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ABSTRA CT

We considerthe solution of large sparsesystems,sketch their ubiquity, and brie y describe
someof the algorithms usedto solve these systems.

The HSL mathematical software library started life in 1963 as the Harwell Subroutine
Library making it one of the oldest sud libraries. The main strengths of the Library lie
in padkagesfor large scalesystem solution. It is particularly strong in direct methods for
sparsematrices and optimization. The Library hasbeenusedworldwide by a wide range
of industries.

We briey discussthe history of the library and its organization and corntents. We
discussthe ewlution of someof our current padkagesand the e orts to ensurereliability,
robustness,and e ciency .

We describein somedetail the functionality of one of our most popular sparsedirect codes.

Keyw ords: sparse solvers, sparse matrices, sparse linear equations, mathematical software
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1 Intro duction

Sparsesystemsof linear equations
Ax = b (1.1)

are simply sets of linear equations where the coe cient matrix A has su cien t zero entries to
causeit to be bene cial to exploit this fact. Thus we are not here concernedwith any particular
structure or any particular application area. In fact, we emphasizein Section 2 the ubiquity of
sparsesystemsand illustrate the diversity of their structure. In Section 3, we briey introduce
the main elemens of the direct solution of sparseequations indicating their complexity on a
range of structures. We then discussthe origins, structure, and developmert of HSL in Section4
before a brief summary of the paper in Section 5.

2 Sparse matrices

Sparsematrices have arisen naturally in numerical applications since the mid 1960s. Some of
the earliest applications involving the solution of sparsesystemswith a generalstructure werein
the solution of ordinary di erential equations using backward di erence formulae and in linear
programming. The former areawas the main driving force in the dewvelopmen of sparsematrix
methods at AERE Harwell in the 1970s. We list someof the major numerical application areas
stimulating and bene ting from sparsematrix researt in Table 2.1.

Sti ODEs ... BDF ... SparseJacobian
Linear Programming

..... simplex

..... interior point
Optimization/Nonlinear Equations
Elliptic Partial Di erential equations
EigensystemSolution

Two Point Boundary Value Problems
Least SquaresCalculations

Table 2.1: Somenumerical applications

In a more general context, we can look at application areasthat often make extensive use of
sparsematrices or sparseequation solvers. We show a range of thesein Table 2.2. In this list,
standard applications in the hard sciencesre listed alongwith slightly more esotericapplications
in the soft sciences.

We now show somepictures of sparsematrices from various applications in order to illustrate
dierent structures for sparsematrices. The thermal simulation example exhibits a structure
which is very structured and familiar to most of you. It is typical of a matrix arising in the
nite-di erence discretization of a three-dimensionalelliptic PDE. In this case,the inclusion of
thermal terms give this matrix, from oil resernoir modelling, interesting properties.



Physics

Chemistry

Civil engineering
Electrical engineering

Geograpty
Demograpty
Economics

Behavioural sciences
Politics

Psydology
Businessadministration
Operations researt

CFD

Lattice gauge
Atomic spectra
Quantum chemistry
Chemical engineering
Structural analysis
Power systems
Circuit simulation
Device simulation
Geadesy

Migration

Economic modelling
Industrial relations
Trading

Scocial dominance
Bureaucracy

Linear Programming

Table 2.2: Application areas

Thermal Simulation; SHERMAN2

Our so-calledweather matrix is somewhat more interesting and models the combination of
chemical kinetics and atmospheric transport. It is in fact a block matrix where ead block
is diagonal or tridiagonal and comes from studies in atmospheric pollution, a hot topic in
ernvironmental science.



Weather Matrix; FS 760 3

The matrix from dynamic calculations is typical of a matrix arising from a nite-element
discretization of a structures problem, in this casein a study of the e ect of earthquake vibrations
on a building in the western USA.

Dynamic Calculation in Structures; BCSSTM13

The power systemmatrix alsocomesfrom the western USA. Those with an eagleeye will see
that the matrix is not quite block diagonal but there are only few entries outside the diagonal
blocks that are themseles sparse. The blocks correspond to the power system network for a
single utilit y and the o -diagonal entries to the much fewer links betweenthe utilities, that often
only carry loads when there is a problem in one utilities capacity.

Power Systems; BCSPWR07

The matrix from the simulation of computing system comesfrom a Markov model of a
computing system and has the remarkable anti-symmetric property that if there is an entry
aj then the entry a;; doesnot exist, for all i 6 j.



Simulation of Computing Systems; GRE 1107

The chemical engineeringindustry is a rich sourceof unsymmetric sparsematrices that are
particularly challenging for solution by iterative methods. There is certainly a structure to the

matrix but somewhatmore irregular than the earlier examples. Notice that the diagonalis nearly
all zero.

Chemical Engineering; WEST0381

The matrix from an econometric input/output model from South East Asia also has
considerablestructure but not onethat canbe exploited like that of the rst matrix we displayed.

NN

Economic Modelling; ORANI678

Du and Reid distributed a set of sparsematrices from Harwell in the late 1970sbut the main
test collection for many yearswasthe Harwell-Boeing SparseMatrix Collection. This is available
by anonymous ftp from ftp.numerical.rl.ac.uk in directory pub/harw ell boeing or from the
Web page http://www.cse.clrc.ac. uk/n ag/hb/h b.sh tml

This set was later deweloped by Du, Grimes, and Lewis (7 ) to include larger matrices
in a wider range of application areas and to de ne more language-friendly formats and
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auxiliary les for other matrix properties (for example, eigervalues) and assaiated information
(for example, sparsity orderings). The Rutherford-Boeing Sparse Matrix Collection (8 )
will be supported by the GRID-TLSE Project http://www.enseeiht.fr/| ima/tls e and is
also available by anonymous FTP to ftp.cerfacs.fr in the directory pub/algo/matrices or
http://www.cerfacs.fr/alg or/S ofts /RB/ind ex.html

An extended set of test matrices available from  Tim Davis at
http://lwww.cise.ufl.edu/r esearch/ sparse/ matrice s and Matrix market at
http://math.nist.gov/Matr ixMarket .

3 Direct Metho ds

Although equation (1.1) nominally hasthe solution
x=A b

it must be stressedthat this should only be thought of notationally. It is really crucial that one
must not useor even think of the inverseof A in this context.

For sparseA, A 1 is usually dense.Indeed, if A is irreducible, one can prove (5) that A 1
will always be densein a structural sense. That is, there exists a set of ertries in the original
sparsity pattern of A that make any position in the matrix A * nonzero.

Examples of sparsematrices that are very sparsebut have denseinversesare tridiagonal and
arrowhead matrices, where an arrowhead matrix has ertries only in all positions on the diagonal
and the last row and column. These examplesare particularly interesting since, although their
inversesare dense,linear systemsinvolving these as coe cien t matrices can be solved with no
extra storage, as we shall shortly show.

If we thus dismiss the use of the inverse, we must propose other methods for solving the
systemsof the form (1.1). In someinstances,iterative methods (11, 12) can beused,often based
on Krylov sequenceshut these are not guaranteed to corverge on general systemsand usually
require very sophisticated preconditioning so we do not considerthem further here. Instead we
look at direct methods for solution (6 ) that involve some matrix factorization represemnation
of the inverse. The methods that we consider here are all basedon GaussianElimination, that
generatesthe factorization:

PAQ! LU (3.2)

where permutations P and Q are chosento presene sparsity and maintain stability, and L and
U arelower and upper triangular matrices, respectively. When A is symmetric, the factorization
is of the form

PAPT 1 LDL ': (3.3)

The solution to equation (1.1) is then easily obtained by solving the lower triangular system
Ly = Pb
followed by the upper triangular system

UuQTx = vy:



Clearly, asin the casefor densesystems,most of the work is usually in the factorization. The
work in the forward and badk substitution is proportional to the number of ertries in the factors.
This subdivision of work is re ected in software for sparsedirect methods. Although the exact
subdivision of tasks for sparsedirect solution will depend on the algorithm and software being
used,a common subdivision is given by:

ANAL YSE An analysis phasewhere the matrix structure is analysedto produce a suitable
ordering and data structures for e cien t factorization.

FACTORIZE A factorization phasewhere the numerical factorization is performed.

SOLVE A solve phase where the factors are used to solve the system using forward and
badkward substitution.

We note the following:

ANAL YSE is sometimesprecededby a preordering phaseto exploit structure.

For generalunsymmetric systems,the ANAL YSE and FACTORIZE phasesare sometimes
combined to ensurethe ordering doesnot compromisestability.

The concept of separate ANALYSE and FACTORIZE phasesis not presen for dense
systems.

It is crucially important to try to ensuresparsity in the factors L and U. This is done by
choosing an ordering for the elimination. For example, if we pivot down the diagonal of the
matrix in the left-hand side of Figure 3.1 then the resulting matrix of factors will be dense,as
shawvn on the right-hand side of Figure 3.1.

L=U

Figure 3.1: Factorization of reversearrowhead matrix

Howewer, if we permute this matrix symmetrically to put the last row and column to the
end, obtaining the arrowhead matrix shown on the left-hand side of Figure 3.2, then the factors
require no more spacethan the original matrix as shavn on the right-hand side of Figure 3.2.

The complexity of LU factorization on a densematrix of order n is:

2n®+ O (n?)  oating-p oint operations ( ops)
n2 storage,

while, for a band matrix (order n, semi-bandwidth k), it is:
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L=U

Figure 3.2: Factorization of arrowhead matrix
2k?n ops, 2nk storage.

For a v e-diagonalmatrix (onak k grid) aswould arisein the nite-di erence discretization
of a two-dimensionalLaplacian, the complexity is:

O (k3 ops
and
O (k?logk) storage
while, for a tridiagonal or arrowhead matrix, the complexity is:

O (n) work and storage.

Indeed our target complexity for sparsematrix computations is O(n) + O( ) for a sparse
matrix of order n with  entries.

4 HSL

4.1 Mathematical software libraries
The bene ts and advantages of using high quality mathematical software libraries include:

Shorten application dewvelopmert cycle, cutting time-to-market and gaining competitive
advantage

Reducedewelopmert costs
Increasemodularity
More time to focus on specialist aspects of applications

Improve application accuracy and robustness

42 HSL

HSL beganlife asthe Harwell Subroutine Library in 1963and was originally deweloped by Mike
Powell and Mik e Hopper asan internal library for usersof the IBM mainframe at AERE Harwell.
Howewer, the reputation of the Harwell Subroutine Library spreadso quickly that it was being
sert out to external userson requestas early as 1964. HSL padkagesare now usedworldwide by



academicsand commercialorganisations,and are incorporated into a large number of commercial
products.

HSL is now a collection of portable, fully documerted and tested padagesin standard Fortran,
primarily written and dewveloped by the Numerical Analysis Group at the Rutherford Appleton
Laboratory although someroutines have beenwritten by visitors, colleaguesand collaborators,
and studerts of sta at RAL. The particular strengths are currently:

sparsematrix computations
optimization
large-scalesystem solution.

There are two libraries: HSL 2004 and HSL Archive. HSL Archive consists of superseded
routines and public domain software and is free for non-commercialuse. All codesneeda licence
although academicand commercial are di eren tiated.

The most recert versionof HSL is called HSL 2004and was releasedin January 2004. HSL is
marketed by Hyprotech UK, which was acquired by Aspen Tednology in May 2002. For further
details see:www.cse.clrc.ac.uk/nag/h sl

4.3 Organization of HSL

The HSL Library is organizedinto chapters, ead identied by two letters
For example,

MA: matrix routines (solvers)
MC: matrix routines (manipulation)
EB: unsymmetric eigensystems

Within ead chapter, ead padkagehasa 2-digit identi er, generally allocated chronologically,
for example:

MA48 padkagefor solving unsymmetric sparseequations
MA49 padkagefor sparseQR factorization and for solving sparseleast-squares.

Following the Fortran 77 corvertion limiting the length of character strings, ead subroutine
has a six character identi er, for example:

MA48AD double precision analysis subroutine of MA48adage
MAS57BD double precision factorize subroutine of MA57adage.

More recertly, the pre x HSL (for example, HSLMA43 has beenusedto identify Fortran 90
or 95 packages.

The number of routines in the main chapters in HSL is shavn in Figure 4.3.

Eadh padkage has a speci cation sheet,a short \demo" test program, and an exhaustive test
ded.



MA  Matrix solution 26

MC Matrix manipulation 33
ME Complex matrices 8
MI  lterativ e solvers and preconditioners 9
MP  MPI padkages.. all solvers 4
E Eigensystems 8
\ Optimization 13

Table 4.3: Number of routines in somemajor chapters of HSL.

Fortran sourcecode is always provided. Versionnumbersin the form a.b.c have beenrecerly
introducedto HSL. Changesto ¢ are very minor, perhapsinvolving changesto commerts in the
code. The level b represerts minor bug xes, while at level a we expect more major xes and
perhapsnew entries or facilities.

4.4 Development of HSL

HSL is both revolutionary and evolutionary
By revolutionary , we meanthat codeshave beenintroducedthat are radically dierent in
technique and algorithm designthan anything that has precededthem. Examples of this are:

MA18 First sparsedirect code 1971
MA27 First multifrontal code 1982

By evolutionary , we mean that someof our codes ewlve, sometimesas a result of major
changesin programming paradigm and sometimesbecauseof added functionalities. Examples of
this morphing are:

MA18 ! MA28 ! MA48
MA32 ! MA42 !
MA37 ! MA41 !

MA17 ! MA27 ! MA57

We look in more detail at an example of ewolution by giving more details for the last example
above, namely our agship code for symmetric sparsesystems. The history of our HSL codesfor
solving the symmetric systemwith A = AT is shavn in Figure 4.3.



MA17... 1971 (Curtis and Reid)

{ Sparsesymmetric
{ LDLT .. 1 1 pivots only
{ linked lists

MA27... 1982(Du and Reid)

{ Sparsesymmetric inde nite
{ LDLT ..1 1and2 2 pivots
{ Multifron tal

MAA47... 1995(Du and Reid)

{ Sparsesymmetric inde nite structured
{ LDLT ..1 1land2 2 pivots, with o and o, Pivots
{ Multifron tal

MAS57... 2000(Du )
{ SeeSection4.5

Figure 4.3: Example of ewlution

4.5 HSL code MA57

To show the sophistication of our recent codes,we show the featuresof our current agship code
for solving sparsesymmetric equations MA57n Figure 4.4.

Analysis (ordering and symbolic factorization)
{ AMD (Approximate Minimum Degree)ordering
Factorization (PAPT | LDLT)

{ Factorizessingular matrices
{ Pivoting options (including Sdnabel-Eskow)
{ Stop and restart (or discard factors)

{ Option to return or alter pivots
Solve (Fwd/Bwd substitution)

{ Sewral entries for error analysis and iterativ e re nement
{ Multiple rhs (using level 3 BLAS)

{ Partial solve (usingL, D, orLT)

Figure 4.4: MA57eatures.

Additions madeto Version 3.x.y of MA57are:
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MeTiS nesteddissectionordering available as an option
Automatic choice of ordering ... decisionmade from matrix characteristics
Built-in option for scaling matrix (transparent to user)

Static pivoting option

We shaw the rst and secondpagesof the speci cation sheetfor MA57n Figures 4.5 and 4.6.
The rst page shaws that the structure of the code follows the subdivision of direct solution
methods that we discussedearlier. On the second page, we see details of the call for the
analysisentry where the number of parametersare reducedby combing cortrol and information
parametersinto arrays. In a Fortran 90 code, of course,the work arrays can be made internal

and dynamic and derived data typescan be usedto create more structure and further reducethe
parameter list.

11



Figure 4.5: First pageof MA57speci cation sheet
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Figure 4.6: Secondpage of MA57speci cation sheet
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4.6 Parallel codesin HSL

In recert years, we have introduced someparallel codesto HSL. The earliest parallel code was
an OpenMP version of MA41

Work on this code (1 ) was later developed by teams originally at RAL and CERFACS and
now also at Lyon, ENSEEIHT-IRIT, and Bordeaux to produce the much downloaded MUMPS
padkage (2 ). Note that this padkageis freely available by requestto mumps@cerfacs.fr but is
not in HSL.

MPI-based routines that are available in HSL are in the MP chapter:

HSL_MP42 Multiple front method .. equation entry
HSL_MP43 Multiple front method .. elemern entry
HSL_MP62 Symmetric elemert entry multiple front
HSL_MP48 General unsymmetric using singly bordered block diagonal form

4.7 HSL summary

It is impossibleto discussin detail the many sparsecodesin HSL in an article of this kind but
we presen a list of HSL sparsecodesin Table 4.4.

Padkage System solved Algorithm

MA38 Unsymmetric assenbled Multifron tal
MA41 Unsymmetric assenbled Multifron tal
MA42 Unsymmetric assenbled and unassenbled Frontal

MA43 Unsymmetric assenbled Frontal

MA45 Weighted least squares Normal equations
MA46 Unsymmetric unassenbled Multifron tal
MA48 Unsymmetric assenbled Mark owitz-Threshold
MA49 Rectangular assenbled Multifron tal QR
MAS55 Symmetric positive de nite Variable band
MA57 Symmetric inde nite assenbled Multifron tal
MAG2 Symmetric de nite unassenbled Frontal

MAG67 Symmetric inde nite structured Zero-tracking

Table 4.4: Someof the sparsematrix codesin HSL that usedirect methods. In many caseshere
is alsoa versionfor complex matrices. There are parallel versionsof MA41using OpenMP, and of
MA42 MA43MAG62and MA48using MPI. An out-of-core multifron tal code will soon be available.

5 Summary

The twin aims of our talk are to emphasizethe ubiquity of sparsematrices and the availability of
high quality codesfor solving sparsesystemswith HSL. We should stressthat there are se\eral
padagesavailable elsewherefor examplethe already mentioned MUMPR &lthough we do not know
of a greater concertration of codesthan in HSL.

To sum up:

Sparsematrices occur in very many application areas.
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Sparsedirect methods can be usedto robustly solve large sparseproblems.
There are many padkagesavailable that implement direct methods.

There are sewral padckages implementing direct methods in HSL
(www.cse.clrc.ac.uk/nag/h sl ).
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