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1 Introduction (I. S. Duff)

This report covers the period from January 2000 to December 2001 and describes work
performed by the Numerical Analysis Group within the Computational Science and
Engineering Department at the CLRC Rutherford Appleton Laboratory. This work was
supported by EPSRC grants M78502, until October 2001, and R46441 thereafter.

The details of our activities are documented in the following pages. These words of
introduction are intended merely to provide additional information on activities that are

not appropriate for the detailed reports.
The last two years have been amongst the most stable in the life of the Group. It would

be good to think that this state of affairs could continue. Our only change in personnel was
that Karl Meerbergen left to return to Belgium and we were delighted to be able to recruit
Mario Arioli from CNR Pavia, who had previously been a long term visitor of the Group
at Harwell and was a senior scientist in the Parallel Algorithms Team at CERFACS.

The hoops designed by EPSRC were successfully negotiated in March 2000 when we
heard that our grant had been extended from two years to four. However, as [ write this, the
next set of hoops are being prepared for our rebid for continuation of funding from October
2003. In April 2001, Professor John Wood from the University of Nottingham became CEO
of CCLRC. We have since been able to meet with him and find him sympathetic both to
basic research and to the work of our Group. We believe and hope that this augurs well

for the future.

The support and development of HSL, formerly the Harwell Subroutine Library,
continues to be one of our major activities. There have been two releases of HSL during
the period of this report, one in October 2000 and the other at the end of 2001. The HSL
marketing effort from AEA Technology PLC has again seen changes of personnel, this
time apparently for the better. Without any prior consultation or warning, Nick Brealey
of the Electromagnetics Department at Culham Laboratory ceased handling the Library
at the end of 2000. Happily we were taken over within AEA by Lawrence Daniels and his
team from Hyprotech, who have a good knowledge of HSL and some marketing skills in
mathematical software. Most importantly, they also fully support the availability of HSL
to the UK academic community as originally agreed by Nick Brealey. We are still able
to employ John Reid as a consultant using HSL funds. We have benefited greatly from
the consultancy of Mike Hopper, who has helped us both in typesetting and the ongoing
commitment to higher software standards, including a recent exercise in making the whole

Library threadsafe.

We maintain our close links with the academic community in Britain and abroad.
lain and Nick continue as Visiting Professors at Strathclyde University and Edinburgh

University, respectively. All members of the Group gave presentations at the Dundee
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Numerical Analysis meeting in 2001, with Nick giving an invited talk. We had several
visitors during the period, including Gianmarco Manzini who was funded by an EPSRC
visiting fellowship. Iain has helped Andy Wathen of Oxford in the supervision of
his student, Andreas Papadopoulos. Our CASE student with Oxford, Carsten Keller,
successfully defended his D Phil and Nick now has another CASE student, Bob Gate,
with the University of Dundee whose university supervisor is Roger Fletcher. Tain was on
the jury for the PhD thesis of Elisabeth Traviesas in Toulouse, for the cotutelle thesis of
Dominique Orban in Namur and Toulouse, for Pierre Ramet in Bordeaux, Wim Bomhof in
Utrecht, and for the habilitation theses of Valérie Frayssé and of Luc Giraud in Toulouse,
and Nick was the external examiner for the PhD thesis of Eric Chin from Dundee. Nick
is also an external assessor for the optimization MSc at the Open University and is on the
advisory board for the MSc in Bath. lain and Nick are both on the Mathematics College
of the EPSRC.

We continue our close association with Oxford University through the Joint
Computational Mathematics and Applications Seminar series and have hosted several
talks at RAL through that programme (see Section 10). Nick Trefethen, the professor
of Numerical Analysis at Oxford University, has made an office available to the Group
that has been used for visits by all Group members, significantly by Nick who visits on a
regular basis. Nick taught an MSc course on numerical optimization at Oxford in Trinity
term 2001 (see http://Www.numerical.rl.ac.uk/nimg/oumsc/), and lain and Jennifer
gave a series of four lectures on direct methods for sparse matrices in Michaelmas term of
2001.

Nick’s collaboration with Toint and others continues to expand the theory and practice
of large-scale optimization. During the period of this report, his 959 page book, co-authored
with Conn and Toint, on trust-region methods was published by STAM. In addition to the
book and closely related research, he has developed algorithms and codes for the solution
of large-scale quadratic programming problems, both using barrier-function methods and
active-set techniques. Both approaches will be used in the new nonlinearly constrained
optimization package GALAHAD, that will eventually supersede the well known and highly
successful augmented Lagrangian package LANCELOT. His work with Toint and others
has occasioned visits to CERFACS in Toulouse, Namur in Belgium, and Northwestern
in Illinois. Nick was an invited speaker at conferences at Atlanta, Delhi, Hans-sur-Leys,
Oxford, and Trier, and gave seminars in Daresbury, Edinburgh, Oxford, and Reading. He

was on the interview panel for an appointment at Oxford University.

Jennifer has continued with her national and international collaborations. Although
she has continued her short-hours working, she remains so productive that it is easy to
forget this fact. Much of her work in this period has been on enhancing the performance

of frontal solvers and using them in practical industrial problems. In particular, she has



used powerful partitioning techniques and MPI to enable frontal schemes to exploit low
level parallelism. She has developed very effective ordering techniques for use with frontal
methods both when the matrix is assembled and when it is held as a set of element matrices.
She has made a speciality of chemical engineering applications and has published several
papers in one of the main journals of that discipline. Jennifer presented an invited talk at

CERFACS and continues to coordinate our joint seminar series with Oxford University.

Mario was no stranger when he joined us in October 2000 and so it is no surprise that
he quickly became a fully integrated member of the Group. He gives us a far greater
knowledge of partial differential equations and has used this to good effect in designing
sophisticated techniques and preconditioners for problems in groundwater flow. He is also a
great asset in being not only very adept at but also enjoying the fine detail of error analysis.
He has recently established and become coordinator of a new ERCIM Working Group on
Mathematics. He has given seminars at Cambridge, CERFACS, and ENSEEIHT-IRIT in

Toulouse.

lain still leads a project at the European Centre for Research and Advanced Training
in Scientific Computation (CERFACS) at Toulouse in France (see Section 7.1). He was
the Principal Investigator for a grant from the France-Berkeley Fund for exchange visits
with NERSC in Berkeley. His research interests continue to be in all aspects of sparse
matrices, including more recently iterative methods as well as direct methods, and in
the exploitation of parallel computers. He is an Editor of the IMA Journal of Numerical
Analysis, an Honorary Secretary of the IMA, editor of the IMANA Newsletter, chairman of
the IMA Programme Committee, and IMA representative on the International Committee
that oversees the ICIAM international conferences on applied mathematics. In high
performance computing, he has given tutorials at VECPAR 2000 (Porto), EuroPar 2000
(Munich), SC 2000 (Dallas) and SC 2001 (Denver). He gave lectures at summer schools
in Porto and Lyngby in Denmark and was workshop coordinator for a meeting in Copper
Mountain, Colorado. He has been on the Programme and Organizing Committee for several
international meetings including a preconditioning meeting in Lake Tahoe, California
and the two EuroPar meetings. He also helped to edit the proceedings for the Copper
Mountain and Tahoe meetings. He has given invited talks at meetings in Maryland, Merida
(Mexico), and Rabat (Morocco), and has presented seminars in Cambridge, Lawrence
Livermore National Laboratory, NERSC, Oxford, Stanford, and Strathclyde. He was on
an international panel to evaluate Dutch supercomputing and to advise NWO about future

mechanisms for support of this activity.

We have tried to subdivide our activities to facilitate the reading of this report.
This is to some extent an arbitrary subdivision since much of our work spans these
subdivisions. Our main research areas and interests lie in numerical linear algebra,

and nonlinear systems and optimization. We are particularly concerned with large-scale



systems when the matrix or system is sparse or structured. We discuss the solution of
linear systems by frontal or multifrontal methods in Section 2 and other numerical linear
algebra activities in Section 3. Work on optimization is considered in Section 5. We
group some miscellaneous topics in Section 7. Much of our research and development
results in high quality advanced mathematical software, and we report on our computer
infrastructure and software developments in Section 8. Lists of seminars (in the joint series
with Oxford), technical reports, and publications are given in Sections 10, 11, and 12,
respectively. Current information on the activities of the Group and on Group members
can be found through page http://www.cse.clrc.ac.uk/Group/CSE AG of the World
Wide Web.



2 rontal and multi rontal met ods

21 S - a istri ut or ulti rontal sol r

R A sto S uff - L I nt an ost r

MUMPS, a MUltifrontal Massively Parallel Solver was developed from the earlier MUPS
code (Amestoy and Duff 1993) with the support of the EU LTR project PARASOL.
Although the PARASOL project finished on June 30th 1999, work has continued on the
MUMPS solver and many of the original team are still involved in this project. Some
aspects of this work were supported until the middle of 2000 by a grant from the France-
Berkeley fund. Patrick Amestoy is still at ENSEEITHT-IRIT in Toulouse and continues to
supervise or co-supervise students and stagiaires working on aspects of MUMPS. Jean-Yves
L’Excellent was unable to get much time for research while at NAG but now is back in the
thick of things in his new post with INRIA in Lyon. Jacko Koster has now a confirmed
staff position at Parallab in Bergen and continues to develop some aspects of MUMPS, in

particular its use within the Parallab domain decomposition code DDM.

MUMPS is designed to solve symmetric positive-definite, general symmetric, and
unsymmetric linear systems whose coefficient matrices are possibly rank deficient. The
MUMPS package uses a multifrontal approach to factorise the matrix (Duff and Reid, 1983,
Duff and Reid, 1984). Similar to serial HSL solvers, the parallel MUMPS package solves
in three main steps: an analysis step, a factorization step and a solution step. MUMPS
is described in the two papers Amestoy, Duff and L’Excellent (2000) and Amestoy, Duff,
Koster and L’Excellent (2001).

MUMPS achieves high performance by exploiting two kinds of parallelism: tree
parallelism that comes from the sparsity of the problem and node parallelism from
dense matrix kernels. MUMPS uses dynamic data structures and dynamic scheduling
of computational tasks to accommodate extra fill-in in the factors due to numerical
considerations (not taken into account during the analysis step). This dynamic approach
also allows the parallel code to cope with load variations on the processors and we have
investigated and developed this over the last two years (see Section 2.1.2). MUMPS
overlaps computation with communication by using asynchronous communication and care
has to be taken in the MPI implementation (see Section 2.1.1).

The origins of MUMPS within a large EU project with many partners and many
demands means that it has a functionality quite unrivaled by any other sparse package. In
the last two years, the functionality has only been slightly extended with more emphasis
being put on improving the efficiency, particularly when using many processors.

The MUMPS software has been extensively tested on problems from the industrial
partners in the PARASOL project. Typical PARASOL test cases are from application
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areas such as computational fluid dynamics, structural mechanics, modelling compound
devices, modelling ships and mobile offshore platforms, industrial processing of complex
non-Newtonian liquids, and modelling car bodies and engine components. The largest
problem we have solved to date is a model of an AUDI crankshaft. The corresponding
linear system is symmetric positive-definite and of order 943 695 with more than 39 million
entries in its lower triangular part. With the best ordering of the unknowns that we tried,
MUMPS created 14 billion entries in the factors and required 59 10 floating-point
operations for the factorization.

The MUMPS software is written in Fortran 90. It requires MPI for message passing
and makes use of BLAS, LAPACK, BLACS, and ScaLAPACK subroutines. It has been
ported to a wide range of computers including the top-line supercomputers from Compaq,
Cray, IBM, and SGI.

We discuss the performance of MUMPS further in Section 2.2.

R rn s

P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods

on multiprocessors. , 7, 64 82,1993.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. , 184, 501 520,
2000.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling.
, 23(1), 15 41, 2001

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
systems. , 9,302 325, 1983.

[. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear systems.
, B, 633 641, 1984.

2.1.1 An analysis of M send receive in the context of M M S (P. R. Amestoy
I. S. Duff . . L Excellent and . S. Li)

This work was developed from the research performed as part of the France-Berkeley
project (Amestoy, Duff, L'Excellent and Li, 2000) and is intimately associated with the
tuning of the MUMPS and SuperLU sparse direct solvers on distributed memory computers

using MPI for message passing.



We examined the send and receive mechanisms of MPI in detail and considered how
to implement message passing robustly so that performance is not significantly affected
by changes to the MPI system. We discussed this within the context of two different
parallel algorithms for sparse Gaussian elimination: a multifrontal solver (MUMPS), and
a supernodal one (SuperLU). The performance of our initial strategies based on simple MPI
point-to-point communication primitives is very sensitive to the MPI system, particularly
the way MPI buffers are used. Using more sophisticated non-blocking communication
primitives improves the performance robustness and scalability, but at the cost of increased
code complexity.

We have submitted our report (Amestoy, Duff, L'Excellent and Li, 2001) to the journal
Parallel Computing.

R rn s

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis, tuning and comparison
of two general sparse solvers for distributed memory computers. Technical Report
LBNL-45992, NERSC, Lawrence Berkeley National Laboratory, June 2000.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Impact of the implementation of
MPI point-to-point communications on the performance of two general sparse solvers.
Technical Report RT APO 01 4, ENSEEIHT-IRIT, Toulouse, October 2001.

2.1.2 Candidate-based dynamic scheduling for a distributed direct linear
solver (P. R. Amestoy I. S. Duff and C. omel)

The asynchronous distributed memory multifrontal solver MUMPS exploits two kinds of
parallelism when a sparse matrix is factorized. A first natural source of parallelism is
established by independent branches of the assembly tree. Furthermore, tree nodes with a
large enough contribution block can be updated in parallel by splitting the update between
several slaves of the master that is factorizing the block of fully summed variables, and the
root node can be treated in parallel if it is big enough.

While the processor of each node in the tree (that is, the one that is responsible
for the factorization of the block of fully summed variables) is chosen during the analysis
phase, the for the parallel update of large contribution blocks are only chosen during
the factorization phase. This dynamic task scheduling takes place in order to balance the
work load of the processors at run-time. Problems arise from offering too much freedom to
the dynamic scheduling. If every processor is a candidate for a slave then, on each processor,
enough workspace has to be reserved during the analysis phase for the corresponding
computational tasks. However, during the factorization, typically not all processors are

actually needed as slaves (and, on a large number of processors, only a very few are needed),
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so the prediction of the required workspace will be overestimated. Thus the size of the
problems that can be solved is reduced unnecessarily because of this difference between
the prediction and allocation of memory in the analysis phase and the memory actually
used during the factorization.

With the concept of it is possible to address this issue. The
concept originates in an algorithm presented by Pothen and Sun (1993) and extends
efficiently to MUMPS. For each node that requires slaves to be chosen dynamically during
the factorization because of the size of its contribution block, we introduce a limited set
of processors from which the slaves can be selected. While the master previously chose
slaves from among all less loaded processors, the freedom of the dynamic scheduling can be
reduced so that the slaves are only chosen from the candidates. This effectively allows us
to exclude all non-candidates from the estimation of workspace during the analysis phase
and leads to a more realistic prediction of workspace needed. Furthermore, the candidate
concept allows us to structure the computation better since we can explicitly restrict the
choice of the slaves to a certain group of processors and enforce a subtree-to-subcube’
mapping principle.

Preliminary tests with a prototype version have shown the benefits of the concept that
is currently being integrated into a compact scheduling module for MUMPS. It unifies
static and dynamic mapping while at the same time taking account of tree modifications

by node amalgamation and splitting.

R rn s

A. Pothen and C. Sun. A mapping algorithm for parallel sparse Cholesky factorization.
, 14(5), 1253 1257, 1993. Timely Communication.

22 Anal sis an o arison o istri ut or s ars
sol rs R A sto S uff - L 11 nt an
Li

We conducted an in depth analysis comparing the merits of a supernodal solver, SuperLU
(Demmel, Gilbert and Li, 1999), with MUMPS (see Section 2.1). This showed broadly
that MUMPS generally outperformed SuperLLU although the latter showed somewhat
better scalability and was competitive on a large number of processors. Many ideas for
improvements to both codes were generated during this investigation and both are being
enhanced as a result.

We show some of our comparisons in Table 2.1 to indicate the relative performance of

the codes. In Table 2.2, we show results from a sequence of 3D grids where the problem



sized is increased with the number of processors so that the operations per processor remain

close to constant. From these results we see the good scalability of both codes.

Table 2.1: Factorization time (in seconds) of large test matrices on the CRAY T3E.

indicates not enough memory.

uper

Cubic grids (nested dissection)

Rectangular grids (nested dissection)

Table 2.2: Factorization time (in seconds) on Cray T3E. L factorization is performed for
MMS Sand uper ,LDL forM M S S M

The France-Berkeley Fund, who supported lain’s travel to NERSC at Lawrence
Berkeley National Laboratory, accepted the main report (Amestoy et al., 2000) and a
shorter version has been published in the ACM Transactions on Mathematical Software
(Amestoy, Duff, L’Excellent and Li, 2001 ). The work was presented at the STAM Parallel
Processing Conference in March 2001 (Amestoy, Duff, L’Excellent and Li, 2001 ).
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R rn s

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis, tuning and comparison
of two general sparse solvers for distributed memory computers. Technical Report

LBNL-45992, NERSC, Lawrence Berkeley National Laboratory, June 2000.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Performance and tuning of two
distributed memory sparse solvers. Proceedings of Tenth SIAM Conference on
Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12th-14th,
2001, 2001 .

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison of
two general sparse solvers for distributed memory computers.
, 27(4), 388 421, December 2001 .

J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal
algorithm for sparse Gaussian elimination. ,
20(4), 915 952, 1999.

2 T o-sta or rin or uns tri arall 1 ro - -ro
rontal sol rs A S ott

The row-by-row frontal method may be used to solve general large sparse linear systems
of equations. By partitioning the matrix into (nearly) independent blocks and applying
the frontal method to each block, a coarse-grained parallel frontal algorithm is obtained
(see Section 2.4). The success of this multiple front approach depends on preordering the
matrix. This can be done in two stages: (1) order the matrix to singly bordered block
diagonal form, and (2) order the rows within each block to minimise the size of each frontal
matrix. A number of recent papers have considered stage (1). In this study, we looked at
developing an algorithm for stage (2).
Consider the singly bordered block diagonal matrix

A C
A C (2.1)
A C
where the rectangular diagonal blocks A are matrices with , and the border
blocks C are with . We want to order the rows within each submatrix
A C (2.2)

10



so that, when the frontal method is applied to the submatrix, the frontsize is kept as small
as possible. The difficulty is that, as the rows of (2.2) are assembled, the nonzero columns
of C do not become fully summed because they have entries in at least one other border
block C ( ). Thus, once a variable corresponding to a column of C enters the front,
it remains there. These variables are termed variables. A row ordering algorithm
is therefore needed that distinguishes between interface and non-interface variables and
which aims to delay introducing the former into the front.

Our algorithm generalises the MSRO row ordering algorithm that we developed for
ordering all the rows of an unsymmetric matrix A for use with a frontal solver (see Scott
(1999)). The MSRO algorithm selects a global ordering which it uses to guides the local
reordering. The local ordering is based on a . The basic idea is to select
the next row in the ordering by choosing, from a set of eligible rows, a row with minimum

priority. The priority = for row is given by
(2.3)

where and are positive weights, is the global priority for row , and is the
sum of the increases to the row and column frontsizes resulting from assembling (ordering)
row next. As each row is reordered, the priorities of the remaining (unordered) rows are
updated. In this way, a balance is maintained between a small frontsize and ordering early
on rows with a low global priority.

The MSRO algorithm assumes that when any variable appears for the last time it is fully
summed and so can be eliminated (removed from the front). To generalise the approach
to allow only the rows of a submatrix to be ordered, we flag the interface variables so that
once in the front they are not eliminated. In addition, we modify the priority function by

adding a third term
(2.4)

where is another (positive) weight and is the number of non-interface variables
in row that have already been introduced into the front. As rows are assembled,
increases, so that rows with a large number of non-interface variables already lying in
the front are given preference. The aim is to ensure non-interface variables become fully
summed and eliminated as soon as possible after entering the front.

The modified MSRO algorithm has been tested on problems from chemical process
engineering results are presented by Scott (2001). To illustrate the performance, in
Figure 2.1 we show the sparsity pattern for problem a er 4: using the initially supplied
ordering, after it has been reordered to bordered block diagonal form using the HSL code
MC66, and after the modified MSRO algorithm has been used to reorder the rows within
the blocks.

11
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Figure 2.1: Problem a er 4 with original ordering, in bordered block diagonal form, and
after reordering with modified MSRO.
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The code MC6 , which is available through HSL, has been modified so that it can be
used to order either all the rows of A or, for the multiple front method, the rows of a

submatrix.

R rn s

J.A. Scott. A new row ordering strategy for frontal solvers.
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The row-by-row frontal method is often used for solving the large sparse systems of linear
equations that arise in large-scale chemical process simulation and optimization problems.
However, for modern computers, a major deficiency of the frontal method lies in its lack
of scope for parallelism other than that which can be obtained within the high-level BLAS
that are used in the innermost loop of the factorization. The multiple front algorithm
aims to overcome this shortcoming by partitioning the problem into a number of nearly
independent subproblems and then applying the frontal method to each subproblem in
parallel.

We have designed and developed a package M 4 that implements the multiple front
algorithm for unsymmetric linear systems that have been preordered to the singly bordered
block diagonal form (2.1). A partial L ~ decomposition is performed on each of the

submatrices
A C (2.5)

using the frontal method. M 4 performs these decompositions in parallel. As the rows
of (2.5) are assembled,  variables become fully summed and may be eliminated. These
variables correspond to the columns of A the nonzero columns of C do not become
fully summed because they have entries in at least one other border block C ( ).

Because the A are, in general, rectangular, at the end of the assembly and elimination

operations, for each block there will remain a frontal matrix F of order ( )
The variables that remain in the front are the and the sum F of these
remaining frontal matrices is the . M 4 also factorizes the interface

matrix using the frontal method. Once F has been factorized, block forward eliminations

and back-substitutions are performed (in parallel) to complete the solution.
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M 4 is similar in design to the HSL parallel frontal solvers M 4 and M 6 , which
implement the multiple front approach for finite-element problems (Scott, 2001 ). M 4
is written in Fortran 90 and uses MPI for message passing. It may be used on shared
or distributed memory machines and may be run on a single processor or on up to
processors, where  is the number of submatrices in the block diagonal form. The interface
is designed to be straightforward, with the user required to specify a minimum number of
parameters. Essentially, he or she needs only to provide the partitioning of the matrix into
submatrices and to input the matrix data in a suitable format. All allocation of workspace,
division of work between processors, and ordering of the rows of the submatrices for the
frontal solver is done automatically. However, for flexibility, control parameters allow
a number of options to be specified. For example, the matrix factors may optionally
be held in files, enabling large problems to be solved using relatively small amounts of
main memory. Additionally, the user may choose how to divide the submatrices between
processors and how to order the rows. The wide range of options are intended to make
the code suitable for those with minimal knowledge of the multiple front method and for
experts with specific requirements.

Experiments have been performed on a set of test problems and comparisons have been
made with the serial frontal solver MA4 and the well known general sparse direct solver
MA48. The MC66 implementation of the MONET algorithm (Hu, Maguire and Blake, 2000)
was used to preorder the matrices to the form (2.1) in each case the number of submatrices

was 8. In Table 2.3, wallclock timings (in seconds) for M 4 run on 1, 2,4 and

Table 2.3: Timings M 4 . The numbers in italics are the speedups for M 4 compared with

using a single process.

8 processors of a 12 processor SGI Origin2000 are presented, together with timings for
MA4 and MA48 run on a single processor. The timings are for factorizing the matrix and
then solving for a single right-hand side. We see that, even on one processor, M 4 can

be competitive with the serial codes and, as the number of processors in increased, good
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speedups are achieved. More detailed performance results are included in Scott (2001 ).
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If Gaussian elimination is applied to a symmetric positive-definite matrix A of order
all zeros between the first entry of a row and the diagonal usually fill in (this happens
if rows 2, 3, , all have at least one entry to the left of the diagonal). Therefore,
the total number of entries in each triangular factor is the sum of the lengths of the rows
of the original matrix, where each length is counted from the first entry to the diagonal.
This sum is also known as the profile. The sum of the squares of the lengths gives the
wavefront.

A variety of methods have been proposed for choosing a permutation of the matrix
to reduce the profile and wavefront, including the well known Reverse Cuthill-McKee and
Sloan algorithms. More recently, spectral orderings based on the Fiedler vector of the
Laplacian matrix associated with a matrix have been developed. Kumfert and Pothen
(1997) proposed combining an enhanced version of Sloan’s algorithm with the spectral
ordering. The resulting algorithm has been shown to give significantly better
orderings for large problems than either the spectral method or the Sloan method alone.
Its main disadvantage is that it requires the Fiedler vector to be computed, adding a
considerable computational overhead. Our aim was to develop a profile reduction algorithm
that produces profiles that are comparable with those obtained using the hybrid algorithm
but at substantially less cost.

Motivated by the success of the multilevel approach in graph partitioning, we decided
to look at whether a similar approach could be employed for profile reduction. The idea
is to generate, given the adjacency graph of the matrix, a series of graphs, each coarser
than the preceding one. The coarsest graph is then ordered. This ordering is recursively

prolonged to the next finer graph, local refinement is performed at each level, and the final
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ordering on the finest graph gives an ordering for A. A full description of our multilevel
algorithm is given by Hu and Scott (2001).
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