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ABSTRACT

We describe a method for constructing an efficient block diagonal preconditioner for

accelerating the iterative solution of general sets of sparse linear equations. Our method

uses a hypergraph partitioner on a scaled and sparsified matrix and attempts to ensure that

the diagonal blocks are nonsingular and dominant. We illustrate our approach using the

partitioner PaToH and the Krylov-based GMRES algorithm. We verify our approach with

runs on problems from economic modelling and chemical engineering, traditionally difficult

applications for iterative methods. Our approach and the block diagonal preconditioning

lends itself to good exploitation of parallelism. This we also demonstrate.
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1 Introduction

Recently a number of hypergraph partitioning algorithms have been proposed for

partitioning sparse matrices for performing matrix-vector products on a parallel

computer. These algorithms determine a row, column, or block partitioning of the

matrix such that the matrix can be distributed evenly over the processors while the

communication due to overlapping columns or rows is minimised. Among these we mention

PATOH (Çatalyürek and Aykanat 1999b), MONDRIAAN (Vastenhouw and Bisseling 2004),

and HMETIS (Karypis and Kumar 1998). Based on such a partitioning it is possible to

make an efficient parallel implementation of the matrix-vector products, which combines

good load balancing with low communication volumes. The matrix-vector product is an

important building block in many numerical algorithms.

Krylov subspace methods (Axelsson 1996, Saad 2003, van der Vorst 2003), for the

iterative solution of linear systems of equations are a prime example of such an algorithm.

These iterative methods are composed of only a few different operations: matrix-vector

multiplication, inner product operations, vector updates, and preconditioning operations.

The first three operations can be parallelised efficiently by making a row-partitioning using

a hypergraph algorithm, see (Riyavong 2003a, Çatalyürek and Aykanat 1995, Çatalyürek

and Aykanat 1999a, Vastenhouw and Bisseling 2004). The preconditioning operation,

however, requires special attention.

In this paper, we study how to preprocess and row-partition the matrix in a

way that allows us to construct an efficient preconditioner. We focus on block

diagonal preconditioners because of their suitability for parallel computing. In order

to be able to construct an efficient preconditioner the most relevant information in

the matrix must be contained in the diagonal blocks. Hypergraph partitioners that

minimize only the communication volume do not take into account the magnitude of the

entries. Consequently, small entries are considered as important as large entries. For

preconditioners, however, the magnitude of the entries influences the performance, and

one can expect that a block diagonal preconditioner performs better if large entries are

contained in the diagonal blocks.

We apply a combination of techniques to achieve this goal. Firstly, we maximise the

entries on the main diagonal of the matrix. For this we use the HSL (HSL 2004) routine

MC64 (Duff and Koster 1999, Duff and Koster 2001). Secondly, we apply the partitioner

to a sparsified matrix, from which elements smaller than a tolerance are dropped. The

tolerance is determined experimentally so that the Frobenius norm of the block diagonal

preconditioner is maximised. Although we expect that the number of iterations is decreased

by using this criterion, it is not necessarily the best one in terms of reducing the number

of iterations.

We show experimentally that block diagonal preconditioners constructed by the

preprocessing mentioned above give satisfactory results on our set of test matrices. All

examples are solved with a modest number of iterations. Moreover, although the number

of iterations usually grows when the number of processors is increased, we observe that
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this adverse effect can be reduced significantly using our dropping strategy. In all our

experiments, we use the GMRES package (Frayssé, Giraud, Gratton and Langou 2003).

In Section 2, we briefly review the preconditioned GMRES method for solving general

square matrices. In Section 3, we describe the hypergraph model of a general sparse matrix

and hypergraph partitioning. The hypergraph is the structure of choice for general sparse

matrices because it is not necessary to symmetrize the matrix as required by a simple

graph model. We describe in detail the construction of block diagonal preconditioners

in Section 4 and summarize the preprocessing algorithm. The numerical results and a

discussion of them are given in Section 5. Finally, we present some conclusions in Section 6.

2 Review of preconditioned GMRES

In this section, we review ideas of preconditioned GMRES that are necessary to analyse

the experimental results. For a full description of standard GMRES, the reference Saad

and Schultz (1986) should be consulted. Consider the right preconditioned system

AM−1z = b

M−1z = x
(2.1)

where M is the block diagonal preconditioner. The Krylov subspace is defined by

Km(AM−1, r0) = span{r0, AM−1r0, . . . , (AM−1)m−1r0}. (2.2)

We use GMRES(m), that is we restart the iteration every m steps. In the Arnoldi

process that is used to construct orthonormal basis vectors for Km(AM−1, r0), the modified

Gram-Schmidt orthonormalization scheme is usually preferred for reasons of numerical

stability but in this work we use the classical Gram-Schmidt with reorthogonalization to

construct orthonormal basis vectors. The latter scheme is the method of choice for parallel

computing (Frayssé, Giraud and Kharraz-Aroussi 1998, Giraud, Langou and Rozložńık

2002). GMRES(m) with a right preconditioner is given in the algorithm in Figure 2.1.

Step 3 of the algorithm can be rewritten as

wk = Az and Mz = vk. (2.3)

In this work, the second system is solved by factorizing M into lower and upper triangular

matrices using either of two different methods: complete decomposition using a sparse

direct method and ILU(0). We compare the results of the two methods in terms of

computing time and the number of iterations. Steps 4–5 are the classical Gram-Schmidt

orthogonalization for wk against all previous vi. To ensure that we obtain the orthogonal

basis with working precision, the resulting vectors are reorthogonalized if necessary.

To solve a linear system with GMRES in parallel, we distribute the coefficient matrix

and the vectors among the processors. We partition the matrix row-wise and assign the row

partitions to the processors. The matrix partitioning should be such that each processor

has an evenly balanced computing load and the communication among them should be

minimized. We discuss the matrix partitioning in the next section.
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1. Compute r0 = b − Ax0, β = ‖r0‖, and v1 = r0/β

2. for k = 1 : m

3. wk = AM−1vk

4. hik = (wk, vi), i = 1 : k

5. wk = wk −
∑k

i=1
vihik

6. hk+1,k = ‖wk‖2

7. vk+1 = wk/hk+1,k

8. Define Vk = [v1 . . . vk] and Hk = hij, 1 6 i 6 k + 1; 1 6 j 6 k

9. end for

10. Compute ym from miny∈Rm ‖βe1 − Hmy‖2, and xm = x0 + M−1Vmym

11. if convergence stop, else set x0 = xm and goto 1.

Figure 2.1: The GMRES algorithm

3 Partitioning a general sparse matrix
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Figure 3.1: Rectangular sparse matrix (left) and hypergraph representation (right)

Undirected graphs have many shortcomings for modelling general sparse matrices

(Hendrickson 1998, Hendrickson and Kolda 1998, Hendrickson and Kolda 2000a,

Hendrickson and Kolda 2000b). General sparse rectangular matrices, or sparse square

matrices with an unsymmetric pattern, however, can be modelled in a straightforward

way using hypergraphs. Basically, the hypergraph model H(V, N) of a sparse matrix

consists of vertices V and hyperedges or nets N . Figure 3.1 illustrates a hypergraph

representation of a general sparse matrix. The vertices represent the row indices and the

hyperedges represent the column indices. In the figure, different linestyles, which have no

common vertices, correspond to different hyperedges (columns). For example, the solid
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line with solid circle labelled 4 represents the fourth hyperedge which corresponds to the

fourth column of the matrix containing the row indices 1, 3, 6, and 7. Similarly, we can

use the column indices of the matrix as the hypergraph vertices and the row indices as

the hyperedges. Since in this work we partition the matrix rowwise, the vertices of the

hypergraph represent the row indices.

To ensure that we partition the matrix so that a good load balance is achieved while

the communication is kept low, we partition the corresponding hypergraph so that the

hyperedge-cuts are minimized and the vertices are partitioned evenly. The hyperedge-cut

corresponds directly to the communication cost between processors in parallel computing,

and therefore this quantity has to be minimized. The vertex partitioning corresponds to

the distribution of the work load among the processors and it should be evenly partitioned

for good load balancing. However, both goals cannot usually be attained at the same time,

and a trade-off has to be made between minimizing communication cost and optimizing

the load balance. This trade-off can be influenced by assigning weights to the vertices and

hyperedges. In this work we apply a simple weighting strategy in which we assign as a

weight for a hyperedge the number of entries in the corresponding column (Çatalyürek

and Aykanat 1995, Çatalyürek and Aykanat 1999a). Assigning weights to both vertices

and hyperedges before partitioning can improve the load balance, but at the expense of a

higher communication cost.

The hypergraph partitioning tool PATOH (Çatalyürek and Aykanat 1999b) is used to

partition all the test problems. We use this partitioner as a black box in our preprocessing

algorithm although we could have used other partitioners like HMETIS (Karypis and Kumar

1998) and MONDRIAAN (Vastenhouw and Bisseling 2004) as an alternative. We selected

PATOH on the basis of comparative experiments described by Riyavong (2003b), mainly

on the basis of superior partitioning times.

The partitioner uses a multilevel algorithm. This algorithm consists of three phases:

coarsening, initial partitioning, and uncoarsening and refinement. In the coarsening phase

the vertices are grouped on the basis of the criterion described by Çatalyürek and Aykanat

(1999b). Each group becomes a new vertex which has as its weight the sum of the

weight of its entries. This phase reduces the number of vertices. This phase continues

until the number of vertices becomes smaller than a predefined value, for example, a few

hundred. The next phase partitions the weighted coarsened hypergraph, using heuristic

algorithms described by Fiduccia and Mattheyses (1982) and Kernighan and Lin (1970).

This phase starts with a random partitioning. Since the size of the hypergraph is small,

the partitioning is run many times with different random starts and the best partitioning is

selected for the next step. The last phase uncoarsens the partitioned coarsest hypergraph

back to the original one. At each level of uncoarsening, the partitioning is refined by

running a Fiduccia-Matheyses based iterative improvement heuristic on the hypergraph,

starting from the initial partitioning (the coarsest hypergraph). We refer to Karypis (1998),

Çatalyürek and Aykanat (1999a), and Çatalyürek and Aykanat (1999b) for more details

and the references therein.
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4 Constructing a block diagonal matrix for parallel

computing

In this section we describe the construction of a block diagonal matrix for computation

using GMRES. This is composed of the following steps: equilibrating the matrix, dropping

entries, partitioning the sparsified matrix, and forming a block diagonal matrix. The result

of these procedures is the matrix with the following block structure

B =











B11 B12 . . . B1K

B21 B22 . . . B2K

...
...

. . .
...

BK1 BK2 . . . BKK











, (4.1)

where Bij is a submatrix, with the block diagonal matrix given by D =

diag(B11, B22, . . . , BKK).

In the first step, we will place large entries on the main diagonal. To ensure that this

is done efficiently, the matrix is scaled and permuted columnwise using the HSL routine

MC64 (Duff and Koster 1999, Duff and Koster 2001). This transforms the original matrix

into an I-matrix (Olschowka and Neumaier 1996). As a result, the diagonal blocks are

structurally nonsingular (unless the matrix is singular). Moreover, a frequent observation

is that this procedure also improves the conditioning of the matrix.

The next steps are an iterative procedure of dropping, partitioning, and constructing

a block diagonal matrix for dropping parameters varying from 0.00 to 0.50, including the

case with no drop. This determines experimentally an optimal dropping parameter in

the range mentioned above which maximizes the relative Frobenius norm of the diagonal

blocks

r =
‖D‖F

‖B‖F

. (4.2)

With this heuristic dropping criterion we expect to improve the efficiency of the

preconditioner. However, it it not necessarily the best criterion in terms of the number

of iterations. The advantage of this dropping criterion is that it is not so expensive to

compute. The purpose of dropping is to partition the sparsified matrix using only the large

entries and to distribute them evenly among the processors. To do that, entries which are

smaller than the (optimal) dropping tolerance τ are dropped before partitioning.

After dropping entries smaller than τ , we partition the sparsified matrix, obtaining

a row permutation P . Then we apply P symmetrically to the scaled matrix (not the

sparsified matrix) and this transforms it to the block matrix (4.1), the diagonal blocks of

which will be used as the preconditioner. This preprocessing phase can be summarized by

the algorithm in Figure 4.1.

Dropping entries before partitioning has the advantage that the diagonal blocks become

more dominant but it also has the disadvantage that those entries not taken into account

in the partitioning step have to be used to construct the matrix B. If these entries are not

in the diagonal blocks, they will increase the communication cost.
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INPUT matrix A0 and a number of blocks K

OUTPUT A block matrix B and optimal dropping tol τ

1. A1 = DrA0DcQ using MC64

2. For τ = 0.0 To 0.5 Step = 0.01

3. A2 = A1 excluding entries whose magnitude 6 τ

4. Partition rows of A2 into K parts, obtaining P

5. B = PA1P
T

6. Compute r using Equation (4.2)

7. If r has the largest value so far, record the value of τ

8. End For

Figure 4.1: Algorithm for determining drop tolerance.

Having constructed the matrix B, we will use it as a right preconditioner for GMRES

in a parallel implementation in the following manner. We solve

BD−1y = b, where Dx = y. (4.3)

The blocks of rows are distributed among the processors as described by Riyavong (2003a),

for example, the block [Bi1, Bi2, . . . , BiK ] is assigned to the ith processor. So solving

the block diagonal systems in the preconditioning operation in this processor amounts to

computing vi = D−1

i ui, where Di = Bii and ui, vi are the parts of the input/output vectors

assigned to the processor. The above operation can be written as

Divi = ui. (4.4)

In this work, we solve these equations accurately using the direct sparse solver

MA48 (Duff and Reid 1996) from HSL (HSL 2004), or approximately using the ILU(0)

routine from SPARSKIT (Saad 1990). If MA48 is used to evaluate the block diagonal

preconditioner, we thus solve equation (4.4) with a complete LU decomposition. The

fill-in of this decomposition can perturb the load balance among the processors and this

method can be quite expensive when compared to incomplete decomposition. However,

this method is considered because of its robustness. In ILU(0) all fill-ins are discarded. As

a consequence, the load balance is maintained. This method, however, is less robust than

a direct solution method.

5 Numerical experiments

5.1 Description of test matrices

Six matrices from different application areas are selected from Davis (2004) and Duff,

Grimes and Lewis (1997). Their characteristics are shown in Table 5.1. The first matrix,

sherman2, is from oil reservoir simulation. It arises in a three dimensional simulation model

on a 6 × 6 × 5 grid using a seven-point finite-difference approximation with 5 equations
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matrix n nnz pattern application area

sherman2 1080 23094 unsym Oil reservoir simulation

jan99jac040 13694 82842 unsym Economic model

perrel 20700 511050 sym PDE with chemistry

wang3 26064 177168 sym Semiconductor device simulation

bayer01 57735 277774 unsym Chemical process simulation

venkat25 62424 1717792 sym Unstructured 2D Euler solver

Table 5.1: Test matrices

condest

matrix orig new

sherman2 1.42E+12 4.91E+02

jan99jac040 1.31E+14 3.90E+07

perrel 4.29E+03 1.45E+04

wang3 1.07E+04 3.43E+03

bayer01 3.33E+19 2.72E+04

venkat25 1.17E+08 1.68E+04

Table 5.2: condest of matrices before and after applying MC64

and unknowns per grid block. Matrix jan99jac040 is a Jacobian matrix which arises from

using Newton’s method to solve a forward-looking macroeconomic model from the Bank of

Canada. Next, perrel is from applying a finite-volume discretization to the Navier-Stokes

equations coupled with chemistry. Matrix wang3 is from the discretization of the electron

continuity equation of a 3D diode with a piecewise doping profile in a nonuniform mesh.

Matrix bayer01 arises in chemical process simulation in the German chemical industry.

This matrix is very ill-conditioned. The last matrix, venkat25, arises in computational

fluid dynamics when solving a 2D unstructured Euler problem.

Table 5.2 compares the condition numbers (condest) of the matrices before and after

scaling using MC64. The condition numbers are computed using the HSL routine MC41

and MUMPS(Amestoy, Duff, L’Excellent and Koster 2001). We find that the condition

number of most matrices, especially the ill-conditioned matrices sherman2, jan99jac040,

and bayer01, can be improved dramatically by scaling.

5.2 Results of dropping

Before partitioning the scaled matrix, we drop the entries with small modulus to ensure

that large entries are contained in the diagonal blocks. To determine the optimal dropping

parameters, we plot r against the dropping parameter which is obtained from the algorithm

in Figure 4.1. For example, the optimal dropping parameter for matrix jan99jac040 for
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Figure 5.1: The plot of relative norm against dropping parameter for jan99jac040

4 partitions is 0.15 as shown in Figure 5.1. The optimal dropping parameters for all

test matrices with number of partitions of 2, 4, 8, and 16 are given in Table 5.3. In

the table, nnz(E) is the number of entries which are dropped before partitioning. The

label ‘no drop’ means that the block diagonal matrix constructed without dropping has

the highest Frobenius norm of the diagonal blocks. It is different from the case τ = 0

because some of the matrices have entries that are explicitly zero. So dropping the zero

entries can increase the norms of the diagonal blocks. Dropping with optimal τ optimises

the Frobenius norms of the diagonal blocks of the partitioned matrix as shown in Table

5.4 where we compare the results of dropping to no drop. Hence we can expect a better

performance of the resulting block diagonal preconditioners. We remark that the optimal

value of the dropping parameter using our criterion is not guaranteed to be the same as

the value that results in the minimum number of iterations. We expect, however, that the

former should be closely related to the latter. For example, Figure 5.2 plots the number

of iterations against the dropping parameters. The dropping parameter that gives the

minimum number of iterations is 0.05 while the one obtained from our criterion is 0.15 but

we can see that both of them give an almost equal number of iterations.

However, the dropping has a severe drawback. The entries outside the diagonal blocks

entail communication among processors. The entries that are dropped before partitioning

are brought back to the final matrix and can increase the communication cost if they are

external to the diagonal blocks. From Table 5.3, we should get a significant effect from

dropping for the matrices perrel and jan99jac090 where the dropping parameters are
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Figure 5.2: The plot of number of iterations against dropping parameter for jan99jac040

dropping parameters

matrix 2 partitions 4 partitions 8 partitions 16 partitions

nnz(E) τ nnz(E) τ nnz(E) τ nnz(E) τ

sherman2 15396 0.01 19164 0.15 19494 0.19 19624 0.21

jan99jac040 25979 0.04 40754 0.15 30003 0.06 43444 0.19

perrel 373317 0.15 410339 0.27 414900 0.29 414900 0.29

wang3 540 0.06 540 0.06 0 no drop 0 no drop

bayer01 2680 0 2680 0 2680 0 2680 0

venkat25 0 no drop 642128 0.1 355855 0.05 29 0

Table 5.3: Optimal dropping parameter τ

‖D‖F/‖A‖F

matrix 2 partitions 4 partitions 8 partitions 16 partitions

no drop opt drop no drop opt drop no drop opt drop no drop opt drop

sherman2 0.990 0.999 0.973 0.999 0.944 0.998 0.917 0.997

jan99jac040 0.940 0.971 0.913 0.935 0.880 0.911 0.871 0.896

perrel 0.997 0.999 0.995 0.999 0.989 0.996 0.985 0.993

wang3 0.998 0.998 0.996 0.996 0.994 0.991

bayer01 0.997 0.998 0.997 0.998 0.996 0.997 0.995 0.996

venkat25 0.999 0.998 0.998 0.997 0.997 0.994 0.995

Table 5.4: Relative Frobenius norm between dropping and no dropping
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Figure 5.3: Dropping and communication volume for perrel

quite large. Hence, for these matrices we study the effect on the communication volumes

due to the dropping. These are shown in Figures 5.3 and 5.4. The communication volume

is measured in terms of data exchange between processors. Since we use double precision,

the communication volume is measured in double-precision words. The communication

cost among processors can be quite expensive, especially local communication arising in

the matrix-vector products in step 3 of the algorithm in Figure 2.1, so the decrease in total

elapsed times may not be noticed even though the number of iterations of the iterative

solver decreases significantly. From these figures, the communication volumes increase

almost monotonically with the dropping parameters. This indicates that large dropping

parameters should be avoided when constructing the block diagonal matrix for parallel

computing.

5.3 Results of parallel GMRES

In the experiments we use GMRES(50), the right-hand side is generated such that the

solution vector is (1, 2, 3, . . . , n)T , the initial guess is (0, 0, . . . , 0)T , and the iteration is

terminated when the relative residual norm ‖r‖/‖b‖ < 10−8 or the number of iterations is

larger than 3000. The calculations have been performed on a COMPAQ Alphaserver SC45

in which each node has 4 processors of EV68, 1 GHz, 64 KB L1 cache, 8 MB L2 cache,

8 GB shared memory. We use the number of processors equal to the number of diagonal

blocks: 1 (for sequential computing), 2, 4, 8, and 16.

We first present the numerical results for unpreconditioned GMRES. Tables 5.5 and
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Figure 5.4: Dropping and communication volume for jan99jac040

5.6 show the number of iterations and the computing times of unpreconditioned GMRES,

respectively. The sign † indicates that it does not converge within 3000 iterations. In

fact, the matrices are already scaled by MC64 so these tables show the results of this

explicit preconditioning. From the tables, GMRES converges to the required precision for

only three matrices. Thus the unpreconditioned method is not robust. For each of these

matrices, the number of iterations should be the same for any number of processors. In the

case of perrel, the number of iterations differs slightly for different numbers of processors

due to round-off effects. For studying the elapsed times, the relative speedup (Foster 1995)

is defined as

Srel =
T1

TK

, (5.1)

where T1 is the elapsed time on one processor and TK is the time on K processors.

Discarding sherman2 because of its small size, we find that the results for perrel and

wang3 show superlinear speedup up to eight processors. The superlinear speedup can

be attributed to cache effects. Note that, for most results, the elapsed time is slightly

higher if dropping is applied, due to higher communication cost. We have to add that the

measurements are made on a production machine, hence elapsed times may vary from run

to run.

The number of iterations of preconditioned GMRES are shown in Tables 5.7 and 5.8

for ILU(0) and MA48, respectively. The elapsed times are shown in Tables 5.9 and 5.10.

In these tables we give the results with and without dropping. We find that for the first

three matrices, where the dropping parameter is relatively large, the number of iterations
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Number of iterations

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 630 630 630 630 630 630 630 630 630

jan99jac040 † † † † † † † † †

perrel 2720 2682 2690 2615 2647 2790 2631 2560 2728

wang3 327 327 327 327 327 327 327 327 327

bayer01 † † † † † † † † †

venkat25 † † † † † † † † †

Table 5.5: Number of iterations: no preconditioner

elapsed times (sec)

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 0.32 0.21 0.22 0.27 0.23 0.26 0.37 0.50 0.52

jan99jac040 † † † † † † † † †

perrel 37.36 15.95 14.53 6.40 6.50 3.65 4.01 3.20 4.64

wang3 7.26 2.87 2.99 1.13 1.08 0.61 0.67 0.56 0.57

bayer01 † † † † † † † † †

venkat25 † † † † † † † † †

Table 5.6: Elapsed times: no preconditioner
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is significantly decreased, both for ILU(0) and for MA48. We also notice that, for these

matrices, dropping significantly increases ‖D‖F/‖A‖F .

The results for the ILU(0) preconditioner in combination with GMRES(50) that are

given in Table 5.7 show that the number of iterations increases with the number of

processors. This is not surprising since the diagonal blocks are of smaller order if the

number of blocks is increased. Without the dropping strategy, the increase in the number

of iterations is very significant for the three smallest matrices, but modest for the largest

three. With the dropping strategy, however, the increase in the number of iterations for

the three smallest matrices is considerably reduced. Hence with dropping, the increase

in the number of iterations is modest for all test matrices. We remark that the number

of iterations for bayer01 is increased if dropping is applied. This is possible because

an increase in the Frobenius norm of the diagonal blocks does not guarantee a decrease

in the number of iterations. To show that the observed effects are not due to the fact

that we restart GMRES, we include for completeness the number of iterations for full

GMRES in Table 5.11. This table confirms our observation that the optimal dropping

strategy considerably reduces the increase in the number of iterations for the three smallest

matrices. Moreover, for full GMRES we do not see an increase in the number of iterations

for bayer01 if we use dropping. Since the effect of dropping on the number of iterations is

most prominent for the three smallest test matrices, we do not see a strong positive effect

on the elapsed times that are shown in Table 5.9. For the three largest matrices we observe

an almost linear speedup up to 16 processors.

In the case of MA48 we find similar results as for ILU(0). The number of iterations

for one partition is 1, of course, since in that case a direct solution method is used. The

number of iterations increases again with the number of processors, rather strongly for

the three smallest matrices, and modestly (compared with 2 partitions) for the three

largest matrices. The increase in the number of iterations is again significantly reduced

if dropping is applied. The elapsed times that are shown in Table 5.10 show several

instances of superlinear speedup. This can be explained by the fact that the triangular

factors computed by MA48 become smaller in size if the number of partitions is increased.

The number of operations for a solve with a triangular matrix depends nonlinearly on the

dimension of this matrix. In fact, its complexity is O(n1+δ), where δ > 0 is a problem and

code dependent parameter.

6 Conclusion

In this paper we have described a method to construct efficient block diagonal

preconditioners using a hypergraph partitioner and we have tested our method on a set

of matrices from different application areas. Our method consists of three steps. In order

to maximise the elements on the main diagonal we first scale and permute the matrix

using the HSL routine MC64. This ensures that the diagonal blocks are structurally

nonsingular. This preprocessing step is essential for the matrix bayer01, which comes

13



Number of iterations

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 17 27 17 47 17 72 19 95 19

jan99jac040 45 80 48 100 67 128 98 141 103

perrel 12 13 12 19 13 23 14 34 22

wang3 71 100 99 119 109 125 125 129 129

bayer01 164 148 186 146 181 169 192 198 221

venkat25 176 188 188 192 190 198 196 220 220

Table 5.7: Number of iterations of GMRES(50): ILU(0)

Number of iterations

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 1 20 4 43 4 69 11 92 11

jan99jac040 1 27 14 45 31 92 42 115 70

perrel 1 11 8 19 8 22 13 34 21

wang3 1 45 39 57 50 63 63 88 88

bayer01 1 13 10 14 10 16 15 23 26

venkat25 1 32 32 42 42 52 52 69 68

Table 5.8: Number of iterations of GMRES(50): MA48

elapsed times (sec)

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 0.02 0.03 0.03 0.07 0.02 0.05 0.07 0.10 0.04

jan99jac040 0.41 0.33 0.22 0.29 0.23 0.18 0.21 0.22 0.25

perrel 0.39 0.17 0.18 0.22 0.10 0.08 0.10 0.10 0.14

wang3 1.75 1.02 0.97 0.55 0.52 0.30 0.35 0.28 0.30

bayer01 12.09 4.43 5.14 1.37 1.56 0.75 0.93 0.46 0.56

venkat25 21.15 11.87 11.88 4.67 4.76 1.97 1.94 1.01 0.98

Table 5.9: Elapsed times of GMRES(50): ILU(0)
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elapsed times (sec)

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 0.11 0.05 0.14 0.08 0.04 0.05 0.04 0.12 0.04

jan99jac040 1.18 0.20 0.35 0.17 0.11 0.16 0.18 0.20 0.21

perrel 14.10 4.14 4.17 1.22 1.06 0.40 0.41 0.22 0.19

wang3 141.92 21.57 23.91 4.11 4.46 1.00 0.98 0.40 0.45

bayer01 1.01 0.51 0.55 0.29 0.20 0.13 0.15 0.11 0.13

venkat25 63.54 25.93 26.22 10.09 12.10 4.26 3.95 1.87 1.58

Table 5.10: Elapsed times of GMRES(50): MA48

Number of iterations

matrix 2 partitions 4 partitions 8 partitions 16 partitions

1 partition dropping dropping dropping dropping

no yes no yes no yes no yes

sherman2 17 27 17 47 17 61 19 77 19

jan99jac040 45 59 48 68 54 82 67 87 81

perrel 12 13 12 19 13 23 14 34 22

wang3 69 83 82 90 87 94 94 99 99

bayer01 90 93 93 94 94 98 98 111 111

venkat25 149 154 154 160 160 166 166 179 179

Table 5.11: Number of iterations of full GMRES: ILU(0)
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from chemical process simulation. In order to maximise the size of the entries within the

diagonal blocks, we apply a dropping strategy and partition the matrix using the same

partitioning as obtained for this sparsified matrix. This strategy can considerably reduce

the increase in the number of iterations if the number of partitions is increased, as is

shown by our experimental results for the economic model jan99jac040 and the chemical

process simulation matrix bayer01. An undesirable side-effect of our dropping strategy,

however, is that the communication volume is increased, since not all the entries in the

matrix are taken into account by the partitioner. Finally we construct the preconditioner

by decomposing the diagonal blocks into triangular factors. To this end we apply either

the sparse direct solver MA48 or we make an incomplete ILU(0) decomposition.

The block diagonal preconditioners constructed from partitioning the equilibrated

matrices give quite satisfactory results for the large matrices, especially the matrices

from semiconductor device simulation and unstructured 2D Euler equations. Since the

computational complexity of MA48 is O(n1+δ), we gain more speedup for matrices wang3

and venkat25 when solving the preconditioning equation with MA48. Although the

speedup for MA48 is higher than for ILU(0), the latter usually outperforms the former

in term of total computing time.

Our approach for constructing an efficient block-diagonal preconditioner is quite flexible

and can also be applied when other algorithms for scaling, partitioning or decomposition

are preferred. Each of the algorithms in the chain can be replaced by another method of

choice, so the same approach can be followed with MONDRIAAN or HMETIS instead of

PATOH as the partitioner, or with ILU(t) to make an incomplete decomposition of the

diagonal blocks.
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