaluesfor thecomponentsmaybesetby a call to MA46I/ID. Detailsof thecontrol
parametersaregivenin Section2.2. It is not alteredby theroutine.

ICNTL is anINTEGER arrayof length10 thatcontainscontrolparametersandmustbesetby theuser.Defaultvalues
for thecomponentsmaybesetby a call to MA46I/ID. Detailsof thecontrolparametersaregiven in Section
2.2. It is not alteredby theroutine.
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RINFO is a REAL (DOUBLE PRECISION in theD version)arrayof length6 thatneednot besetby theuser.For the
meaningof thevaluesof componentsof RINFO setby MA46B/BD, seeSection2.2.

INFO is anINTEGER arrayof length16 thatneednot besetby theuser.On returnfrom MA46B/BD, a valueof zero
for INFO(1) indicatesthat the routinehasperformedsuccessfully.For nonzerovalues,seeSection2.3. For
themeaningof thevalueof othercomponentsof INFO setby MA46B/BD, seeSection2.2.

2.1.4To solveequations,given the factorization

The single precision version

CALL MA46C(IVAR,NNODS,KEEPA,LKEEPA,KEEPB,LKEEPB,A,LA,B,LDB,NRHS,
$ IW,LIW,RW,LRW,ICNTL,INFO)

The double precision version

CALL MA46CD(IVAR,NNODS,KEEPA,LKEEPA,KEEPB,LKEEPB,A,LA,B,LDB,NRHS,
$ IW,LIW,RW,LRW,ICNTL,INFO)

NNODS andIVAR areasin the precedingcall to MA46A/AD andtheir valuesmustnot havechanged.They arenot
alteredby theroutine.

KEEPA is an INTEGER array of length at leastLKEEPA. The first INFO(2) componentsmust be as on exit from
MA46B/BD.

LKEEPA is anINTEGER variablethatmustbesetby theuserto the lengthof KEEPA. It mustbeat leastasgreatas
INFO(2) asoutputfrom MA46A/AD (seeSection2.2). It is not alteredby theroutine.

KEEPB is an INTEGER array of length at leastLKEEPB. The first INFO(8) componentsmust be as on exit from
MA46B/BD.

LKEEPB is anINTEGER variablethatmustbesetby theuserto the lengthof KEEPB. It mustbeat leastasgreatas
INFO(8) asoutputfrom MA46B/BD (seeSection2.2). It is not alteredby theroutine.

A is a REAL (DOUBLE PRECISION in theD version)arrayof lengthLA thatmustbeunchangedsincethecall to
MA46B/BD. It is not alteredby theroutine.

LA is anINTEGER variablethatmustbesetby theuserto thelengthof A. It mustbeat leastasgreatasINFO(9)
asoutputfrom MA46B/BD whichmaybesmallerthanpredictedin MA46A/AD (seeSection2.2).It is notaltered
by theroutine.

B is a REAL (DOUBLE PRECISION in theD version)arrayof leadingdimensionLDB, whosefirst NRHS columns
must be set by the user to hold the right-handsides.It is assumedthat the right-handside is passedto
MA46C/CD in the input nodeorderwith thevariablesat eachnodestoredconsecutively.On exit, thesolution
overwritesthe right handsideandthe initial nodalorderwith variablesat eachnodestoredconsecutivelyis
maintained.

LDB is anINTEGER variablethatmustbesetby theuserto theleadingdimensionof B. It mustbeat leastasgreatas
NEQNS. It is not alteredby theroutine.

NRHS is anINTEGER variablethatmustbesetby theuserto hold thenumberof right handsidesto besolvedin this
call to MA46C/CD. It is not alteredby theroutine.

IW is anINTEGER arrayof lengthLIW thatneednot besetby theuser.It is usedasworkspaceby theroutineand
mustbepreservedbetweenthecalls to theroutine.

LIW is an INTEGER variable that must be set by the user to the length of IW. It must be at least as greatas
NNODS+NEQNS+1. NNODS andNEQNS areasinput to MA46A/AD. It is not alteredby theroutine.

RW is aREAL (DOUBLE PRECISION in theD version)work arrayof lengthasleastasgreatasINFO(15) asoutput
from MA46B/BD, thatneednot besetby theuser.It is usedasworkspaceby theroutine.

LRW is anINTEGER variablethatmustbesetby theuserto thelengthof RW. It is not alteredby theroutine.

ICNTL is anINTEGER arrayof length10 thatcontainscontrolparametersandmustbesetby theuser.Defaultvalues
for thecomponentsmaybesetby a call to MA46I/ID. Detailsof thecontrolparametersaregiven in Section
2.2. It is not alteredby theroutine.

INFO is anINTEGER arrayof length16 thatneednot besetby theuser.On returnfrom MA46C/CD, a valueof zero
for INFO(1) indicatesthat the routinehasperformedsuccessfully.For nonzerovalues,seeSection2.3. For
themeaningof thevalueof othercomponentsof INFO setby MA46C/CD, seeSection2.2.
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2.2Arrays for control and information

Theelementsof thearraysCNTL andICNTL control theactionof MA46A/AD, MA46B/BD andMA46C/CD. Default
valuesfor theelementsaresetby MA46I/ID. Theelementsof thearraysRINFO andINFO provideinformationonthe
actionof MA46A/AD, MA46B/BD andMA46C/CD.

CNTL(1) hasdefaultvalue0.1andis usedfor pivoting by MA46B/BD. Valuesgreaterthan1.0aretreatedas1.0and
lessthanzeroaszero.

CNTL(2) hasdefaultvaluezero.If it is setto apositivevalue,MA46B/BD will treatanypivot whosemodulusis less
thanCNTL(2) aszero.

ICNTL(1) hasdefaultvalue6 andholdstheunit numberto which theerrormessagesaresent.

ICNTL(2) hasdefaultvalue6 andholdstheunit numberto whichwarningmessagesandadditionalprinting is sent.

ICNTL(3) is usedby theroutinesto controlprinting. It hasdefaultvalue1. Possiblevaluesare:

0 No printing.

1 Error messagesonly.

2 Error andwarningmessagesonly.

3 Scalarparametersanda few entriesof arrayson entryandexit from routines.

4 All parametervaluesprintedon entryandexit from routines.

ICNTL(4) hasdefaultvalue0. It mustbesetby theuserto a valueof 1 whencallingMA46A/AD if a pivot sequence
is beingsuppliedby theuserin arrayKEEPA.

ICNTL(5) hasdefaultvalue0. This optionis relatedto thenodeorderingstepof MA46A/AD. If thevalueis zeroor
less,theminimumexternaldegreealgorithmis used.Multiple eliminationis usedwhenthevalueis zero.If
valueis greaterthanzero,multiple eliminationis still in effect,but theminimumexternaldegreeconditionis
relaxed(seeSection4).

ICNTL(6) hasdefault value 0. With this value,MA46A/AD reordersthe assemblystepsto reducethe temporary
working storagerequiredby MA46B/BD while computingthe triangular factors. If ICNTL(6) is set to 1,
MA46A/AD usesa standarddepthfirst postorderingof theassemblysteps.

ICNTL(7) hasdefaultvalue0. It is ignoredin thepresentversion,but theintentionis for a laterversionto havethe
optionof amalgamatingtreenodesinto supernodesevenif this introducesadditionalstructuralzeros.

ICNTL(8) hasdefaultvalue64.MA46B/BD is written to makegooduseof thecachememoryif its sizein kBytesis
ICNTL(8). Settingthevalueto zerowill meanthat theroutineassumesthat thecomputerhasno cache.

ICNTL(9) hasdefaultvalue0. It is ignoredin thepresentversion,but theintentionis for a laterversionto havethe
optionof usingindirectaddressingin thesolvestepof MA46C/CD.

ICNTL(10) hasdefault value 0. This meansthat no diagonalmatrix A is usedto specify the diagonalmatrixd

nonzerocoefficients,otherwiseICNTL(10) mustbesetto 1.

RINFO(1) gives the number of floating-point additions used to assemblethe original finite-element matrix
coefficients.

RINFO(2) gives the numberof floating-pointadditionsusedto assemblethe generatedelementsif the tentative
pivot sequencecalculatedby MA47A/AD is acceptablenumerically.

RINFO(3) givesthesumof floating-pointadditions,multiplicationsanddivisionsusedto factorizethematrix if it
thetentativepivot sequencecalculatedby MA47A/AD is acceptablenumerically.

RINFO(4) givesthenumberof floating-pointadditionsusedto assemblethegeneratedelementsin MA46B/BD.

RINFO(5) givesthe sumof floating-pointadditions,multiplicationsanddivisionsusedto factorizethe matrix in
MA46B/BD.

RINFO(6) givesthe sumof floating-pointadditions,multiplicationsanddivisionsusedto solveonesetof linear
equationsin MA46C/CD.

INFO(1) hasthevaluezeroif thecall wassuccessful,andanegativevaluein theeventof anerror(seeSection2.3).

INFO(2) givesthe requiredsizeof KEEPA in MA46B/BD andMA46C/CD on exit from MA46A/AD if INFO(1)=0. If
INFO(1)=–1 it givestherequiredsizeof KEEPA neededin MA46A/AD.
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INFO(3) givesthe sizeof IW that hasbeenusedin MA46A/AD or in MA46B/BD if INFO(1)=0. If INFO(1)=–1 it
givestherequiredsizeof IW neededin MA46A/AD. If INFO(1)=–6 it givestherequiredsizeof IW neededin
MA46B/BD.

INFO(4) givesthenumberof entriesout of rangefor INFO(1)=–2.

INFO(5) givesthenumberof duplicateentriesfor INFO(1)=–2.

INFO(6) givesthenumberof activenodescomputedby MA46A/AD if INFO(1)=0.

INFO(7) givesthenumberof variablescomputedby MA46A/AD if INFO(1)=0.

INFO(8) givestheminimumrequiredlengthof KEEPB in MA46B/BD onexit from MA46A/AD andtherequiredlength
of KEEPB in MA46C/CD onexit from MA46B/BD if INFO(1)=0. If INFO(1)=–6 onexit from MA46B/BD it gives
theminimumrequiredlengthof KEEPB for a successfulexit.

INFO(9) givestheminimumrequiredlengthof A in MA46BD onexit from MA46A/AD andtherequiredlengthof A in
MA46C/CD on exit from MA46B/BD if INFO(1)=0. If INFO(1)=–7 on exit from MA46B/BD it gives the
minimumrequiredlengthof A for a successfulexit.

INFO(10) givestheorderof thelargestfront matrix if INFO(1)=0.

INFO(11) givesthenumberindicesin thefactorizedmatrix if INFO(1)=0.

INFO(12) givesthenumberof entriesin thefactorizedmatrix if INFO(1)=0.

INFO(13) givesthenumberof assemblystepsif INFO(1)=0.

INFO(14) givesthenumberof elementsif INFO(1)=0.

INFO(15) givesthesizeof thelargestfront matrix thatoccuredin thefactorizationstepif INFO(1)=0.

INFO(16) givesthenumberof eliminationsdoneby MA46BD if INFO(1)=0.

2.3Error diagnostics

A successfulreturn from MA46A/AD or MA46B/BD is indicatedby a value of INFO(1) equalto zero.Possible
nonzerovaluesfor INFO(1) aregivenbelow.

A nonzeroflag valueis associatedwith anerrormessagethatwill beoutputon unit ICNTL(1).

-1 Thelengthof KEEPA and/orIW is not greatenough(MA46A/AD).

-2 Entriesin KEEPA areout of rangeand/orareduplicates(MA46A/AD).

-3 NEQNS lessthanthenumberof variablescomputedby MA46A/AD or thenumberof variablescomputedis less
thanone(MA46A/AD).

-4 Indicesout of rangein IELT (MA46A/AD).

-5 NELS ≤ 0, and/orNNODS ≤ 0, and/orNEQNS ≤ 0 (MA46A/AD).

-6 Thelengthof KEEPB and/orIW is not greatenough.(MA46B/BD).

-7 Thelengthof A is not greatenough.(MA46B/BD).

-8 Error from previouslycalledroutineis not cleared(MA46B/BD or MA46C/CD).

-9 Error in thesymbolicassemblystepin MA46B/BD. SignalsthatKEEPA mayhavebeenalteredbeforethecall to
MA46B/BD.

2.4Singular systems

If the matrix is singular,MA46B/BD factorizesa nonsingularsubmatrix.A warning messageis written if the
right-handsideis not consistentwith thefactorization.

3 GENERAL INFORMA TION

Useof common: None.

Other routines called directly: MA46D/DD, MA46E/ED, MA46F/FD, MA46G/GD, MA46H/HD, MA46J/JD,
MA46K/KD, MA46L/LD, MA46M/MD, MA46N/ND, MA46O/OD, MA46P/PD, MA46Q/QD, MA46R/RD, MA46S/SD,
MA46T/TD, MA46U/UD, MA46V/VD, MA46W/WD, MA46X/XD, MA46Y/YD, MA46Z/ZD, MA56A/AD, MA56B/BD,
MA56C/CD, MA56D/DD, MA56E/ED, MA56F/FD, MA56G/GD, MA56H/HD, MA56I/ID, MA56J/JD, MA56K/KD,
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MA56L/LD, MA56M/MD, MA56N/ND, MA56O/OD andMA56P/PD.

ThepackageusestheBasicLinearAlgebraSubprogramsSGEMM/DGEMM, SGEMV/DGEMV, SGER/DGER,
SSCAL/DSCAL, ISAMAX/IDAMAX, STRSM/DTRSM andSSWAP/DSWAP.

Input/output: Error messageson unit ICNTL(1). Warningmessagesandadditionalprinting on unit ICNTL(2).
Eachhasdefaultvalue6.

4 METHOD

Themethodusedis adirectmethodusingmultifrontalsparseGaussianelimination.Thematrixstructureis passed
to the routine in the form of element-nodeconnectivity lists. The matrix analysestep (MA47A/AD) usesthis
‘unassembled’form to find the orderingof the nodes,andto build the necessaryinformationfor the factoriseand
solve steps.The orderingis donewith the minimum degreeheuristic.It is possibleto relax this by altering the
defaultvaluegivenby ICNTL(5). Settingit greaterthanzerohastheeffectof allowingnodeswith degreeICNTL(5)
greaterthanthe minimum to be eliminatedtogetherwith the nodesof minimum degree.Sometimes,this helpsto
reducethe sizeof the decomposition.The final assemblytreeis reorderedin an attemptto reducethe sizeof the
working stack. The default value of option ICNTL(6) gives this and is recommended.The factorizationstep
(MA47B/BD) is providedby theanalysestepwith a tentativepivot sequence,which it usesexceptwhenthiswouldbe
numericallyunstable.The numericalstability criterion is the relative pivot tolerancegiven by CNTL(1), with a
defaultvalueof 0.1.In general,increasingits valuegivesa morestablefactorization,but increasesin thesizeof the
decomposition.A valueof 1.0givespartialpivoting asdefinedfor thedensematrix case.

Reference A.C. Damhaugand J.K. Reid (1994) MA46, a FORTRAN code for direct solution of sparse
unsymmetriclinearsystemsof equationsfrom finite-elementapplications.RutherfordAppletonLaboratoryReport,
to appear.

5 EXAMPLE OF USE

We give an exampleof the coderequiredto solve a set of equationsusing the MA46 package.The example
illustratestheuseof MA46 whenno input orderandadditionaldiagonalmatrix A is providedby theuser.Thereared

two right-handsidesto solvefor.

We wish to solvethe following simplefinite-elementproblemin which the finite-elementmeshconsistsof four
4-nodedelementswith two degreesof freedomat eachnode.Thenodes1, 4, and7 areassumedconstrained,which
meansthat theydo not contributeto thematrix systemto besolved.

7 8 9

1 2

4 5 6

3 4

1 2 3

Theinput to theroutineis then:

NELS = 4
NNODS = 9
NEQNS = 12
LIELT = 16
IVAR = [0,2,2,0,2,2,0,2,2]
IPIELT = [1,5,9,13,17]
IELT = [4,5,8,7,5,6,9,8,1,2,5,4,2,3,6,5]

(k)Thefour elementalmatricesA (1 ≤ k ≤ 4) are

5 4. 4. 3. 4. 5. 4. 3. 4.
3. 1. 4. 3. 4. 2. 4. 3.5 6. 2. 3. 4. 6 2. 3. 6. 2. 3. 4. 7. 2.1. 5. 4. 3. 3. 2. 1. 5. 4. 3. 2. 6. ,8 2. 3. 4. 4. 9 4. 3. 2. 3. 4. 4. 3. 4.3. 2. 3. 1. 3. 1. 3. 2. 3. 1. 4. 3.

8 2. 3. 6. 1. 2. 3. 6. 2.
3. 2. 1. 5. 3. 2. 1. 5.
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2 4. 4. 3. 4. 5. 4. 3. 4.
3. 1. 4. 3. 4. 2. 4. 3.2 6. 2. 3. 4. 3 2. 3. 6. 2. 3. 4. 7. 2.1. 5. 4. 3. 3. 2. 1. 5. 4. 3. 2. 6. ,5 2. 3. 4. 4. 6 4. 3. 2. 3. 4. 4. 3. 4.3. 2. 3. 1. 3. 1. 3. 2. 3. 1. 4. 3.

5 2. 3. 6. 1. 2. 3. 6. 2.
3. 2. 1. 5. 3. 2. 1. 5.

wherethenodenumbersareindicatedby the integersbeforeeachmatrix (columnsareidentifiedsymmetricallyto
(k)rows).Thetwo right-handsidevectorsb (1 ≤ k ≤ 2) are

2 0. 2 0.
0. 0.

3 1. 3 0.
0. 1.

5 0. 5 0.
0. 0. ,

6 1. 6 0.
0. 2.

8 0. 8 0.
0. 0.

9 1. 9 0.
0. 1.

wherethenodenumbersareindicatedby theintegersbeforeeachvector.

Thefollowing programis usedto solvethis problem.
INTEGER NELS , NNODS , NEQNS , LIELT
PARAMETER ( NELS = 4, NNODS = 9, NEQNS = 12, LIELT = 16 )
INTEGER IVAR(NNODS), IPIELT(NELS+1), IELT(LIELT)
INTEGER KEEPA(200), KEEPB(200), IW(300), XELMAT(10),
$ ELSIZE(10)
INTEGER NB , LKEEPA, LIW , LKEEPB, LA , LAD ,
$ IBL , IPEL , LDB , NRHS , LRW , LAMAX ,
$ LELMAT, L1 , L2 , I , J , K ,
$ MNPAR , NODE , NVAR , XELSEQ, ELEMNT, ELSEQ ,
$ LORDER, ISTRT , ISTOP
PARAMETER ( LAMAX = 200, LELMAT = 200, MNPAR = 50 )
DOUBLE PRECISION ELMAT(LELMAT), A(LAMAX), AD(NEQNS), B(NEQNS,2),

$ RW(NEQNS),RELMAT(LELMAT)
INTEGER ICNTL(10), INFO(16)
DOUBLE PRECISION CNTL(2), RINFO(6)

NRHS=2

* ---------------------
* READ IN THE DATA SET.
* ---------------------

READ(5,'(10I3)') (IVAR(I),I=1,NNODS)
READ(5,'(10I3)') (IPIELT(I),I=1,NELS+1)
READ(5,'(10I3)') (IELT(I),I=1,LIELT)
READ(5,'(8F5.0)') (ELMAT(I),I=1,160)
READ(5,'(12F5.0)') ((B(I,J),I=1,NEQNS),J=1,NRHS)

* ------------------------------------------
* COMPUTE THE ORDER OF THE ELEMENT MATRICES.
* ------------------------------------------

DO 200 I = 1, NELS
ELSIZE(I) = 0
DO 100 J = IPIELT(I), IPIELT(I+1)-1

NODE = IELT(J)
NVAR = IVAR(NODE)
IF ( NVAR .GT. 0 )

$ ELSIZE(I)=ELSIZE(I)+NVAR
100 CONTINUE
200 CONTINUE

* -----------------------------------------
* CALL MA46ID TO INITIALIZE CONTROL ARRAYS.
* -----------------------------------------
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CALL MA46ID(CNTL,ICNTL)

* -------------------------------------------------
* ANALYSE THE SPARSITY PATTERN BY A CALL TO MA46AD.
* -------------------------------------------------

LKEEPA = NELS+7*NNODS+55
L1 = 3*NELS+2*NNODS+4*LIELT+8*NEQNS+2
L2 = NELS+11*NNODS+2*LIELT+5
LIW = MAX(L1,L2)
IF ( LKEEPA .GT. 200 .OR.

$ LIW .GT. 300 ) GOTO 8000

CALL MA46AD(NELS,NNODS,NEQNS,IPIELT,IELT,LIELT,IVAR,NB,KEEPA,
$ LKEEPA,IW,LIW,ICNTL,RINFO,INFO)
IF ( INFO(1) .NE. 0 ) GOTO 8000

* ---------------------------------
* STORE THE ELEMENT MATRICES IN THE
* SEQUENCE DETERMINED BY MA46AD.
* ---------------------------------

XELSEQ = MNPAR
ELSEQ = XELSEQ+NB+1
IPEL = 1
XELMAT(1) = IPEL
DO 600 IBL = 1, NB

DO 500 I = KEEPA(XELSEQ+IBL), KEEPA(XELSEQ+IBL+1)-1
ELEMNT = KEEPA(ELSEQ+I)
LORDER = ELSIZE(ELEMNT)
K = 0
DO 300 J = 1, ELEMNT-1

K = K + ELSIZE(J)*ELSIZE(J)
300 CONTINUE

XELMAT(IBL+1) = XELMAT(IBL) + LORDER*LORDER
DO 400 J = IPEL, IPEL+LORDER*LORDER-1

K = K + 1
RELMAT(J) = ELMAT(K)

400 CONTINUE
IPEL = IPEL + LORDER*LORDER

500 CONTINUE
XELMAT(IBL+1) = IPEL

600 CONTINUE

* ---------------------------------------
* SET UP THE STORAGE REQUIRED FOR MA46BD.
* ---------------------------------------

LKEEPA = INFO(2)
LKEEPB = INFO(8)
LA = INFO(9)
LAD = 1
LIW = 3*(NNODS+NEQNS) + 1
IF ( LKEEPA .GT. 200 .OR.

$ LKEEPB .GT. 200 .OR.
$ LA .GT. 200 .OR.
$ LIW .GT. 300 ) GOTO 8000

* -------------------------------------------
* FACTORIZE THE MATRIX BY NB CALLS TO MA46BD.
* -------------------------------------------

DO 700 IBL = 1, NB
IPEL = XELMAT(IBL)
CALL MA46BD(IBL,NELS,NNODS,IPIELT,IELT,LIELT,IVAR,KEEPA,LKEEPA,

$ KEEPB,LKEEPB,RELMAT(IPEL),A,LA,AD,LAD,IW,LIW,CNTL,
$ ICNTL,RINFO,INFO)

IF ( INFO(1) .NE. 0 ) GOTO 8000
700 CONTINUE

* ---------------------------------------
* SET UP THE STORAGE REQUIRED FOR MA46CD.
* ---------------------------------------

LKEEPB = INFO(8)
LA = INFO(9)
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LIW = NNODS + NEQNS + 1
LRW = INFO(15)
IF ( LKEEPB .GT. 200 .OR.

$ LA .GT. 200 .OR.
$ LIW .GT. 300 .OR.
$ LRW .GT. NEQNS ) GOTO 8000
LDB = NEQNS

* --------------------------------------
* SOLVE THE SYSTEMS BY A CALL TO MA46CD.
* --------------------------------------

CALL MA46CD(IVAR,NNODS,KEEPA,LKEEPA,KEEPB,LKEEPB,A,LA,B,LDB,NRHS,
$ IW,LIW,RW,LRW,ICNTL,INFO)

* ---------------------------
* PRINT THE SOLUTION VECTORS.
* ---------------------------

ISTRT = 1
DO 1000 NODE = 1, NNODS

IF ( IVAR(NODE) .GT. 0 )
$ THEN

ISTOP = ISTRT + IVAR(NODE) - 1
DO 900 J = 1, NRHS

WRITE(6,'(A,I6,A,I6)')
$ 'SOLUTION VECTOR ',J,' FOR NODE :', NODE

WRITE(6,'(45X,1PE12.5)')
$ (B(I,J),I=ISTRT,ISTOP)

900 CONTINUE
ISTRT = ISTOP + 1

ELSE
WRITE(6,'(/A,I6/)')

$ 'NO VARIABLES AT NODE :', NODE
ENDIF

1000 CONTINUE

* ----------------------
* PRINT SOME STATISTICS:
* ----------------------

WRITE(6,'(A,I6)')
$'NUMBER OF ASSEMBLY STEPS ',INFO(13)
WRITE(6,'(A,I6)')
$'NUMBER OF ELIMINATIONS PERFORMED ',INFO(16)
WRITE(6,'(A,I6)')
$'ORDER OF THE LARGEST FRONT MATRIX ',INFO(15)
WRITE(6,'(A,I6)')
$'LENGTH OF THE UPPER TRIANGULAR FACTOR ',INFO(12)
WRITE(6,'(A,I6)')
$'SIZE OF THE INDEX INFORMATION ',INFO(11)

STOP
8000 CONTINUE
* --------------------------------------
* ERROR CONDITION, PRINT THE INFO ARRAY.
* --------------------------------------

WRITE(6,'(10I5)') (INFO(I),I=1,16)
STOP
END

Theinput datausedfor this problemis:
0 2 2 0 2 2 0 2 2
1 5 9 13 17
4 5 8 7 5 6 9 8 1 2
5 4 2 3 6 5
6. 2. 3. 4. 1. 5. 4. 3.
2. 3. 4. 4. 3. 2. 3. 1.
4. 4. 3. 4. 5. 4. 3. 4.
3. 1. 4. 3. 4. 2. 4. 3.
2. 3. 6. 2. 3. 4. 7. 2.
3. 2. 1. 5. 4. 3. 2. 6.
4. 3. 2. 3. 4. 4. 3. 4.
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3. 1. 3. 2. 3. 1. 4. 3.
2. 3. 6. 1. 2. 3. 6. 2.
3. 2. 1. 5. 3. 2. 1. 5.
6. 2. 3. 4. 1. 5. 4. 3.
2. 3. 4. 4. 3. 2. 3. 1.
4. 4. 3. 4. 5. 4. 3. 4.
3. 1. 4. 3. 4. 2. 4. 3.
2. 3. 6. 2. 3. 4. 7. 2.
3. 2. 1. 5. 4. 3. 2. 6.
4. 3. 2. 3. 4. 4. 3. 4.
3. 1. 3. 2. 3. 1. 4. 3.
2. 3. 6. 1. 2. 3. 6. 2.
3. 2. 1. 5. 3. 2. 1. 5.
0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 1. 0.
0. 0. 0. 1. 0. 0. 0. 2. 0. 0. 0. 1.

Theprogramproducesthefollowing output:

NO VARIABLES AT NODE : 1

SOLUTION VECTOR 1 FOR NODE : 2
-9.80559E-01
-8.62854E-02

SOLUTION VECTOR 2 FOR NODE : 2
6.86096E-01
9.45142E-02

SOLUTION VECTOR 1 FOR NODE : 3
-6.57556E-01
-8.17085E-01

SOLUTION VECTOR 2 FOR NODE : 3
9.30706E-01
5.84907E-01

NO VARIABLES AT NODE : 4

SOLUTION VECTOR 1 FOR NODE : 5
4.80762E-01
7.99617E-01

SOLUTION VECTOR 2 FOR NODE : 5
-6.56310E-01
-4.63449E-01

SOLUTION VECTOR 1 FOR NODE : 6
9.15647E-01
1.17792E+00

SOLUTION VECTOR 2 FOR NODE : 6
-6.22518E-01
-9.86380E-01

NO VARIABLES AT NODE : 7

SOLUTION VECTOR 1 FOR NODE : 8
-7.58728E-01
-8.15599E-01

SOLUTION VECTOR 2 FOR NODE : 8
4.50445E-01
8.14764E-01

SOLUTION VECTOR 1 FOR NODE : 9
-1.54214E+00
-6.42698E-01

SOLUTION VECTOR 2 FOR NODE : 9
1.68228E+00
2.91376E-01

NUMBER OF ASSEMBLY STEPS 2
NUMBER OF ELIMINATIONS PERFORMED 12
ORDER OF THE LARGEST FRONT MATRIX 8
LENGTH OF THE UPPER TRIANGULAR FACTOR 62
SIZE OF THE INDEX INFORMATION 24
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