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ABSTRA CT
We considerthe solution of large sparsesystems,sketch their ubiquit y, and briey describe
someof the algorithms usedto solve thesesystems.
The HSL mathematical software library started life in 1963 as the Harwell Subroutine
Library making it one of the oldest such libraries. The main strengths of the Library lie
in packagesfor large scalesystemsolution. It is particularly strong in direct methods for
sparsematrices and optimization. The Library has beenusedworldwide by a wide range
of industries.
We briey discuss the history of the library and its organization and contents. We
discussthe evolution of someof our current packagesand the e�orts to ensurereliabilit y,
robustness,and e�ciency .
We describe in somedetail the functionalit y of oneof our most popular sparsedirect codes.
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1 In tro duction

Sparsesystemsof linear equations
Ax = b (1.1)

are simply sets of linear equations where the coe�cien t matrix A has su�cien t zero entries to
causeit to be bene�cial to exploit this fact. Thus we are not here concernedwith any particular
structure or any particular application area. In fact, we emphasizein Section 2 the ubiquit y of
sparsesystemsand illustrate the diversity of their structure. In Section 3, we briey intro duce
the main elements of the direct solution of sparseequations indicating their complexity on a
rangeof structures. We then discussthe origins, structure, and development of HSL in Section4
beforea brief summary of the paper in Section 5.

2 Sparse matrices

Sparsematrices have arisen naturally in numerical applications since the mid 1960s. Someof
the earliest applications involving the solution of sparsesystemswith a generalstructure were in
the solution of ordinary di�eren tial equations using backward di�erence formulae and in linear
programming. The former area was the main driving force in the development of sparsematrix
methods at AERE Harwell in the 1970s. We list someof the major numerical application areas
stimulating and bene�ting from sparsematrix research in Table 2.1.

Sti� ODEs ... BDF ... SparseJacobian
Linear Programming
..... simplex
..... interior point
Optimization/Nonlinear Equations
Elliptic Partial Di�eren tial equations
EigensystemSolution
Two Point Boundary Value Problems
Least SquaresCalculations

Table 2.1: Somenumerical applications

In a more generalcontext, we can look at application areasthat often make extensive useof
sparsematrices or sparseequation solvers. We show a range of these in Table 2.2. In this list,
standard applications in the hard sciencesare listed along with slightly more esotericapplications
in the soft sciences.

We now show somepictures of sparsematrices from various applications in order to illustrate
di�eren t structures for sparsematrices. The thermal simulation example exhibits a structure
which is very structured and familiar to most of you. It is typical of a matrix arising in the
�nite-di�erence discretization of a three-dimensionalelliptic PDE. In this case,the inclusion of
thermal terms give this matrix, from oil reservoir modelling, interesting properties.
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Physics CFD
Lattice gauge
Atomic spectra

Chemistry Quantum chemistry
Chemical engineering

Civil engineering Structural analysis
Electrical engineering Power systems

Circuit simulation
Device simulation

Geography Geodesy
Demography Migration
Economics Economic modelling
Behavioural sciences Industrial relations
Politics Trading
Psychology Social dominance
Businessadministration Bureaucracy
Operations research Linear Programming

Table 2.2: Application areas

Thermal Simulation; SHERMAN2

Our so-calledweather matrix is somewhat more interesting and models the combination of
chemical kinetics and atmospheric transport. It is in fact a block matrix where each block
is diagonal or tridiagonal and comes from studies in atmospheric pollution, a hot topic in
environmental science.
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Weather Matrix; FS 760 3

The matrix from dynamic calculations is typical of a matrix arising from a �nite-element
discretization of a structures problem, in this casein a study of the e�ect of earthquake vibrations
on a building in the western USA.

Dynamic Calculation in Structures; BCSSTM13

The power systemmatrix also comesfrom the western USA. Those with an eagleeye will see
that the matrix is not quite block diagonal but there are only few entries outside the diagonal
blocks that are themselves sparse. The blocks correspond to the power system network for a
singleutilit y and the o�-diagonal entries to the much fewer links betweenthe utilities, that often
only carry loads when there is a problem in one utilities capacity.

Power Systems; BCSPWR07

The matrix from the simulation of computing system comes from a Markov model of a
computing system and has the remarkable anti-symmetric property that if there is an entry
aij then the entry aj i doesnot exist, for all i 6= j .
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Simulation of Computing Systems; GRE 1107

The chemical engineeringindustry is a rich sourceof unsymmetric sparsematrices that are
particularly challenging for solution by iterativ e methods. There is certainly a structure to the
matrix but somewhatmore irregular than the earlier examples.Notice that the diagonal is nearly
all zero.

Chemical Engineering; WEST0381

The matrix from an econometric input/output model from South East Asia also has
considerablestructure but not onethat can be exploited like that of the �rst matrix we displayed.

Economic Modelling; ORANI678

Du� and Reid distributed a set of sparsematrices from Harwell in the late 1970sbut the main
test collection for many yearswas the Harwell-Boeing SparseMatrix Collection. This is available
by anonymous ftp from ftp.numerical.rl.ac.uk in directory pub/harw ell boeing or from the
Web page http://www.cse.clrc.ac. uk/n ag/h b/h b.sh tml

This set was later developed by Du�, Grimes, and Lewis (7 ) to include larger matrices
in a wider range of application areas and to de�ne more language-friendly formats and
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auxiliary �les for other matrix properties (for example, eigenvalues) and associated information
(for example, sparsity orderings). The Rutherford-Boeing Sparse Matrix Collection (8 )
will be supported by the GRID-TLSE Project http://www.enseeiht.fr/l ima/ tls e and is
also available by anonymous FTP to ftp.cerfacs.fr in the directory pub/algo/matrices or
http://www.cerfacs.fr/alg or/S ofts /RB/ind ex.h tml

An extended set of test matrices available from Tim Davis at
http://www.cise.ufl.edu/r esearch/ sparse/ matr ice s and Matrix market at
http://math.nist.gov/Matr ixMarket .

3 Direct Metho ds

Although equation (1.1) nominally has the solution

x = A � 1b

it must be stressedthat this should only be thought of notationally. It is really crucial that one
must not useor even think of the inverseof A in this context.

For sparseA , A � 1 is usually dense. Indeed, if A is irreducible, one can prove (5 ) that A � 1

will always be densein a structural sense. That is, there exists a set of entries in the original
sparsity pattern of A that make any position in the matrix A � 1 nonzero.

Examplesof sparsematrices that are very sparsebut have denseinversesare tridiagonal and
arrowhead matrices, where an arrowhead matrix has entries only in all positions on the diagonal
and the last row and column. These examplesare particularly interesting since, although their
inversesare dense,linear systemsinvolving these as coe�cien t matrices can be solved with no
extra storage,as we shall shortly show.

If we thus dismiss the use of the inverse, we must propose other methods for solving the
systemsof the form (1.1). In someinstances,iterativ e methods (11 , 12 ) can beused,often based
on Krylo v sequences,but these are not guaranteed to converge on general systemsand usually
require very sophisticated preconditioning so we do not consider them further here. Instead we
look at direct methods for solution (6 ) that involve some matrix factorization representation
of the inverse. The methods that we consider here are all basedon GaussianElimination, that
generatesthe factorization:

PA Q ! LU (3.2)

where permutations P and Q are chosento preserve sparsity and maintain stabilit y, and L and
U are lower and upper triangular matrices, respectively. When A is symmetric, the factorization
is of the form

PAP T ! LDL T : (3.3)

The solution to equation (1.1) is then easily obtained by solving the lower triangular system

Ly = Pb

followed by the upper triangular system

UQ T x = y:
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Clearly, as in the casefor densesystems,most of the work is usually in the factorization. The
work in the forward and back substitution is proportional to the number of entries in the factors.
This subdivision of work is reected in software for sparsedirect methods. Although the exact
subdivision of tasks for sparsedirect solution will depend on the algorithm and software being
used,a common subdivision is given by:

ANAL YSE An analysisphasewhere the matrix structure is analysedto producea suitable
ordering and data structures for e�cien t factorization.

FA CTORIZE A factorization phasewhere the numerical factorization is performed.

SOLVE A solve phase where the factors are used to solve the system using forward and
backward substitution.

We note the following:

� ANAL YSE is sometimesprecededby a preordering phaseto exploit structure.

� For generalunsymmetric systems,the ANAL YSE and FACTORIZE phasesare sometimes
combined to ensurethe ordering doesnot compromisestabilit y.

� The concept of separate ANAL YSE and FACTORIZE phases is not present for dense
systems.

It is crucially important to try to ensuresparsity in the factors L and U . This is done by
choosing an ordering for the elimination. For example, if we pivot down the diagonal of the
matrix in the left-hand side of Figure 3.1 then the resulting matrix of factors will be dense,as
shown on the right-hand side of Figure 3.1.

� � � � �
� �
� �
� �
� �

L=U
� !

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.1: Factorization of reversearrowhead matrix

However, if we permute this matrix symmetrically to put the last row and column to the
end, obtaining the arrowhead matrix shown on the left-hand side of Figure 3.2, then the factors
require no more spacethan the original matrix as shown on the right-hand side of Figure 3.2.

The complexity of LU factorization on a densematrix of order n is:

2
3n3 + O (n2) oating-p oint operations (ops)

n2 storage,

while, for a band matrix (order n, semi-bandwidth k), it is:
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� �

� �
� �

� � � � �

L=U
� !

� �
� �

� �
� �

� � � � �

Figure 3.2: Factorization of arrowhead matrix

2k2n ops, 2nk storage.

For a �v e-diagonalmatrix (on a k � k grid) aswould arisein the �nite-di�erence discretization
of a two-dimensionalLaplacian, the complexity is:

O (k3) ops
and

O (k2logk) storage

while, for a tridiagonal or arrowhead matrix, the complexity is:

O (n) work and storage.

Indeed our target complexity for sparsematrix computations is O(n) + O(� ) for a sparse
matrix of order n with � entries.

4 HSL

4.1 Mathematical soft ware libraries

The bene�ts and advantagesof using high quality mathematical software libraries include:

� Shorten application development cycle, cutting time-to-market and gaining competitiv e
advantage

� Reducedevelopment costs

� Increasemodularit y

� More time to focus on specialist aspects of applications

� Improve application accuracyand robustness

4.2 HSL

HSL beganlife as the Harwell Subroutine Library in 1963and was originally developed by Mike
Powell and Mike Hopper asan internal library for usersof the IBM mainframe at AERE Harwell.
However, the reputation of the Harwell Subroutine Library spread so quickly that it was being
sent out to external userson requestas early as 1964. HSL packagesare now usedworldwide by
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academicsand commercialorganisations,and are incorporated into a large number of commercial
products.

HSL is now a collection of portable, fully documented and testedpackagesin standard Fortran,
primarily written and developed by the Numerical Analysis Group at the Rutherford Appleton
Laboratory although someroutines have beenwritten by visitors, colleaguesand collaborators,
and students of sta� at RAL. The particular strengths are currently:

� sparsematrix computations

� optimization

� large-scalesystemsolution.

There are two libraries: HSL 2004 and HSL Archive. HSL Archive consists of superseded
routines and public domain software and is free for non-commercialuse. All codesneeda licence
although academicand commercial are di�eren tiated.

The most recent versionof HSL is called HSL 2004and wasreleasedin January 2004. HSL is
marketed by Hyprotech UK, which was acquired by Aspen Technology in May 2002. For further
details see:www.cse.clrc.ac.uk/nag/h sl

4.3 Organization of HSL

The HSL Library is organizedinto chapters, each identi�ed by two letters
For example,

� MA: matrix routines (solvers)

� MC: matrix routines (manipulation)

� EB: unsymmetric eigensystems

Within each chapter, each packagehasa 2-digit identi�er, generallyallocated chronologically,
for example:

� MA48: packagefor solving unsymmetric sparseequations

� MA49: packagefor sparseQR factorization and for solving sparseleast-squares.

Following the Fortran 77 convention limiting the length of character strings, each subroutine
has a six character identi�er, for example:

� MA48AD: double precision analysis subroutine of MA48package

� MA57BD: double precision factorize subroutine of MA57package.

More recently, the pre�x HSL (for example, HSLMA48) has beenused to identify Fortran 90
or 95 packages.

The number of routines in the main chapters in HSL is shown in Figure 4.3.

Each packagehas a speci�cation sheet,a short \demo" test program, and an exhaustive test
deck.
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MA Matrix solution 26
MC Matrix manipulation 33
ME Complex matrices 8
MI Iterativ e solvers and preconditioners 9
MP MPI packages.. all solvers 4
E Eigensystems 8
V Optimization 13

Table 4.3: Number of routines in somemajor chapters of HSL.

Fortran sourcecode is always provided. Versionnumbers in the form a.b.c have beenrecently
introduced to HSL. Changesto c are very minor, perhapsinvolving changesto comments in the
code. The level b represents minor bug �xes, while at level a we expect more major �xes and
perhapsnew entries or facilities.

4.4 Dev elopmen t of HSL

HSL is both rev olutionary and evolutionary .
By rev olutionary , we mean that codeshave beenintroduced that are radically di�eren t in

technique and algorithm designthan anything that has precededthem. Examples of this are:

MA18 First sparsedirect code 1971
MA27 First multifron tal code 1982

By evolutionary , we mean that someof our codes evolve, sometimesas a result of major
changesin programming paradigm and sometimesbecauseof added functionalities. Examplesof
this morphing are:

MA18� ! MA28� ! MA48
MA32� ! MA42� !
MA37� ! MA41� !

MA17� ! MA27� ! MA57

We look in more detail at an exampleof evolution by giving more details for the last example
above, namely our agship code for symmetric sparsesystems.The history of our HSL codesfor
solving the symmetric systemwith A = A T is shown in Figure 4.3.
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� MA17... 1971(Curtis and Reid)

{ Sparsesymmetric

{ LD L T .. 1 � 1 pivots only

{ linked lists

� MA27... 1982(Du� and Reid)

{ Sparsesymmetric inde�nite

{ LD L T .. 1 � 1 and 2 � 2 pivots

{ Multifron tal

� MA47... 1995(Du� and Reid)

{ Sparsesymmetric inde�nite structured

{ LD L T .. 1 � 1 and 2 � 2 pivots, with � �
� 0

and
� �
� 0

pivots

{ Multifron tal

� MA57... 2000(Du� )

{ SeeSection 4.5

Figure 4.3: Example of evolution

4.5 HSL code MA57

To show the sophistication of our recent codes,we show the featuresof our current agship code
for solving sparsesymmetric equationsMA57in Figure 4.4.

� Analysis (ordering and symbolic factorization)

{ AMD (Approximate Minim um Degree)ordering

� Factorization (PAP T � ! LD L T )

{ Factorizessingular matrices

{ Pivoting options (including Schnabel-Eskow)

{ Stop and restart (or discard factors)

{ Option to return or alter pivots

� Solve (Fwd/Bwd substitution)

{ Several entries for error analysis and iterativ e re�nement

{ Multiple rhs (using level 3 BLAS)

{ Partial solve (using L , D , or L T )

Figure 4.4: MA57features.

Additions made to Version 3.x.y of MA57are:
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� MeTiS nesteddissectionordering available as an option

� Automatic choice of ordering ... decisionmade from matrix characteristics

� Built-in option for scaling matrix (transparent to user)

� Static pivoting option

We show the �rst and secondpagesof the speci�cation sheetfor MA57in Figures 4.5 and 4.6.
The �rst page shows that the structure of the code follows the subdivision of direct solution
methods that we discussedearlier. On the second page, we see details of the call for the
analysis entry where the number of parametersare reducedby combing control and information
parameters into arrays. In a Fortran 90 code, of course, the work arrays can be made internal
and dynamic and derived data typescan be usedto createmore structure and further reducethe
parameter list.
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Figure 4.5: First pageof MA57speci�cation sheet
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Figure 4.6: Secondpageof MA57speci�cation sheet
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4.6 Parallel codes in HSL

In recent years, we have introduced someparallel codes to HSL. The earliest parallel code was
an OpenMP version of MA41.

Work on this code (1 ) was later developed by teams originally at RAL and CERFACS and
now also at Lyon, ENSEEIHT-IRIT, and Bordeaux to produce the much downloaded MUMPS
package (2 ). Note that this package is freely available by request to mumps@cerfacs.fr but is
not in HSL.

MPI-based routines that are available in HSL are in the MP chapter:

HSL MP42 Multiple front method .. equation entry
HSL MP43 Multiple front method .. element entry
HSL MP62 Symmetric element entry multiple front
HSL MP48 General unsymmetric using singly bordered block diagonal form

4.7 HSL summary

It is impossibleto discussin detail the many sparsecodes in HSL in an article of this kind but
we present a list of HSL sparsecodesin Table 4.4.

Package System solved Algorithm
MA38 Unsymmetric assembled Multifron tal
MA41 Unsymmetric assembled Multifron tal
MA42 Unsymmetric assembled and unassembled Frontal
MA43 Unsymmetric assembled Frontal
MA45 Weighted least squares Normal equations
MA46 Unsymmetric unassembled Multifron tal
MA48 Unsymmetric assembled Mark owitz-Threshold
MA49 Rectangular assembled Multifron tal QR
MA55 Symmetric positive de�nite Variable band
MA57 Symmetric inde�nite assembled Multifron tal
MA62 Symmetric de�nite unassembled Frontal
MA67 Symmetric inde�nite structured Zero-tracking

Table 4.4: Someof the sparsematrix codesin HSL that usedirect methods. In many casesthere
is alsoa version for complex matrices. There are parallel versionsof MA41, using OpenMP, and of
MA42, MA43, MA62, and MA48using MPI. An out-of-core multifron tal code will soon be available.

5 Summary

The twin aims of our talk are to emphasizethe ubiquit y of sparsematrices and the availabilit y of
high quality codes for solving sparsesystemswith HSL. We should stressthat there are several
packagesavailable elsewhere,for examplethe already mentioned MUMPS, although we do not know
of a greater concentration of codes than in HSL.

To sum up:

� Sparsematrices occur in very many application areas.
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� Sparsedirect methods can be usedto robustly solve large sparseproblems.

� There are many packagesavailable that implement direct methods.

� There are several packages implementing direct methods in HSL
(www.cse.clrc.ac.uk/nag/h sl ).
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