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1 Introduction

This is an exciting time to be working in con-
strained nonlinear optimization. New ideas
abound. Collaborations and alliances are forged,
rivalry is intense, competition fierce. Why should
this be? After all, surely the importance of op-
timization was recognised many decades ago. So
why, now, should there be so much activity and
why did it take so long?

I believe that the answer is complicated, but
certainly one of the main reasons is that, fi-
nally, we really are starting to believe that we
have the right (theoretical and practical) tools
to tackle the problems we have long been asked
to solve. What was the stimulus for this? Well,
without doubt in part what has been called the
“interior-point” revolution. But also the fight-
back from the traditionalists, those who promote
earlier “active-set” approaches. And finally, the
recognition from practitioners that, yes indeed,
we can now solve sizable nonlinear programming
problems, so that there has been a shift away
from linear models and the thinking that lead to
these.

In this short article, I hope to explain the
salient points of both approaches, the symbiosis
that has arisen, and how both approaches have
impacted on nonlinear optimization. But I also
want to look to the future, and to see how things
may develop.

2 History

2.1 Active-set methods

In the beginning, there was linear programming:
as simple an approximation to the real world
as one could possibly make, but nonetheless one
of the most important (and most studied) prob-
lems in the history of computational mathemat-
ics. As we all know, linear programming is
concerned with (say) minimizing a linear func-
tion of n unknown parameters (variables) over
a feasible region described by m linear equa-
tions and/or inequalities. A solution will (al-
most always) occur at a vertex of the feasi-
ble region, and the archetypical active-set so-
lution algorithm, the Simplex method, aims to
find such a solution by moving through a se-
quence of objective-improving, feasible, adjacent

vertices. Thus, the search is to determine which
of the constraints “define” the solution (the ac-
tive ones), and which may be safely discarded,
and this defining characteristic extends easily to
more general constrained optimization problems.
Such an algorithm may explore an exponential
(in terms of m—mn) number of active “sets” in the
worst case, is known to depend linearly on these
parameters on the average, and in practice really
seems to behave just as its average-case perfor-
mance predicts. Thus for a problem involving,
say, a million degrees of freedom, it is reason-
able to expect a few millions iterations. While
this might at first sound impractical, it is vital
to recognise that for linear constraints the dom-
inant cost per iteration is usually the solution
of a system of linear equations, and that each
system is a rank-one modification of its prede-
cessor. Thus the cost per iteration is often very
small, and it is this feature that has kept the Sim-
plex method for linear programming competitive
over the past 50 years. Most commercial linear
programming systems (such as CPLEX, Xpress
and OSL) still have Simplex components (albeit
with numerous enhancements such as advanced
crash and pre-solve procedures, steepest edge ex-
change rules, and hyper-sparsity exploiting linear
solvers, etc.), and the active-set paradigm also
extends into the nonlinear world by virtue of suc-
cessful and widely-used packages like MINOS [25]
and SNOPT [14]. Our experience is that to build
a successful active-set method requires consider-
able care, since rounding errors have ample op-
portunities to build up and cause havoc over the
large number of iterations that occur, even in the
linear and quadratic programming cases.

2.2 Interior-point methods

Knowing that the Simplex method might take
an exponential number of steps started a race
to find alternatives whose worst-case complex-
ity was polynomial in m — n. The first-reported
polynomial algorithm, the ellipsoid method, has
alas not turned out to be effective in practice [1].
Fortunately the next competitor, Karmarkar’s
method [21], proved to be a major advance,
and stated a frenetic research feeding-frenzy on
interior-point methods which has continued to
this day. Karmarkar’s genius was to produce a
nonlinear iteration that attempted to stay well
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away from the boundary of the feasible region
(and thus avoid the influence of the myriad of ver-
tices) until it approached optimality. It was soon
recognised that the method (and many of its suc-
cessors) may be interpreted as the approximate
minimization of a sequence of logarithmic barrier
functions—or, if we prefer, as following the “cen-
tral path” defined as the trajectory of such min-
imizers as a function of the barrier parameter—
and these perspectives have obvious and impor-
tant consequences for its use for nonlinear prob-
lems.

The current state for linear (and many convex)
problems is primal-dual variants (in which, as the
name suggest, duality plays a strong role and pri-
mal and dual variables are treated equally) whose
worst-case behaviour to achieve a close-to opti-
mal solution varies like O(y/m — n) in theory and
significantly better (perhaps O(log(m —n))?) in
practice [26, 38]. All of the major commercial
systems contain interior-point solvers (again with
a large number of enhancements). It is interest-
ing to note that although such methods require
considerably fewer iterations than their active-
set rivals, the cost per iteration is significantly
higher—there is, in general, no rank-one update
for the crucial linear systems—so that there is
still fierce and healthy competition between the
two competing ideologies. Certainly, active-set
interior-point hybrids are now popular and suc-
cessful. It remains to be seen that, if in the long
term as problem sizes grow, the superior com-
plexity bounds for interior-point methods proves
decisive, but I believe this will be the case.

3 Where are we now?

Thus far, all seems perfect. But how do
these ideas extend into the nonlinear, nonconvex
world?

3.1 The trouble with SQP ...

Extending active-set methods would at a first
glance appear to be easy, simply replacing the
solution over the whole feasible set by that over
a sequence of active sets in which the inactive
inequalities are discarded. However, the result-
ing subproblems are still nonlinear, and thus in
principle will each require an infinite iteration.

Early attempts to “truncate” such subproblems
suffered from a nasty phenomenon known as zig-
zagging in which constraints continually entered
and left the active set.

A more successful idea is to replace the general
problem by a sequence of “simple”, tractable ap-
proximations. For instance, one might replace
the objective and constraints by linear approx-
imations (the so-called Successive Linear Pro-
gramming or SLP approach [11]) or perhaps
the objective by a quadratic approximation (the
Successive Quadratic Programming or SQP ap-
proach [2, 19]). The advantage here is that the
subproblem (a linear or quadratic program) is
significantly easier to solve than the nonlinear ap-
proximation of the previous paragraph. Indeed
if the quadratic approximation is convex (or a
linear approximation used), we have polynomial-
time subproblem-solution methods at our dis-
posal. Having solved the subproblem, we can
use its solution as the next trial iterate, and we
might embed such a scheme within a linesearch, a
trust-region or a filter globalization scheme. But
caution is needed here, since there are a number
of potential pitfalls.

Firstly, it is well known that the globalization
scheme may interfere catastrophically with the
SLP/SQP step (the Maratos effect) and avoiding
action may result in extra computation [2, 19].

Secondly, to obtain fast ultimate convergence,
it is usually vitally important to use some 2nd
derivative information/approximation (and thus
ultimately some form of SQP iteration). If we
are “lucky” enough to have (and use) exact 2nd
derivatives, the resulting nonconvex QP may
have a number of local minimizers, some of which
may not be consistent with our overall global-
ization scheme (the SQP step may be “uphill”).
Although many active-set QP solvers can en-
sure that the step is downhill, I do not cur-
rently know how to guarantee this for interior-
point QP solvers. If we must resort to “approx-
imate” (say secant-approximation) 2nd deriva-
tives, it is known that requirements of sparsity
and positive-definiteness together conflict with
stability [28], so we may be restricted to dense
updates, and thus problems with few degrees of
freedom—it is worth noticing that all of the suc-
cessful SQP and SQP-like methods we are aware
of (such as MINOS, SNOPT and filterSQP[10])
rely on having relatively few degrees of freedom.
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Thirdly, if there is one lesson we should have
learned from large-scale unconstrained minimiza-
tion, it is to aim to solve the subproblem as
inaccurately as possible consistent with over-
all convergence—the truncated Newton approach
[8], along with its practical manifestation via
the linear (preconditioned) conjugate-gradient
method, is one of the key ideas to have evolved in
the unconstrained case during the 20th century.
So it is clearly desirable to truncate the LP/QP
solution process. But how? We are aware of al-
most no work in this area (but see [24] for an ex-
ception), and it is of vital practical importance.
Again, it would seem easier to stop “early” with
an active-set QP solver than with an interior-
point one.

Finally, we would ultimately expect that the
active sets for our LP/QP subproblems will settle
down as we approach the solution to the overall
problem [27]. This suggests that we should be
exploiting a priori information about candidate
active sets to warm start subsequent subprob-
lem solves. This would seem to be one area in
which active-set methods have a clear edge, since
the ability to warm start interior-point meth-
ods is in its infancy—there has been some work
in the LP case [15, 40], but to our knowledge
none for QPs. In practice, by contrast, we have
observed that it is still sometimes faster (espe-
cially in the degenerate case) to “cold-start” an
interior-point QP than “warm start” active set
QP code, simply because even slightly incorrect
active set predictions can have dramatic undesir-
able consequences for active-set methods [20].

We have currently suspended development of
the large-scale SQP method that we had intended
including in GALAHAD [18] despite having pro-
duced both effective active-set and interior-point
QP solvers. Our experience has been that with-
out QP truncation, the cost of the QP solution so
dominates that other non-SQP approaches (such
as TPOPT [33], KNITRO [4] and LOQO [32]), in
which truncation is possible, have made signifi-
cant progress even before our QP code had solved
its first subproblem!—see also [23] for further evi-
dence that interior-point methods appear to scale
better than SQP ones. We are more enthusias-
tic about an SLP-QP approach we are currently
developing [3], since LP truncation is in princi-
ple easier and since the QP phase is restricted
to a problem with equality constraints for which

a truncated conjugate-gradient iteration is possi-
ble.

3.2 Whither interior-point meth-
ods ...?

As I mentioned above, we produced two (noncon-
vex) quadratic programming packages for GALA-
HAD. Considerable numerical experience has in-
dicated to us that the interior-point version, QPB
is almost always vastly superior for large prob-
lems [7]. Since we have now all but given up our
SQP developments, we have now turned to what
we consider to be the other possibility, namely to
solve general constrained optimization problems
by sequential barrier-function minimization, us-
ing the lessons learned when designing and eval-
uating QPB.

We were warned as children that barrier-
function methods are beastly because of the ef-
fects the barrier has close to the boundary. It
later turned out that these fears were almost
groundless, and that actually observed inefficien-
cies were to a large degree due to using the wrong
dual variable updates following a reduction in the
barrier parameter [36]. Without doubt, the prob-
lem does become very poorly conditioned near
the solution, but this itself does not cause fail-
ure since even search direction calculations that
might result in large numerical errors do not, be-
cause all such errors are confined to uninteresting
subspaces [16, 37, 39]. But being prematurely
close to the boundary certainly is bad in that
it can be painfully slow to escape. For exam-
ple, if we wish to minimize —z for z € [0, 1] and
start with xo very close to zero, the Newton bar-
rier correction (with modest barrier parameter)
results in a new point z; &~ 2zg9. Thus an ini-
tial point o = 2740 ~ 10712 will take roughly
40 iterations to move to the centre of the feasi-
ble region. The lesson here is, I believe, to stay
away from the boundary unless there are good
reasons to get close (such as if a particular con-
straint is active at optimality). I strongly believe
that it pays to stay close to “the” central path
since this avoids as best as possible premature
contact with the boundary, although since differ-
ent scalings result in different central paths, it is
far from obvious which path is actually the one
to follow!

An important question if we are to use an
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interior-point approach is how we should han-
dle equality constraints. To a certain extent, I
suggest this depends on quite what sort of con-
straints they are. If they (or some of them) are
linear, I believe that it often pays to use a “phase-
1”7 procedure to find a “well-centred” feasible
point for these constraints, and thereafter to en-
sure that they remain satisfied on all subsequent
iterations. The reasoning is simply that dealing
with a nonlinear objective is tricky enough with-
out having to cope with non-convexity in sub-
spaces that the constraints rule out—we certainly
have seen the advantages even in the “simple”
case of nonconvex quadratic programming of us-
ing feasible rather than infeasible interior point
methods.

Nonlinear equality constraints are altogether
more tricky, and it is in this area that the most
significant differences between competing mod-
ern interior point methods occur. Some methods
(like TPOPT, KNITRO, LOQO and INTOPT
[22]) prefer to treat them explicitly by gradually
moving towards feasibility but balancing the re-
quirements of optimality using a penalty function
or filter. Others like [29] and the method we are
developing for GALAHAD replace equalities by
one-sided inequalities (which are then handled
using interior-point technology) and other-sided
penalization. At this stage I do not think we
know which of this approaches is best, but it is
likely that actually there is very little difference.

There are two important side issues here,
though. Firstly, if we really believe we have good
methods for handing equations, is it better to
treat inequalities by converting them to equa-
tions using slack variables and then simply treat
the slack variables using interior-point methods?
(From a linear-algebraic perspective there is lit-
tle difference, but there seem to be ardent devo-
tees of both schools of thought [6], so I do not
really believe we have exhausted or settled this
question. Secondly, if we plan to use equality
constraints explicitly, it is vital that there is some
coherence between the search direction employed
and the merit function used to ensure their ulti-
mate satisfaction. Several cautionary examples
[5, 34] attest to the pitfalls that may befall the
unwary.

The asymptotic behaviour of interior-point
methods is relatively well understood even in the
non-convex case, at least under non-degeneracy

assumptions: the barrier parameter may be re-
duced at a superlinear rate so that the overall
iteration converges superlinearly for primal-dual
methods [17] and 2-step superlinearly for primal-
only methods [9], although the latter requires
some care when reducing the barrier parameter.
Some progress has been made in the degenerate
case, but we do not currently have as complete an
understanding as in the linear programming case
where degeneracy does not hinder convergence to
a well-defined point in the centre of the face of
optimally active constraints. In practice, asymp-
totic convergence behaviour appears to behave
just as one would hope from the linear program-
ming experience.

So what are the outstanding issues? The ef-
fects of constraint scaling, and just how one
might re-scale to improve convergence are not
well understood. Just as importantly, since as
we have hinted we really wish to truncate the
calculation of the Newton-barrier search direc-
tion, we need to discover how to precondition the
conjugate-gradient scheme that we will undoubt-
edly use; it is already clear that any precondi-
tioner has to reflect the dominant barrier terms
in the Hessian matrix of the barrier function, but
just how much more is needed is unknown. Fi-
nally, another area where there is room for im-
provement is in extrapolation for better points on
the central path. This has proved to be most use-
ful in the linear programming case, but things are
certainly more complicated for nonlinear prob-
lems because of possible bizarre behaviour [13]
of the central path (multiplicity, bifurcation, and
even non-existence).

4 Conclusions

I hope I have persuaded the reader that these
are indeed exciting times in nonlinear optimiza-
tion. With interior-point and (to some extent)
active set approaches we now have a realistic
chance of solving very large nonlinear program-
ming problems. Of course there are difficulties,
but the ingenuity and vigour with which the re-
search community is currently addressing such
challenges makes me extremely optimistic about
future progress. Even in the last few months we
have heard of a number of new and interesting
proposals [12, 29, 35, 30, 31], and we eagerly
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await to see how these complement the already
large corpus of algorithms and software.
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