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1 Introduction

We consider the bound-constrained linear least-squares problem

minimize
x∈X

f(x) := 1
2
∥Ax− b∥2W where X := {x ∈ Rn : xL ≤ x ≤ xU}. (1.1)

Here, we are given a vector of m observations b, a linear model Ax that aims to match b,

written in terms of an m by n design matrix A, a positive-definite matrix of weights W ,

and vectors of lower and upper bounds xL, xU ∈ Rn, some of whose components may be

infinite. We are particularly concerned with problems for which n and m are large, and A

and W are sparse; in practice W is frequently just a diagonal matrix of strictly positive

weights, indeed diagonal weights of one are common.

Throughout we use the Euclidean inner product ⟨·, ·⟩, the corresponding norm ∥·∥ =

∥·∥2, weighted versions so that ⟨u, v⟩W = ⟨u,Wv⟩ and ∥u∥W =
√

⟨u, u⟩W for any vectors

u and v), and the projection operator

PX [x] = max(xL,min(xU, x)),

where min and max are applied componentwise. We denote the residual by r(x) := Ax−b,

and the gradient and (constant) Hessian of f by g(x) := ATWr(x) and H := ATWA. We

partition the indices of x ∈ X into bounded and free sets via

BL(x) := {j ∈ Nn : [x]j = [xL]j}, BU(x) := {j ∈ Nn : [x]j = [xU]j},

B(x) := BL(x) ∪ BU(x) and F(x) := {j ∈ Nn : [xL]j < [x]j < [xU]j},

where Nn := {1, · · · , n} and [x]j is the jth component of x. Finally we let AJ be the

matrix whose columns are those of A indexed by the set J ⊆ Nn, I is the n by n identity

matrix, IJ be the matrix of columns of I indexed J , and ej ∈ Rn is the j-th coordinate

vector.
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2 Method

To solve (1.1), we use an accelerated gradient-projection method. Given a iterate xk ∈ X ,

an improvement xk+1 is found as follows:

1. Stop if xk satisfies suitable termination criteria.

2. Compute

xC

k = PX [xk − αkg(xk)]

for some suitable αk for which f(xC

k)) < f(xk).

3. Compute xS

k as an approximation to

arg min
x∈Rn

f(x) subject to xj = xl for j ∈ BL(xC

k) and xj = xu for j ∈ BU(xC

k)

4. Compute

xk+1 = PX [x
C

k + βk(x
S

k − xC

k)]

for some suitable βk for which f(xk+1) ≤ f(xC

k).

Steps 3 and 4 may sometimes be omitted if good progress is made in Step 2.

The dominant computations involved are the piecewise linesearches in Steps 2 and 4,

and the linear least-squares minimization with fixed variables in Step 3. We consider each

in turn.

2.1 Piecewise linesearches

Given a base point xS and a search direction d, consider the path

x(α) := PX (x
S + αd)

for α ≥ 0. On this path, our aim is to find a point for which f(x(α)) is “suitably” smaller

than f(xS). Clearly x(α) is piecewise linear, and changes direction at a finite sequence of

“breakpoints” αi > αi−1, for i = 1, . . .m, with α0 = 0. At breakpoint αi, one or more of

the variables [x]j, j ∈ Bi, encounters a bound, and each is fixed at that value for α ≥ αi.

In particular,

x(αi +∆α) = xi +∆αdi (2.2)

for all ∆α ∈ [0,∆αi], where

xi := x(αi) ≡ PX (x
S + αid),

[di]j :=

{
0 if j ∈

⋃i
k=0 Bk or

[d]j otherwise,
(2.3)

∆αi := αi+1 − αi, (2.4)
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and specifically

B0 := {j : [xS]j = [xL]j and [d]j < 0 or [xS]j = [xU]j and [d]j > 0 or [d]j = 0}.

While it might appear that the breakpoints need be sorted in advance, this is not necessary.

Let

αB

j :=


[xU]j − [xS]j

[d]j
if [d]j > 0,

[xL]j − [xS]j
[d]j

if [d]j < 0 and

0 if [d]j = 0

(2.5)

for j ∈ Nn be the unordered breakpoints. Then the i-th ordered breakpoint may be found

efficiently knowing the i−1-st by arranging the {αB

j } in a heap, and using the Heapsort

method [10]. In practice, breakpoints that are very close together are considered as a single

point.

2.1.1 An exact piecewise minimizer

We now consider f(x) on the segment (2.2). It follows immediately that

f(x(αi +∆α)) = f(xi +∆αdi) = 1
2
∥A(xi +∆αdi)− b∥2W

= 1
2
∥ri +∆αsi∥

2
W

= 1
2
∥ri∥

2
W +∆α⟨ri, si⟩W + 1

2
∆α2 ∥si∥

2
W ,

(2.6)

where

ri := Axi − b (2.7)

and

si := Adi. (2.8)

Notice that (2.6) implies that f(x(α)) is convex, and that it achieves its smallest value at

αM

i := αi −
⟨ri, si⟩W
∥si∥

2
W

so long as this is lies in the interval [αi, αi+1]. Thus an obvious method to find the global

minimum on x(α) is to step through the breakpoints αi in increasing order until either

⟨ri, si⟩ ≥ 0, in which case the minimizer occurs at α = αi or α
M

i ≤ αi+1, in which case a

minimizer is at α = αM

i [2, §3], [3, Alg.17.3.1 with typo corrections]. The process is finite,

since there are only at most n + 1 breakpoints. As we shall now show, the whole process

can be implemented while moving from one segment to the next by evaluating and using

the product Av, where v is a vector whose non-zeros occur only in positions corresponding

to components of x that reach bounds as the segment ends; typically v is extremely sparse,

usually only having a single nonzero.

Superficially, the scheme suggested above requires that we calculate the slope and

curvature

f ′
i := ⟨ri, si⟩W and f ′′

i := ∥si∥
2
W ,
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but as we shall now see these may be recurred with modest expense rather than formed

afresh. The key is the definition (2.3) of di. In particular

di+1 = di − vi+1, (2.9)

where

vi+1 :=
∑

j∈Bi+1

[d]jej,

and vi+1 is almost certainly a very sparse vector. Thus since A is sparse, it is also highly

likely that so are

pi+1 := Avi+1 and yi+1 := Wpi+1; (2.10)

each column of A can only be accessed a single time during the entire iteration. Hence,

using (2.8), (2.9) and (2.10),

si+1 = si − pi+1 (2.11)

differs from si in only a few components and therefore may be updated efficiently rather

than recomputed. Therefore

f ′′
i+1 = ∥si+1∥

2
W = ∥si − pi+1∥

2
W = ∥si∥

2
W + ⟨pi+1 − 2si, pi+1⟩W

= f ′′
i + ⟨pi+1 − 2si, pi+1⟩W

= f ′′
i + ⟨pi+1 − 2si, yi+1⟩

which may be updated using a sparse inner product involving yi+1.

Recurring the slope f ′
i = ⟨ri, si⟩W is only slightly more awkward. To proceed, let

rS := AxS − b, (2.12)

gS := ATWrS, (2.13)

∆xi := xi − xS and (2.14)

qi := A∆xi. (2.15)

It then follows from (2.7), (2.12), (2.14) and (2.15) that

ri = A(xS +∆xi)− b = AxS − b+ A∆xi = AxS − b+ qi = rS + qi,

and hence from (2.8) and (2.13) that

⟨ri, si⟩W = ⟨rS + qi, si⟩W = ⟨rS, si⟩W + ⟨qi, si⟩W = li + γi,

where

li := ⟨gS, di⟩ and γi := ⟨qi, si⟩W . (2.16)

Thus (2.9), (2.10) and (2.16) give

li+1 = ⟨gS, di+1⟩ = ⟨gS, di − vi+1⟩ = ⟨gS, di⟩ − ⟨gS, vi+1⟩
= li − ⟨gS, vi+1⟩ = li − ⟨rS,WAvi+1⟩ = li − ⟨rS, yi+1⟩,
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and so li+1 may be updated from li using a sparse inner product involving either vi+1 or

yi+1. Since (2.2) gives

xi+1 = xi +∆αidi,

it follows from (2.8), (2.14) and (2.15) that

qi+1 = A∆xi+1 = A(xi+1 − xS) = A(xi +∆αidi − xS)

= A(xi − xS) + ∆αiAdi = A∆xi +∆αiAdi
= qi +∆αisi.

(2.17)

Combining this with (2.11), we find

γi+1 = ⟨qi+1, si+1⟩W = ⟨qi +∆αisi, si − pi+1⟩W
= ⟨qi, si⟩W +∆αi⟨si, si⟩W − ⟨qi+1, pi+1⟩W
= γi +∆αif

′′
i − ⟨qi+1, pi+1⟩W ,

= γi +∆αif
′′
i − ⟨qi+1, yi+1⟩,

(2.18)

where we only need to take the inner product over components j for which [yi+1]j ̸= 0.

Unfortunately, the update (2.17) for qi+1 does not involve a sparse vector, and we need to

dig a little deeper. The secret is to define

ui+1 := qi+1 − αi+1si, with u0 = 0. (2.19)

Then it follows from (2.17), ∆αi − αi+1 = −αi from (2.4), and (2.11) that

ui+1 = qi +∆αi si − αi+1si = qi + (∆αi − αi+1)si = qi − αisi = qi − αi(si−1 − pi)

= ui + αipi,

and this is a sparse update. Thus rather than recurring qi, we may instead recur ui and

obtain qi+1 = ui+1 + αi+1si from (2.19) as required. The important difference is that the

recursions for ui+1 and si only involve the likely-sparse pi. In particular, the recurrence for

γi+1 in (2.18) becomes

γi+1 = γi +∆αif
′′
i − ⟨ui+1, pi+1⟩W − αi+1⟨si, pi+1⟩W

= γi +∆αif
′′
i − ⟨ui+1, yi+1⟩ − αi+1⟨si, yi+1⟩.

We summarize our findings as Algorithm 2.1; this is essentially a specific case of a more

general framework [5, Alg.4]. Notice that we also record the value fi = f(xi) as a bi-

product, and that this may be updated using (2.6) as we proceed from breakpoint to

breakpoint.

Algorithm 2.1: Finding the piecewise arc minimizer xC = PX (x
S+αCd)xC = PX (x
S+αCd)xC = PX (x
S+αCd) of fff

0. Initialization: The initial point xS ∈ X and search direction d are given. Com-

pute the residual rS = AxS−b, and the breakpoints αB

j from (2.5) for all j ∈ Nn.
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Let α0 = 0, u0 = 0,

B0 = {j ∈ Nn : αB

j = 0} and d0 = d−
∑
j∈B0

[d]jej,

compute

p0 = Ad0 and yo = Wpo,

f0 = 1
2
⟨rS,WrS⟩, f ′

0 = ⟨rS, y0⟩ and f ′′
0 = ⟨po, yo⟩

and set s0 = p0 and i = 0.

1. Find the next breakpoint: Determine αi+1, the first breakpoint beyond αi.

2. Check the current interval for arc minimizer:

If f ′
i ≥ 0, set αC = αi, x

C = PX [x
S + αCd], f(xC) = fi, and stop.

If f ′′
i > 0 and αi − f ′

i/f
′′
i ≤ αi+1, set α

C = αi − f ′
i/f

′′
i , x

C = PX [x
S + αCd]

f(xC) = fi + (αC − αi)f
′
i + 1

2
(αC − αi)

2f ′′
i , and stop.

3. Prepare for the next interval: Set ∆αi = αi+1 − αi, recur

ui+1 = ui + αipi,

let

Bi+1 = {j ∈ Nn : αB

j = αi+1} and vi+1 =
∑

j∈Bi+1

[d]jej,

and compute

pi+1 = Avi+1 and yi+1 = Wpi+1.

4. Compute the value, slope and curvature: Compute

fi+1 = fi +∆αif
′
i + 1

2
(∆αi)

2f ′′
i ,

f ′
i+1 = f ′

i +∆αif
′′
i − ⟨rS + ui+1 + αi+1si, yi+1⟩ and

f ′′
i+1 = f ′′

i + ⟨pi+1 − 2si, yi+1⟩,
update

si+1 = si − pi+1,

increment i by 1 and return to Step 1.

In practice, we compute f ′
i+1 afresh when |f ′

i+1/f
′
i | becomes small to guard against

possible accumulated rounding errors in the recurrences. An earlier variant [1] based on

algorithms for general quadratic objectives [2, §3], but specialised for the least-squares

case, required products with both A and AT at each breakpoint.
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2.1.2 An approximate piecewise minimizer

In some cases, it may instead be advantageous to approximate the piecewise minimizer

using a safeguarded, backtracking, piecewise linesearch [8]. The idea is simply to pick

an initial stepsize α0, backtracking reduction factor β ∈ (0, 1) and decrease tolerance

η ∈ (0, 1
2
), and to choose a sequence of decreasing stepsizes αi := α0β

i for increasing i ≥ 0

until

f(xi) ≤ f(xS) + η⟨di, gS⟩, (2.20)

involving the trial point xi = PX [x
S + αid], the trial step di = xi − xS, and the gradient at

the base point gS = ATW (AxS − b).

To do so, we take advantage of the structure of the trial step di and basic properties of

the backtracking projected line search. In particular, we know that once a component, say

the jth, satisfies [xL

i ]j < [xi]j < [xU

i ]j, then [xL

ℓ ]j < [xℓ]j < [xU

ℓ ]j will continue to hold for all

ℓ ≥ i. Thus, by contrast to the search for the exact minimizer in Section 2.1.1 that moves

forward along the piecewise projected gradient path fixing variables, the search here frees

variables from their bounds as it proceeds backwards towards xS.

With this in mind, we compute the index set

AS = {j : [d]j = 0 or [xS]j = [xL]j and [d]j < 0 or [xS]j = [xU]j and [d]j > 0} (2.21)

of components that are fixed at the base point on the piecewise search arc, record the

vector xB for which

[xB]j :=


[xS]j if j ∈ AS,

[xL]j if j /∈ AS and [d]j < 0, and

[xU]j if j /∈ AS and [d]j > 0,

(2.22)

and maintain the sets of active (i.e., fixed) and free components

Ai := {j /∈ AS : [xi]j = [xB]j} and (2.23)

Fi := {j /∈ AS : [xi]j ̸= [xB]j}, (2.24)

for i ≥ 0, as well as the intermediate components, those that change from active to free,

Ii := Fi ∩ Ai−1, (2.25)

for i ≥ 1, at xi. As we have already mentioned,

Fi ⊆ Fi+1 and Ai+1 ⊆ Ai for all i ≥ 0

as a consequence of the approximate piecewise search.

It is immediate that, permuting the variables in the obvious way,

di =

(
sAi

αidFi

)
, (2.26)
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where

s := xB − xS.

Hence

ri := Axi − b = A(xS + di)− b = rS + Adi = rS + AAi
sAi

+ αiAFi
dFi

= rA

i + αir
F

i ,

where

rA

i := rS + AAi
sAi

and rF

i := AFi
dFi

, (2.27)

and therefore

f(xi) = 1
2
∥rA

i ∥
2
W + αi⟨rA

i , r
F

i ⟩W + 1
2
α2
i ∥rF

i ∥
2
W .

Thus f(xi) may be found trivially from the three quantities

fC

i := 1
2
∥rA

i ∥
2
W , fL

i := ⟨rA

i , r
F

i ⟩W and fQ

i := 1
2
∥rF

i ∥
2
W . (2.28)

Although it is possible to compute these quantities afresh, it is usually more efficient

to recur them as the piecewise linesearch proceeds instead. To do so, note that

Ai = Ai−1 \ Ii and Fi = Fi−1 ∪ Ii, (2.29)

and thus that

rA

i = rA

i−1 − pi and rF

i = rF

i−1 + qi, (2.30)

where

pi := AIisIi and qi := AIidIi . (2.31)

Therefore, when A is sparse and if a modest number of variables move off bounds at xi, the

vectors pi and qi will most likely be sparse, indeed, aside from exact cancellations, their

nonzeros will occur in the same positions. It then follows from (2.28) and (2.31) that

fC

i = fC

i−1 − ⟨pi, rA

i−1⟩W + 1
2
∥pi∥

2
W

= fC

i−1 − ⟨yi, rA

i−1 − 1
2
pi⟩,

fL

i = fL

i−1 + ⟨qi, rA

i−1⟩W − ⟨pi, rF

i−1⟩W − ⟨qi, pi⟩W
= fL

i−1 + ⟨zi, rA

i−1⟩ − ⟨yi, rF

i−1⟩ − 1
2
⟨zi, pi⟩ − 1

2
⟨yi, qi⟩

= fL

i−1 + ⟨zi, rA

i−1 − 1
2
pi⟩ − ⟨yi, rF

i−1 + 1
2
qi⟩ and

fQ

i = fQ

i−1 + ⟨qi, rF

i−1⟩W + 1
2
∥qi∥

2
W

= fQ

i−1 + ⟨zi, rF

i−1 + 1
2
qi⟩,

(2.32)

involving inner products with the likely-sparse vectors

yi := Wpi and zi := Wqi. (2.33)

In order to check (2.20), we also need to compute

⟨di, gS⟩ = ⟨ATdi, r
S⟩W = ⟨AAi

sAi
, rS⟩W + αi⟨AFi

dFi
, rS⟩W = γA

i + αiγ
F

i , (2.34)
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where

γA

i := ⟨AAi
sAi

, rS⟩W and γF

i := ⟨AFi
dFi

, rS⟩W ,

using (2.26). It then follows from (2.29) and (2.31) that

γA

i = ⟨AAi−1
sAi−1

, rS⟩W − ⟨AIisIi , r
S⟩W = γA

i−1 − ⟨pi, rS⟩W
= γA

i−1 − ⟨yi, rS⟩ and

γF

i = ⟨AFi−1
dFi−1

, rS⟩W + ⟨AIidIi , r
S⟩W = γF

i−1 + ⟨qi, rS⟩W
= γF

i−1 + ⟨zi, rS⟩.

(2.35)

Thus we may obtain (2.34) by recurring γA

i and γF

i using (2.35), and the latter simply

requires a further pair of sparse inner products.

It is important to notice that the crucial likely-sparse vectors pi and qi in (2.31) needed

by the recurrences (2.32) and (2.35) only depend on the set of indices Ii that change

status from fixed to free during the i-th backtrack. Although formally we define this using

xi, in practice we do not need to form xi, indeed to do so would require a projection

PX [x
S + αid] for each attempted step αi. Instead, just as in Section 2.1.1, we find the

unordered breakpoints (2.5), and then arrange them in a “backward” heap starting at the

first for which αB

j > α0. We then adjust the heap to find precisely the indices Ii+1 of those

between αi and αi+1 using the Heapsort algorithm as required.

We summarize our discussion as Algorithm 2.2.

Algorithm 2.2: Find an approximate backtracking arc minimizer xCxCxC of fff

0. Initialization: The initial point xS ∈ X , search direction d, initial stepsize α0 >

0, reduction factor β ∈ (0, 1) and decrease tolerance η ∈ (0, 1
2
) are given.

Compute the residual rS = AxS−b, the initial objective value f(xS) = 1
2
∥rS∥2W ,

the base fixed set AS from (2.21), the breakpoints αB

j from (2.5) for all j ∈ Nn,

the end of the arc xB from (2.22) and its direction s = xB − xS, the initial

search point x0 = PX [x
S + α0d], the active and free components at x0,

A0 = {j : α0 > αB

j } and F0 = {j /∈ AS : α0 ≤ αB

j },

and the corresponding residuals

rA

0 = rS + p0 and rF

0 = q0

using the matrix-vector products

p0 = AA0
sA0

and q0 = AF0
dF0

.

Initialize

fC

0 = 1
2
∥rA

0 ∥
2
W , fL

0 = ⟨rA

0 , r
F

0⟩W and fQ

0 = 1
2
∥rF

0∥
2
W ,

as well as

γA

0 = ⟨p0, rS⟩W and γF

0 = ⟨q0, rS⟩W .

Set i = 0.
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1. Check for an approximate arc minimizer: Compute

fi = fC

i + αif
L

i + α2
i f

Q

i and γi = γA

i + αiγ
F

1 .

If fi ≤ f(xS) + ηγi, set

αC = αi, xC = PX [x
S + αCd] and f(xC) = fi,

and stop.

2. Find the next set of indices that change status: Let αi+1 = βαi, and

compute

Ii+1 = {j : αi+1 < αB

j ≤ αi}

using the Heapsort algorithm.

3. Update the components of the objective and its slope: Compute

pi+1 = AIi+1
sIi+1

, yi+1 = Wpi+1,

qi+1 = AIi+1
dIi+1

and zi+1 = Wqi+1,

update

fC

i+1 = fC

i − ⟨yi+1, r
A

i − 1
2
pi+1⟩,

fL

i+1 = fL

i + ⟨zi+1, r
A

i − 1
2
pi+1⟩ − ⟨yi+1, r

F

i + 1
2
qi+1⟩,

fQ

i+1 = fQ

i + ⟨zi+1, r
F

i + 1
2
qi+1⟩,

γA

i+1 = γA

i − ⟨yi+1, r
S⟩,

γF

i+1 = γF

i + ⟨zi+1, r
S⟩,

rA

i+1 = rA

i − pi+1 and

rF

i+1 = rF

i + qi+1,

increment i by 1 and return to Step 1.

It is also possible to contemplate a variant in which the iterates advances further along

the piecewise arc if the initial point x0 is acceptable. To be specific, if

f(x0) ≤ f(xS) + η⟨x0 − xS, gS⟩, (2.36)

we terminate at the arc point xi with the smallest i ≥ 0 for which

f(xi+1) > f(xS) + η⟨xi+1 − xS, gS⟩, (2.37)

where, as before, xi = PX [x
S+αid], but now αi = α0β

−i ≥ α0. The only essential difference

is that in this case

Fi+1 ⊆ Fi and Ai ⊆ Ai+1 for all i ≥ 0 ,

and components in Ji+1 := Ai+1 ∩ Fi change from free to active, i.e.,

Ai+1 = Ai ∪ Ji+1 and Fi+1 = Fi \ Ji+1. (2.38)
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This leads to

rA

i+1 = rA

i + pi+1 and rF

i+1 = rF

i − qi+1,

where pi and qi are given by (2.31), and the obvious changes to (2.32) and (2.35). We

summarize the necessary enhancements in Algorithm 2.3.

Algorithm 2.3: Find an approximate piecewise arc minimizer xCxCxC of fff

The same as Algorithm 2.2 on page 9 except that Step 1 becomes

1. Check for an approximate backtracking arc minimizer: Compute

fi = fC

i + αif
L

i + α2
i f

Q

i and γi = γA

i + αiγ
F

1 .

If fi ≤ f(xS) + ηγi, go to Step 4 if i = 0 but otherwise, i.e., if i > 0, set

αC = αi, xC = PX [x
S + αCd] and f(xC) = fi,

and stop.

and additionally

4. Find the next set of indices that change status: Let αi+1 = β−1αi, and

compute

Ji+1 = {j : αi < αB

j ≤ αi+1}
using the Heapsort algorithm.

5. Update the components of the objective and its slope: Compute

pi+1 = AJi+1
sJi+1

, yi+1 = Wpi+1,

qi+1 = AJi+1
dJi+1

and zi+1 = Wqi+1,

update

fC

i+1 = fC

i + ⟨yi+1, r
A

i + 1
2
pi+1⟩,

fL

i+1 = fL

i − ⟨zi+1, r
A

i + 1
2
pi+1⟩+ ⟨yi+1, r

F

i − 1
2
qi+1⟩,

fQ

i+1 = fQ

i − ⟨zi+1, r
F

i − 1
2
qi+1⟩,

γA

i+1 = γA

i + ⟨yi+1, r
S⟩,

γF

i+1 = γF

i − ⟨zi+1, r
S⟩,

rA

i+1 = rA

i + pi+1 and

rF

i+1 = rF

i − qi+1.

6. Check for an approximate extended arc minimizer: Compute

fi+1 = fC

i+1 + αi+1f
L

i+1 + α2
i+1f

Q

i+1 and γi+1 = γA

i+1 + αi+1γ
F

1+1.

If fi+1 > f(xS) + ηγi+1 or αi+1 ≥ maxj α
B

j , set

αC = αi, xC = PX [x
S + αCd] and f(xC) = fi,

and stop. Otherwise, increment i by 1 and return to Step 4.
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Notice the extra stopping check in Step 6: this is simply to prevent the search extending

beyond the end of the piecewise arc.

2.2 Linear least-squares minimization with fixed variables

Let Z[v] be the operator that sets the components of a given vector v to zero, i.e.,

[Z[v]]i =

{
0 i ∈ Z
[v]i otherwise,

for a specified subset Z ⊆ Nn of indices of x that are to be fixed; in the context of Step

3 in the generic framework described at the start of Section 2, Z at iteration k will be

BL(xC

k) ∪ BU(xC

k). To minimize f(x) over the set of variables that are in F := Nn \ Z,

while fixing the remaining components at the values that they have at x0, we may apply

the following well-known preconditioned conjugate-gradient iterative scheme [7, 9]—here

the preconditioner P may be any symmetric, positive-definite matrix, for which the cost

of solving Pv = g is modest.

Algorithm 2.4: The preconditioned conjugate-gradient least-squares

method

Given x0, set r0 = Ax0−b and g0 = Z[ATWr0], and let v0 = Z[P−1g0] and p0 = −v0.

For k = 0, 1, . . . until convergence, perform the iteration

qk = Apk,

αk = ⟨gk, vk⟩/⟨qk,Wqk⟩,
xk+1 = xk + αkpk,

rk+1 = rk + αkqk,

gk+1 = Z[ATWrk+1],

vk+1 = Z[P−1gk+1],

βk = ⟨gk+1, vk+1⟩/⟨gk, vk⟩ and

pk+1 = −vk+1 + βkpk.

Notice that the product qk = Apk only requires access to the columns of A with indices

that lie in F . Likewise, only the components of ATWrk+1 with indices that lie in F are

needed. A good “preconditioner” P will be such that the eigenvalues of P−1AT
FWAF are

clustered around one, although it is not necessarily easy to achieve this [6]; at the very

least, picking P = diag(ATWA) is often helpful, and in particular the required diagonal

entries are then simply the squares of the W -norms of the columns of A.
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3 Regularization

In practice, it is common to consider the regularized bound-constrained linear least-squares

problem

minimize
x∈X

ϕ(x, σ) := 1
2
∥Ax− b∥2W + 1

2
σ ∥x∥2R , (3.39)

in which we allow an extra regularization term in the positive-definite R-norm, with reg-

ularization weight σ ≥ 0; while it is not necessary, in what follows we shall assume that R

is sparse so that products between R and sparse vectors remain sparse. Since ϕ(x, σ) is a

linear sum of f(x) and the regularization term, we may use linearity to compute derivatives

involving those that we have already seen plus σ times those of ρ(x) := 1
2
∥x∥2R. Trivially,

the gradient and Hessian of ρ are Mx and M respectively. Equally ρ(x) mat be interpreted

as a weighted sum-of-squares function 1
2
∥Ax− b∥2W in the special case for which A = I,

b = 0 and W = R. Such a perspective then simply allows us to derive the necessary

changes in ρ(x) as we investigate the piecewise-linear path x(α).

To generalise the method for finding the exact piecewise minimizer described in Sec-

tion 2.1.1, we must consider ρ(x) on the segment (2.2). Plainly we have that

ρ(x(αi +∆α)) = ρ(xi +∆αdi) = 1
2
∥xi +∆αdi∥

2
R = ρi +∆αρ′i + 1

2
∆α2ρ′′i (3.40)

involving the value, slope and curvature

ρi := 1
2
∥xi∥

2
R , ρ′i := ⟨xi, di⟩R and ρ′′i := ∥di∥

2
R

at breakpoint i. Mechanically repeating the arguments in Section 2.1.1, leads to the

following generalisation of Algorithm 2.1 for the regularization case.

Algorithm 3.1: Finding the piecewise arc minimizer xC = PX (x
S+αCd)xC = PX (x
S+αCd)xC = PX (x
S+αCd) of ϕϕϕ

0. Initialization: The initial point xS ∈ X and search direction d are given. Com-

pute the residual rS = AxS−b, and the breakpoints αB

j from (2.5) for all j ∈ Nn.

Let α0 = 0, u0 = 0, w0 = 0,

B0 = {j ∈ Nn : αB

j = 0} and d0 = d−
∑
j∈B0

[d]jej,

compute

p0 = Ad0, yo = Wpo and zo = Rdo,

f0 = 1
2
⟨rS,WrS⟩, f ′

0 = ⟨rS, y0⟩ and f ′′
0 = ⟨po, yo⟩,

ρ0 = 1
2
⟨xS, RxS⟩, ρ′0 = ⟨xS, z0⟩ and ρ′′0 = ⟨do, zo⟩,

and set v0 = d0, s0 = p0 and i = 0.

1. Find the next breakpoint: Determine αi+1, the first breakpoint beyond αi.

2. Check the current interval for arc minimizer:
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Compute

ϕi = fi + σρi, ϕ′
i = f ′

i + σρ′i and ϕ′′
i = f ′′

i + σρ′′i .

If ϕ′
i ≥ 0, set αC = αi, x

C = PX [x
S + αCd], ϕ(xC, σ) = ϕi, and stop.

If ϕ′′
i > 0 and αi − ϕ′

i/ϕ
′′
i ≤ αi+1, set α

C = αi − ϕ′
i/ϕ

′′
i , x

C = PX [x
S + αCd]

ϕ(xC, σ) = ϕi + (αC − αi)ϕ
′
i + 1

2
(αC − αi)

2ϕ′′
i , and stop.

3. Prepare for the next interval: Set ∆αi = αi+1 − αi, recur

wi+1 = wi + αivi,

ui+1 = ui + αipi,

let

Bi+1 = {j ∈ Nn : αB

j = αi+1} and vi+1 =
∑

j∈Bi+1

[d]jej,

and compute

pi+1 = Avi+1, yi+1 = Wpi+1 and zi+1 = Rvi+1.

4. Compute the value, slope and curvature: Compute

fi+1 = fi +∆αif
′
i + 1

2
(∆αi)

2f ′′
i ,

f ′
i+1 = f ′

i +∆αif
′′
i − ⟨rS + ui+1 + αi+1si, yi+1⟩,

f ′′
i+1 = f ′′

i + ⟨pi+1 − 2si, yi+1⟩,
ρi+1 = ρi +∆αiρ

′
i + 1

2
(∆αi)

2ρ′′i ,

ρ′i+1 = ρ′i +∆αiρ
′′
i − ⟨xS + wi+1 + αi+1di, zi+1⟩ and (3.41)

ρ′′i+1 = ρ′′i + ⟨vi+1 − 2di, zi+1⟩, (3.42)

update

di+1 = di − vi+1,

si+1 = si − pi+1,

increment i by 1 and return to Step 1.

Slightly less obviously, it is straightforward to show that

⟨di, zi+1⟩ = ⟨vi+1, zi+1⟩

if R is diagonal, and thus, in this case, (3.41) and (3.42) may be written instead as

ρ′i+1 = ρ′i +∆αiρ
′′
i − ⟨xS + wi+1 + αi+1vi+1, zi+1⟩,

and

ρ′′i+1 = ρ′′i − ⟨vi+1, zi+1⟩,

with no need to recur di in Step 4. Crucially, each of the recursions needed to maintain

wi, ρi, ρ
′
i and ρ′′i only requires operations involving the sparse vector vi.
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To adapt the method for finding an approximate piecewise minimizer described in

Section 2.1.2 to cope with regularization, the only significant issue is to consider how the

regularization term ρ(x) evolves as we move backwards or forwards along the search arc.

Plainly we have that

xi := xS + di = xS + sA

i + αid
F

i = xA

i + αid
F

i ,

where1

xA

i := xS + sA

i and dF

i := IFi
dFi

with sA

i := IAi
sAi

,

and therefore

ρ(xi) = ρC

i + αiρ
L

i + α2
i ρ

Q

i ,

where

ρC

i := 1
2
∥xA

i ∥
2
R , ρL

i := ⟨xA

i , d
F

i ⟩R = ⟨xS, dF

i ⟩R and ρQ

i := 1
2
∥dF

i ∥
2
R .

It is then easy to simplify the recurrences described in the earlier section to deal with this.

The generalisation of Algorithm 2.1 for the regularization case is then simply as follows.

Algorithm 3.2: Find an approximate backtracking arc minimizer xCxCxC of ϕϕϕ

0. Initialization: The initial point xS ∈ X , search direction d, initial stepsize α0 >

0, reduction factor β ∈ (0, 1) and decrease tolerance η ∈ (0, 1
2
) are given.

Compute the residual rS = AxS−b, the initial objective value f(xS) = 1
2
∥rS∥2W ,

the base fixed set AS from (2.21), the breakpoints αB

j from (2.5) for all j ∈ Nn,

the end of the arc xB from (2.22) and its direction s = xB − xS, the initial

search point x0 = PX [x
S + α0d], the active and free components at x0,

A0 = {j : α0 > αB

j } and F0 = {j /∈ AS : α0 ≤ αB

j },

the corresponding values

xA

0 = xS + sA

0 , with sA

0 = IA0
sA0

and dF

0 = IF0
dF0

,

and residuals

rA

0 = rS + p0 and rF

0 = q0

using the matrix-vector products

p0 = AA0
sA0

and q0 = AF0
dF0

.

Initialize

fC

0 = 1
2
∥rA

0 ∥2W , fL

0 = ⟨rA

0 , r
F

0⟩W and fQ

0 = 1
2
∥rF

0∥2W , and

ρC

0 = 1
2
∥xA

0∥2R, ρL

0 = ⟨xS, dF

0⟩R and ρQ

0 = 1
2
∥dF

0∥2R,
as well as

γA

0 = ⟨rS, p0⟩W and γF

0 = ⟨rS, q0⟩W , and

µA

0 = ⟨xS, sA

0 ⟩R and µF

0 = ⟨xS, dF

0⟩R.

1Here sAi
and dFi

are n-vectors, whose nonzero components are obtained from s and d via the index

sets Ai and Fi, respectively.
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Set i = 0.

1. Check for an approximate arc minimizer: Compute

fi = fC

i + αif
L

i + α2
i f

Q

i ,

ρi = ρC

i + αiρ
L

i + α2
i ρ

Q

i ,

ϕi = fi + σρi and

γi = γA

i + αiγ
F

i + σ(µA

i + αiµ
F

i ).

If ϕi ≤ ϕ(xS, σ) + ηγi, go to Step 4 if i = 0 but otherwise, i.e., if i > 0, set

αC = αi, xC = PX [x
S + αCd], f(xC) = fi and ϕ(xC, σ) = ϕi,

and stop.

2. Find the next set of indices that change status: Let αi+1 = βαi, and

compute

Ii+1 = {j : αi+1 < αB

j ≤ αi}

using the Heapsort algorithm.

3. Update the components of the objective and its slope: Compute

pi+1 = AIi+1
sIi+1

, yi+1 = Wpi+1,

qi+1 = AIi+1
dIi+1

and zi+1 = Rqi+1,

si+1 = IIi+1
sIi+1

, ui+1 = Msi+1,

di+1 = IIi+1
dIi+1

and vi+1 = Rsi+1,

update

fC

i+1 = fC

i − ⟨yi+1, r
A

i − 1
2
pi+1⟩,

fL

i+1 = fL

i + ⟨zi+1, r
A

i − 1
2
pi+1⟩ − ⟨yi+1, r

F

i + 1
2
qi+1⟩,

fQ

i+1 = fQ

i + ⟨zi+1, r
F

i + 1
2
qi+1⟩,

γA

i+1 = γA

i − ⟨yi+1, r
S⟩, γF

i+1 = γF

i + ⟨zi+1, r
S⟩,

rA

i+1 = rA

i − pi+1 and rF

i+1 = rF

i + qi+1,

as well as

ρC

i+1 = ρC

i − ⟨ui+1, x
A

i − 1
2
si+1⟩,

ρL

i+1 = ρL

i + ⟨vi+1, x
A

i − 1
2
si+1⟩ − ⟨ui+1, d

F

i + 1
2
di+1⟩,

ρQ

i+1 = ρQ

i + ⟨vi+1, d
F

i + 1
2
di+1⟩,

µA

i+1 = µA

i − ⟨ui+1, x
S⟩, µF

i+1 = µF

i + ⟨vi+1, x
S⟩,

xA

i+1 = xA

i − si+1 and dF

i+1 = dF

i + di+1,

increment i by 1 and return to Step 1.
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4. Find the next set of indices that change status: Let αi+1 = β−1αi, and

compute

Ji+1 = {j : αi < αB

j ≤ αi+1}

using the Heapsort algorithm.

5. Update the components of the objective and its slope: Compute

pi+1 = AJi+1
sJi+1

, yi+1 = Wpi+1,

qi+1 = AJi+1
dJi+1

and zi+1 = Wqi+1,

si+1 = IJi+1
sJi+1

, ui+1 = Msi+1,

di+1 = IJi+1
dJi+1

and vi+1 = Rsi+1,

update

fC

i+1 = fC

i + ⟨yi+1, r
A

i + 1
2
pi+1⟩,

fL

i+1 = fL

i − ⟨zi+1, r
A

i + 1
2
pi+1⟩+ ⟨yi+1, r

F

i − 1
2
qi+1⟩,

fQ

i+1 = fQ

i − ⟨zi+1, r
F

i − 1
2
qi+1⟩,

γA

i+1 = γA

i + ⟨yi+1, r
S⟩, γF

i+1 = γF

i − ⟨zi+1, r
S⟩,

rA

i+1 = rA

i + pi+1 and rF

i+1 = rF

i − qi+1,

as well as

ρC

i+1 = ρC

i + ⟨ui+1, x
A

i + 1
2
di+1⟩,

ρL

i+1 = ρL

i − ⟨vi+1, x
A

i + 1
2
di+1⟩+ ⟨ui+1, d

F

i − 1
2
di+1⟩,

ρQ

i+1 = ρQ

i − ⟨vi+1, d
F

i − 1
2
di+1⟩,

µA

i+1 = µA

i + ⟨ui+1, x
S⟩, µF

i+1 = µF

i − ⟨vi+1, x
S⟩,

xA

i+1 = xA

i + si+1 and dF

i+1 = dF

i − di+1.

6. Check for an approximate extended arc minimizer: Compute

fi+1 = fC

i+1 + αi+1f
L

i+1 + α2
i+1f

Q

i+1,

ρi+1 = ρC

i+1 + αi+1ρ
L

i+1 + α2
i+1ρ

Q

i+1,

ϕi+1 = fi+1 + σρi+1 and

γi+1 = γA

i+1 + αi+1γ
F

i+1 + σ(µA

i+1 + αi+1µ
F

i+1).

If ϕi+1 > ϕ(xS, σ) + ηγi+1 or αi+1 ≥ maxj α
B

j , set

αC = αi, xC = PX [x
S + αCd], f(xC) = fi and ϕ(xC, σ) = ϕi,

and stop. Otherwise, increment i by 1 and return to Step 4.
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3.1 Regularized linear least-squares minimization with fixed vari-

ables

Algorithm 3.3: The preconditioned conjugate-gradient regularized-least-

squares method

Given x0, set r0 = Ax0 − b and g0 = Z[ATWr0 + σRx0], and let v0 = Z[P−1g0] and

p0 = −v0. For k = 0, 1, . . . until convergence, perform the iteration

qk = Apk,

αk = ⟨gk, vk⟩/(⟨qk,Wqk⟩+ σ⟨pk, Rpk⟩),
xk+1 = xk + αkpk,

rk+1 = rk + αkqk,

gk+1 = Z[ATWrk+1 + σRxk+1],

vk+1 = Z[P−1gk+1],

βk = ⟨gk+1, vk+1⟩/⟨gk, vk⟩ and

pk+1 = −vk+1 + βkpk.

Notice that throughout only components [pk]i, i ∈ F , can be nonzero, and this should

be exploited when forming Apk and ⟨pk, pk⟩R. The preconditioner needs to take account of

the regularization term, and, at the very least, P = diag(ATWA)+σdiag(R) is appropriate.

Availability

The algorithms described have been implemented as the modern Fortran package blls,

and the later is available as part of the GALAHAD library [4].
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