Equivalent saddle-point problems

Working note RAL-NA-2007-1 - Nicholas I. M. Gould

14th June 2007

1 Equivalent problems

Consider symmetric saddle-point problems of the form

$$
\left(\begin{array}{cc}
A & B^{T} \tag{1.1}\\
B & -C
\end{array}\right)\binom{x}{y}=\binom{a}{b} .
$$

Then since $A x+B^{T} y=a$ and $B x-C y=b$, the solution to (1.1) also satisfies the symmetric system ${ }^{1}$

$$
\begin{align*}
{\left[\sigma\left(\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right)\right.} & \left.+\binom{A}{B} D\left(A B^{T}\right)+\binom{B^{T}}{-C} E\left(\begin{array}{ll}
B & -C
\end{array}\right)\right]\binom{x}{y} \\
& =\sigma\binom{a}{b}+\binom{A}{B} D a+\binom{B^{T}}{-C} E b \tag{1.2}
\end{align*}
$$

for given real σ and arbitrary symmetric matrices D and E. We denote the coefficient matrix of (1.2) as $K(\sigma, D, E)$.

We observe that this general form allows us to reproduce many existing alternatives to (1.1). In particular

- $\sigma=-1, D=A^{-1}$ and $E=0$ gives the Schur-complement method for finding y. Note that $K\left(-1, A^{-1}, 0\right)$ is singular.
- $\sigma=-1, D=A_{0}^{-1}$ and $E=0$ for given A_{0} gives the method of Bramble and Pasciak [1].
- $\sigma=\gamma, D=I, E=-I$ for given γ gives Liesens' method [3].
- $\sigma=-(\alpha+\beta \gamma), D=\alpha A_{0}^{-1}+\beta I$ and $E=-\beta I$ gives the combination method of Stoll and Wathen [4].
- $\sigma=1, D=0$ and $E=(1+\nu) C^{-1}$ for given ν (and in particular $\nu=1$) is the method proposed by Forsgren, Gill and Griffin [2].

[^0]- $\sigma=0, D=I, E=I$ gives the method of normal equations.
- $\sigma=0, D=A^{-1}, E=C^{-1}$ gives the primal-dual Schur-complement method for simultaneously finding x and y.

This general form (1.2) would then seem the "natural" framework in which to study alternatives to (1.1).

Questions:

- can one choose σ, D and E so that $K(\sigma, D, E)$ is positive definite? In particular what if A and C are singular? What if A is indefinite but $K(1,0,0)$ has the "right inertia"?
- can one analyse the spectrum of $K(\sigma, D, E)$?
- if the spectrum is poor, can one precondition?

2 Extensions

Much the same can be done for the non-symmetric block system

$$
\left(\begin{array}{cc}
A & F \tag{2.1}\\
B & -C
\end{array}\right)\binom{x}{y}=\binom{a}{b} .
$$

Then since $A x+F y=a$ and $B x-C y=b$, the solution to (2.1) also satisfies the block system

$$
\begin{gather*}
{\left[\begin{array}{cc}
\sigma\left(\begin{array}{cc}
A & F \\
B & -C
\end{array}\right) & \left.+\binom{G}{H}\left(\begin{array}{ll}
A & B^{T}
\end{array}\right)+\binom{M}{N}\left(\begin{array}{ll}
B & -C
\end{array}\right)\right]\binom{x}{y} \\
=\sigma\binom{a}{b}+\binom{G}{H} a+\binom{M}{N} b
\end{array},=\right.\text {. }}
\end{gather*}
$$

for all $\sigma \neq 0$ and arbitrary matrices G, H, M and N of the correct dimension.

References

[1] J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Mathematics of Computation, 50:1-17, 1988.
[2] A. Forsgren, P. E. Gill, and J. D. Griffin. Iterative solution of augmented systems arising in interior methods. SIAM Journal on Optimization, 18(2):666-690, 2007.
[3] J. Liesen. A note on the eigenvalues of saddle point matrices. Technical Report 10-2006, Institut fuer Mathematik, Technische Universität Berlin, 2006.
[4] M. Stoll and A. J. Wathen. Combination preconditioning and self-adjointness in nonstandard inner products with application to saddle point problems. Technical Report NA-07/11, Oxford University Computing Laboratory, Oxford, England, 2007.

[^0]: ${ }^{1}$ Strictly σ can be absorbed into D and E, but for compatibility with existing results we choose not to do so.

