Computing useful sparse Hessian approximations satisfying componentwise secant equations I: using a known sparsity pattern

Working note RAL-NA-2013–1 — Nicholas I. M. Gould

29th April 2013

1 Introduction

Suppose that we are given a differentiable function f(x) of n variables x, whose gradient $g(x) \stackrel{\text{def}}{=} \nabla_x f(x)$ is known. Our aim is to build estimates B_k of its Hessian matrix $H(x) \stackrel{\text{def}}{=} \nabla_{xx} f(x)$ at a sequence of given points x_k . Such a requirement lies at the heart of many Newton-like methods for minimizing f or methods that try to assess the stability of its gradient. We shall be particularly interested in the case for which

A1 H(x) is sparse and its sparsity pattern is known; the sparsity pattern of H(x), $S(H) \stackrel{\text{def}}{=} \{(i, j) : H_{ij}(x) = 0 \text{ for all } x\}$, and we shall say that the Hessian has an *entry* in row *i* and column *j* if $H_{ij}(x) \neq 0$ for some *x*.

If we are extremely fortunate, we might have an analytic expression for H or we might be able to obtain H by automatic differentiation [14]. If not, we might resort to a finitedifference approximation in which we obtain one column of B_k at a time from, for instance

$$B_k e_i \approx \delta_i^{-1} [g(x_k + \delta_i e_i) - g(x_k)],$$

where e_i is the *i*-th unit vector and δ_i is an appropriate small scalar [9]; more expensive but accurate central differences might also be used [6, §5.6]. Note that as it stands, n + 1gradient evaluations will be required to find B_k . If, however, H(x) satisfies A1, it is often possible to partition $\mathcal{N} = \{1, \ldots, n\}$ so that $\mathcal{N} = \bigcup_{j=1}^m \mathcal{I}_j$, where $\mathcal{I}_i \cap \mathcal{I}_j = \emptyset$ for $1 \leq i < j \leq m$, the rows indexed in each set \mathcal{I}_j are orthogonal, and $m \ll n$. In this case

$$\sum_{i\in\mathcal{I}_j}B_ke_i\approx \delta_i^{-1}[g(x_k+\delta_i\sum_{i\in\mathcal{I}_j}e_i)-g(x_k)],$$

and only m + 1 gradients are required; taking account of symmetry may reduce this count further [2, 18].

The other common way to approximate $H(x_k)$ is to use previous gradients $g(x_j)$, j < kand to require that B_k satisfies the secant equation

$$B_k(x_k - x_{k-1}) = g_k - g_{k-1}.$$

where $g_k \stackrel{\text{def}}{=} g(x_k)$. Traditionally, B_k is obtained from the previous estimate B_{k-1} by imposing the secant equation as well as the requirement that $B_k - B_{k-1}$ be of low rank [6,17]—usually rank one or two—rather than sparse. Thus there is little reason to believe that B_k will be sparse even if its predecessor was. Although there have been attempts to derive sparse updates [7,21,22], there are good reasons to be concerned about their stability [20].

Such secant methods start from an initial Hessian estimate B_0 and build up the approximation as new points are added. Thus, after k steps, a rank k or 2k update will have been applied to B_0 . A related limited-memory approach is to use dense low-rank updates, but rather than applying them all to B_0 , apply the last m updates as if they had been applied to an re-initialized B_{k-m} . Indeed, rather than computing B_k from B_{k-1} directly, the sequence of previous m steps $s_j \stackrel{\text{def}}{=} x_j - x_{j-1}$ and gradient differences $y_j \stackrel{\text{def}}{=} g_j - g_{j-1}$ are recorded and the effect (product with, solve with) of using the relevant B_k computed when necessary [15, 16]. But as before, no attempt is made to enforce the structure $\mathcal{S}(H)$ on B_k .

At the other extreme, if f is partially separable [13], i.e., if

$$f(x) = \sum_{i=1}^{l} f_i(x),$$

where each "element" $f_i(x)$ has a large invariant subspace, it is then possible to obtain the approximation

$$B_k = \sum_{i=1}^l B_{ik}$$

where each element Hessian estimate B_{ik} satisfies its own secant equation

$$B_{ik}(x_k - x_{k-1}) = g_i(x_k) - g_i(x_{k-1})$$

and where $g_i(x) \stackrel{\text{def}}{=} \nabla_x f_i(x)$. The invariant subspace assumption implies that g_i and B_{ik} are structured. In particular, any differentiable f with a sparse Hessian is partially separable [12], and in this case, the element secant equations each only involves a few variables, leading to an excellent sparse approximation. This and its generalization to group-partial separability [3], forms the basis of the approximations used in LANCELOT [4], but does not appear otherwise to have been widely adopted, primarily because users seem unable or unwilling to provide the necessary separability structure.

From the user's perspective, a more appealing approach, and the one we advocate in this paper, is to use the accumulated data $\{s_l\}_{l=k-m+1}^k$ and $\{y_l\}_{l=k-m+1}^k$ and the sparsity of H to estimate B_k directly. The only development we are aware of in this direction is that due to Fletcher, Grothey and Leyffer [8]. Their idea is to build an approximation B_k that satisfies as best as possible the multiple secant conditions

$$B_k s_l = y_l \text{ for } l = k - m + 1, \dots, k$$
 (1.1)

the symmetry condition

$$B_k = B_k^T$$

and the sparsity condition

$$\mathcal{S}(B_k) = \mathcal{S}(H).$$

Since (1.1) may be inconsistent, a reasonable compromise is to solve instead the convex quadratic program

$$B_k = \underset{B}{\operatorname{arg\,min}} \quad \sum_{l=k-m+1}^k \|B_k s_l - y_l\|_2^2 \text{ subject to } B = B^T \text{ and } \mathcal{S}(B) = \mathcal{S}(H).$$

This solution may be found by solving a linear system of order, n_e , the number of entries in the upper triangle of H(x). Since n_e may in general be large, estimates of the solution B_k may better be found using an iterative scheme such as conjugate gradients [8].

2 Estimation

The approach we advocate is somewhat different. Rather than imposing the full secant conditions (1.1) for the previous m steps, we aim to satisfy as many *componentwise* equations

$$e_i^T B_k s_l = e_i^T y_l \tag{2.1}$$

or equivalently

$$\sum_{j \in \mathcal{I}_i} (B_k)_{ij} s_{jl} = y_{il}, \text{ where } \mathcal{I}_i = \{j : H_{ij} \neq 0\}$$

$$(2.2)$$

for l = k, k - 1, ... as are necessary to define the *i*th row of B_k for each $1 \le i \le n$. Naively (and neglecting any inconsistencies or redundancies in dependencies), for row *i*, we need as many equations (2.2) as there are entries in row *i*, and the entries may be calculated in any order (and in parallel) as follows:

Algorithm 2.1: Sparse Hessian approximation (unsymmetric version) For i = 1, ..., n: Compute the unknown entries in the row using (2.2) for $l = k - |\mathcal{I}_i| + 1, ..., k$.

Note that any off diagonal entry will be estimated twice in Algorithm 2.1; if we are relying on a symmetric approximation, we may replace both by a suitable weighted average. Alternatively, we may simply take the off-diagonal values in the order they are calculated, overwriting the first estimate by the second; in practice in this case we access the rows in order of decreasing row counts, since rows with smaller counts require fewer differences and may therefore be more accurate.

But of course this does not truly account for symmetry. In particular (2.2) may be rewritten as

$$\sum_{j \in \mathcal{I}_i^-} (B_k)_{ij} s_{jl} = y_{il} - \sum_{j \in \mathcal{I}_i^+} (B_k)_{ij} s_{jl}$$
(2.3)

where

$$\mathcal{I}_i^+ = \{j : j \in \mathcal{I}_i \text{ and } (B_k)_{ji} \text{ is already known} \} \text{ and } \mathcal{I}_i^- = \mathcal{I}_i \setminus \mathcal{I}_i^+$$

Thus for row i (and again ignoring inconsistencies and the like), the data from $|\mathcal{I}_i^+|$ previous steps is required.

It is clear from the above that the order in which the rows are addressed is crucial. For example, consider two Hessian matrices with arrow-head structures

For the former, the first n-1 rows each require that two entries—those on the diagonal and those in column n—be computed. The last row requires n entries, but by symmetry, all of the off-diagonal entries have already been computed. Thus in this row, only the diagonal entry is unknown, and hence all of the data may be computed using two data pairs (s_k, y_k) and (s_{k-1}, y_{k-1}) . Contrast this with the second example, where the first row contains n (at this stage) unknown entries that must be computed, and thus n data pairs $(s_l, y_l), l = k - n + 1, \ldots k$ will be required. Of course the two examples are structurally symmetric permutations of one another.

Our algorithm is based on the connectivity graph C of H(x). Recall, this is a graph with n vertices for which there is an edge between vertices i and j if and only if $H_{ij}(x) \neq 0$ for some x. The number of entries in row i is the degree of vertex i plus one. Our ordering and approximation strategy is as follows:

Algorithm 2.2: Sparse Hessian approximation (symmetric version)

Compute the connectivity graph C of H(x), and record the degrees of each vertex. For i = 1, ..., n:

Find a vertex of minimum degree, and assign the corresponding row as row i. Compute the remaining unknown entries in the row using (2.3) for $l = k - |\mathcal{I}_i^+| + 1, \ldots, k$.

Remove the chosen vertex, and update the remaining degrees.

The aim of the algorithm is clearly to keep the number of required data pairs per step small.

At each step, a vertex of smallest degree is required. The vertices can be initially ordered using a counting [19, §2.4.6] or bucket [5] sort in O(n) operations and storage locations.

Thereafter, since at each stage each degree can decrease by at most one, the degrees and their order may be updated in $O(n_e)$ operations. The cost of finding the unknown entries in the *i*th ordered row is $O(|\mathcal{I}_i^+|^3)$ floating-point operations using Gaussian elimination.

While Algorithm 2.2 will almost always require fewer floating-point operations than its predecessor, it has two, related, disadvantages. The first is that the steps in Algorithm 2.1 may be performed in parallel (aside from any value averaging for symmetry), while Algorithm 2.2 is to a large degree sequential—in practice, vertices i and j of minimum degree with $\mathcal{I}_i^+ \cap \mathcal{I}_j^+ = \emptyset$ may be processed in parallel. The second, and more serious, defect is that inaccurate estimates from earlier steps in Algorithm 2.2 can be magnified when solving (2.3), leading to error growth even for constant Hessians (H(x) = H); this is similar in effect to that when attempting Gaussian elimination without pivoting. Algorithm 2.1, by contrast, is immune since each row's values are computed independently. Observed error growth is usually gradual but relentless; the more times an inaccurate early value occurs in later rows, the worse the effect, and this is particularly pernicious for large matrices.

An obvious way around this predicament is to combine the two (unsymmetric and symmetric) approaches. To do so, we presume that the vast majority of the rows of the Hessian we seek to estimate are very sparse, while the remaining few are relatively dense. Thus, we may estimate the entries in the sparse rows independently and (presumably) accurately leaving a few to estimate using the symmetric scheme. That is, after a implicit symmetric permutation, we estimate the Hessian

$$\begin{pmatrix} H_{11} & H_{12} \\ H_{12}^T & H_{22} \end{pmatrix}$$
(2.4)

by obtaining the entries $(H_{11} \ H_{12})$ independently row-by-row, and then finding the unknowns H_{22} in the few remaining rows by applying Algorithm 2.2 to H_{22} . Formally,

Algorithm 2.3: Sparse Hessian approximation (combined version)

For sparse rows $i = 1, \ldots, n$:

Compute the unknown entries in the row using (2.2) for $l = k - |\mathcal{I}_i| + 1, \dots, k$.

Compute the connectivity graph C of the remaining $H_{22}(x)$, and record the degrees of each vertex.

For remaining dense rows $i = 1, \ldots, n$:

Find a vertex of minimum degree, and assign the corresponding row as row i.

Compute the remaining unknown entries in the row using (2.3) for $l = k - |\mathcal{I}_i^+| + 1, \ldots, k$.

Remove the chosen vertex, and update the remaining degrees.

In principal it is possible to apply Algorithm 2.3 recursively to the block H_{22} in (2.4), but this may also lead to large error growth if the recursion is too deep. In our experience, fortunately, recursion is unnecessary (see §4).

An alternative is to order the vertices using Algorithm 2.2, but only to use (2.3) to compute the unknown entries in row i if $|\mathcal{I}_i|$ is deemed too large to use (2.2) to compute all the entries in the row afresh. We shall refer to this approach as Algorithm 2.2/3 (and use 50 entries as our default switch threshold).

Advantages and disadvantages c.f. [8] -

- More susceptible to bad early values
- possibly few entire secant equations
- much cheaper to obtain

3 Enhancements

The *i*th componentwise secant equation (2.1) may be written compactly as

$$S_i^T b_i = y_i^{\mathsf{R}},\tag{3.1}$$

where b_i are the $|\mathcal{I}_i|$ entries in the *i*th row of B, S_i is the matrix made up of the components of the rows indexed by \mathcal{I}_i of the data vectors $\{s_j\}$, j = k, k-1, ..., and y_i^{R} is the (transpose of the) *i*th row of the matrix whose columns are the vectors $\{y_j\}$, j = k, k-1, ... The corresponding equation (2.3) may be expressed similarly as

$$(S_i^-)^T b_i^- = y_i^{\mathsf{R}} - (S_i^+)^T b_i^+, \tag{3.2}$$

where the + and - indicate the known and unknown components of b_i and the corresponding sub-matrices of S_i . Thus generically, for each row we need to satisfy equations

$$S^T b = y, (3.3)$$

to determine the ℓ components of b as best as possible. Notice that we have not yet specified how many (or which) data vectors $\{(s_j, y_j)\}, j = k, \ldots, 1$ are required.

Ideally we would have sufficient data that $k \ge l$ and the square matrix S made up from the l most recent s_j is non singular. But clearly this may not be the case. Firstly, in the early stages of estimation, there may simply not be enough data; this will certainly be the case if k < l. Secondly, S formed as above may be singular (or close to singular) and in this case either again there will not be enough data to determine b uniquely or the data y may be inconsistent (if f is not quadratic). One may of course choose to substitute existing inconsistent data with that obtained from earlier iterations.

When there is insufficient data, one option is simply to assign certain components of b to zero, and solve for the remainder. One might, for example, remove elements far from the

diagonal. However, since this seems relatively arbitrary, our preferred strategy is instead to find the smallest b consistent with the data by solving the constrained least-squares problem

$$\underset{b \in \mathbf{R}^l}{\text{minimize}} \quad \|b\|_2 \text{ subject to } S^T b = y$$

using, for example, a singular-value decomposition of S. When the latest data is inconsistent, rather than trying to find earlier data to exchange, one might instead put additional earlier data into B and y and to solve the weighted least-squares problem

$$\underset{b \in \mathbf{R}^k}{\text{minimize}} \quad \|W(S^T b - y)\|_2$$

where the diagonal weights W favour the latest data. Once again, a singular-value decomposition of WS^T is suitable. Our preference is however simply to find the least-squares solution to $S^Tb = y$ of minimum ℓ_2 -norm from the singular-value decomposition of S^T .

To be specific, in both the under- and over-determined cases, we compute the "compact" singular-value decomposition $S^T = U\Sigma V^T \in \mathbb{R}^{m_s \times n_s}$, where the columns of $U \in \mathbb{R}^{m_s \times r_s}$ and $V \in \mathbb{R}^{n_s \times r_s}$ are orthogonal, $\Sigma \in \mathbb{R}^{r_s \times r_s}$ is non-singular and diagonal, and r_s is the rank of S^T . We then find the required solution $b = V\Sigma^{-1}U^Ty$ using, for example, gelss or gelsd from LAPACK [1]. Optionally we also provide a faster but potentially less stable variant based on a QR factorization of S^T with interchanges using LAPACK's gelsy, as well as a faster-still LU-based approach using getrf/s when S is square and non-singular.

4 Numerical experiments

We now consider how the methods we have suggested perform in practice. To do so, we consider Hessian matrices for all of the sparse examples from the CUTEr [10] collection whose dimensions either exceed 999 or are variable (in which case the default dimension is used). This leads to 447 problems in total, 127 of which are unconstrained.

Our experiments are performed on a single processor of a system comprising 16 Intel Xeon E5620 CPUs clocked at 2.4GHz, with 23.5 GiB of RAM, running the 64-bit Ubuntu 12.04.2 LTS (precise) operating system. The algorithms from § 2 have been implemented in the fortran 2003 package SHA as part of the GALAHAD library [11]. All codes are compiled in double precision using gfortran 4.6 with -O3 optimization.

In our first set of experiments, we simply wish to investigate the accuracy attained by the algorithms we have proposed under ideal circumstances. In particular, we evaluate the Hessian H(x) of each of our problems at a "typical" value¹, we generate pseudo random vectors s_i , i = 1, ..., m, with entries in [-1, 1], and we evaluate $y_i = H(x)s_i$. We then use our algorithms to see how well we can reproduce H(x) from the given data pairs (s_i, y_i) , i = 1, ..., m; at most m = 100 pairs are permitted. The full results of our experiments are given in Table A.1 in Appendix A.

¹for constrained problems, we evaluate the Hessian of the Lagrangian function with "typical" Lagrange multipliers.

Close scrutiny of Table A.1 reveals the following trends. When the maximum number of entries per row is reasonable, Algorithm 2.1 finds their values fast and accurately. However, there are a significant number of examples in the test set that have one or more relatively dense rows, and for these the unsophisticated approach is inappropriate. Algorithm 2.2 generally produces unknown entry counts that are better than those for its predecessor, often markedly so, and as a consequence often runs faster. In some cases, the accuracy is good, but in many cases the error growth through using existing estimates when computing new ones is large, often catastrophically so. Thus, we really cannot recommend this approach. The combined versions fare better. Algorithm 2.2/3 generally limits the growth very well, only in a few cases are rows consistently too full to prohibit independent evaluation, and for these there is rarely fatal growth; large growth occured for JIMACK, MSQRTA, MSQRTB, ORTHREGE, SCURLY30, SPARSINE, SPARSQUR, STC/NQP1/2 and TWIRIMD1, while there were insufficient data pairs to evaluate FERRISDC and TWIRIBG1. Algorithm 2.3 is even more successful. Only ORTHREGE, exhibited significant growth, although again FERRISDC, TWIRIBG1 and additionally TWIRIMD1 needed more data than was available. In most cases, the actual number of data pairs required is extremely modest, and this leads us to believe that Algorithm 2.3 has high potential for sparse estimation.

5 Conclusions

We have presented a number of new methods for computing Hessian approximations when the sparisty structure is known in advance. The methods are promising in many cases, but numerical issues with stability of the approximated Hessian entries gives some cause for concern. We view this as similar to those that may happen in Gaussian Elimination when solving linear systems, and anticipate that more complicated pivoting strategies will be needed to overcome this defficiency. This is the subject of ongoing research.

Acknowledgment

I am very grateful to Coralia Cartis, Jared Tanner and Philippe Toint for stimulating discussions on the work presented here.

Appendix A

In Table A.1, we report the complete results when applying Algorithms 2.1, 2.2 and the two variants of 2.3 on the sparse examples from the CUTEr [10] test set. For each problem, we categorise its type (ty) as Unconstrained or Constrained, its dimension n, and the maximum number of entries in any row of its Hessian (deg). For each algorithm we record the maximum dimension of any linear system that needs to be solved (sys), \log_{10} of the

relative componentwise error

$$\max_{\substack{(i,j)\in\mathcal{S}(H)}} \frac{|H_{ij}^{\text{EST}} - H_{ij}^{\text{EXACT}}|}{\max(1, |H_{ij}^{\text{EXACT}}|)}$$

of the computed approximation H^{EST} of the exact Hessian H^{EXACT} (err, with -inf meaning the error is zero and inf indicating overflow) and the total CPU time taken to compute the approximation in seconds. We allowed a maximum linear-system dimension of 100, and any algorithm that required more than this is classified as a failure (indicated by a -).

				Algorithm 2.1			Al	gorithm	1 2.2	Alg	orithm	2.2/3	Algorithm 2.3			
name	$_{\rm ty}$	n	deg	sys	err	time	sys	err	time	sys	err	time	sys	err	time	
A0ENDNDL	С	45006	3	3	-11	0.044	2	-14	0.041	3	-11	0.043	3	-11	0.045	
A0ENINDL	С	45006	3	3	-11	0.045	2	-14	0.039	3	-11	0.042	3	-11	0.044	
A0ENSNDL	С	45006	3	3	-11	0.046	2	-14	0.040	3	-11	0.045	3	-11	0.044	
A0ESDNDL	C	45006	3	3	-11	0.047	2	-14	0.040	3	-11	0.047	3	-11	0.046	
AOESINDL	C	45006	3	3	-11	0.047	2	-14	0.040	3	-11	0.045	3	-11	0.043	
AOESSNDL	C	45006	3	3 2	-11	0.044	2	-14 12	0.041	3	-11	0.045	3	-11	0.041	
AONNDNIL	C	60012	3	3	-10	0.059	2	-13	0.054	3	-10	0.058	3	-11	0.055	
AONNDNSL	C	60012	3	3	-10	0.000	2	-13	0.052	3	-10	0.058	3	-11	0.055	
AONNSNSL	C	60012	3	3	-10	0.007	2	-13	0.053 0.052	3	-10	0.053 0.057	3	-11	0.055	
AONSDSDL	č	60012	3	3	-10	0.059	2	-13	0.057	3	-10	0.059	3	-11	0.056	
A0NSDSDS	č	6012	3	3	-13	0.007	2	-14	0.007	3	-13	0.006	3	-13	0.007	
A0NSDSIL	С	60012	3	3	-10	0.058	2	-13	0.053	3	-10	0.057	3	-11	0.057	
A0NSDSSL	\mathbf{C}	60012	3	3	-10	0.061	2	-13	0.054	3	-10	0.057	3	-11	0.058	
A0NSSSSL	\mathbf{C}	60012	3	3	-10	0.059	2	-13	0.056	3	-10	0.058	3	-11	0.055	
A2ENDNDL	\mathbf{C}	45006	3	3	-11	0.045	2	-14	0.039	3	-11	0.043	3	-11	0.042	
A2ENINDL	\mathbf{C}	45006	3	3	-11	0.044	2	-14	0.043	3	-11	0.045	3	-11	0.042	
A2ENSNDL	\mathbf{C}	45006	3	3	-11	0.047	2	-14	0.042	3	-11	0.043	3	-11	0.045	
A2ESDNDL	\mathbf{C}	45006	3	3	-11	0.044	2	-14	0.041	3	-11	0.043	3	-11	0.043	
A2ESINDL	С	45006	3	3	-11	0.046	2	-14	0.040	3	-11	0.045	3	-11	0.043	
A2ESSNDL	С	45006	3	3	-11	0.047	2	-14	0.039	3	-11	0.043	3	-11	0.042	
A2NNDNDL	C	60012	3	3	-10	0.074	2	-13	0.052	3	-10	0.058	3	-11	0.057	
A2NNDNIL	C	60012	3	3	-10	0.059	2	-13	0.054	3	-10	0.059	3	-11	0.057	
A2NNDNSL	C	60012	3	3	-10	0.059	2	-13	0.053	3	-10	0.061	3	-11	0.056	
AZININSINSL	C	60012	3	3	-10	0.067	2	-13	0.054	3	-10	0.060	3	-11	0.057	
A2NSDSDL	Č	60012	3	3 9	-10	0.059	2	-13	0.055	3	-10	0.059	3 9	-11	0.055	
A 2NSDSIL	č	60012	о 2	о 9	-10	0.001	2	-10	0.050	3	-10	0.001	3 9	-11	0.000	
A2NSSSSL	č	60012	3	3 2	-10	0.002	2	-13	0.055	2	-10	0.058	2	-11	0.057	
ASENDNDL	C	45006	3	3	-11	0.005	2	-14	0.043	3	_11	0.048	3	-11	0.042	
ASENINDL	č	45006	3	3	-11	0.045	2	-14	0.042	3	-11	0.043	3	-11	0.042	
A5ENSNDL	č	45006	3	3	-11	0.049	2	-14	0.040	3	-11	0.045	3	-11	0.042	
A5ESDNDL	č	45006	3	3	-11	0.044	2	-14	0.039	3	-11	0.044	3	-11	0.041	
A5ESINDL	С	45006	3	3	-11	0.044	2	-14	0.042	3	-11	0.043	3	-11	0.046	
A5ESSNDL	\mathbf{C}	45006	3	3	-11	0.044	2	-14	0.039	3	-11	0.043	3	-11	0.044	
A5NNDNDL	\mathbf{C}	60012	3	3	-10	0.065	2	-13	0.053	3	-10	0.058	3	-11	0.055	
A5NNDNIL	\mathbf{C}	60012	3	3	-10	0.059	2	-13	0.052	3	-10	0.059	3	-11	0.060	
A5NNDNSL	\mathbf{C}	60012	3	3	-10	0.059	2	-13	0.053	3	-10	0.058	3	-11	0.060	
A5NNSNSL	\mathbf{C}	60012	3	3	-10	0.058	2	-13	0.057	3	-10	0.058	3	-11	0.056	
A5NSDSDL	\mathbf{C}	60012	3	3	-10	0.058	2	-13	0.053	3	-10	0.064	3	-11	0.057	
A5NSDSDM	\mathbf{C}	6012	3	3	-13	0.006	2	-14	0.006	3	-13	0.007	3	-13	0.006	
A5NSDSIL	\mathbf{C}	60012	3	3	-10	0.059	2	-13	0.053	3	-10	0.057	3	-11	0.055	
A5NSDSSL	С	60012	3	3	-10	0.059	2	-13	0.053	3	-10	0.058	3	-11	0.056	
A5NSSNSM	С	6012	3	3	-13	0.007	2	-14	0.005	3	-13	0.006	3	-13	0.007	
A5NSSSSL	C	60012	3	3	-10	0.060	2	-13	0.055	3	-10	0.058	3	-11	0.055	
ALJAZZAF	C	1000	1	1	-16	0.001	1	-16	0.002	1	-16	0.001	1	-16	0.001	
ALLINQP	C	50000	3	3	-12	0.056	2	-8	0.049	3	-12	0.056	3	-11	0.057	
ARGTRIG	C	200	1	1	-15	0.001	1	-15	0.001	1	-15	0.002	1	-15	0.001	
ARTIF	č	5002	1	1	-10	0.004	1	-10	0.004	1	-10	0.004	1	-10	0.004	
ARWHEAD	U	5000	5000	5000	-10	0.001	2	-10	0.002		-10	0.001	2	-10	0.002	
AUG2D	C	20200	1	1	_inf	0.015	1	-inf	0.005	1	-inf	0.003	1	-inf	0.003	
AUG2DC	č	20200	1	1	-inf	0.010	1	-inf	0.015	1	-inf	0.015	1	-inf	0.010	
AUG2DCOP	č	20200	1	1	-inf	0.016	1	-inf	0.013	1	-inf	0.014	1	-inf	0.014	
AUG2DOP	č	20200	1	1	-inf	0.014	1	-inf	0.014	1	-inf	0.015	1	-inf	0.013	
AUG3D	С	27543	1	1	-inf	0.016	1	-inf	0.016	1	-inf	0.018	1	-inf	0.017	
AUG3DC	\mathbf{C}	27543	1	1	-inf	0.020	1	-inf	0.019	1	-inf	0.020	1	-inf	0.019	
AUG3DCQP	\mathbf{C}	27543	1	1	-inf	0.019	1	-inf	0.019	1	-inf	0.020	1	-inf	0.020	
AUG3DQP	\mathbf{C}	27543	1	1	-inf	0.016	1	-inf	0.016	1	-inf	0.016	1	-inf	0.016	
BDEXP	U	5000	5	5	-12	0.009	3	-11	0.007	5	-12	0.009	5	-13	0.009	
BDQRTIC	U	5000	5000	5000	-	-	5	-9	0.014	8	-12	0.018	8	-12	0.017	
BDVALUE	\mathbf{C}	5002	1	1	-22	0.004	1	-22	0.003	1	-22	0.004	1	-22	0.004	
BDVALUES	С	10002	1	1	-21	0.008	1	-21	0.006	1	-21	0.008	1	-21	0.006	
BIGBANK	С	2230	1	1	-16	0.002	1	-16	0.002	1	-16	0.002	1	-16	0.002	
BIGGSB1	U	5000	3	3	-13	0.006	2	-10	0.005	3	-13	0.006	3	-12	0.005	
BLOCKQPI	C	10010	2	2	-13	0.010	2	-inf	0.010	2	-13	0.008	2	-13	0.010	
BLOCKQP2	C	10010	2	2	-13	0.009	2	-1nf	0.008	2	-13	0.010	2	-13	0.009	
BLOCKQF3	č	10010	2	2	-13	0.010	2	-13	0.008		-13	0.010	2	-13	0.010	
BLOCKQP4	Č	10010	2	2	-13	0.009	2	-13	0.009		-13	0.013	2	-13	0.010	
BLOWEVA	č	4002	4	∠ 1	-13	0.010	∠ 2	-10	0.009	4	-13	0.009	2 1	-13	0.010	
BLOWEYB	č	4002	4	4 4	-13	0.004	2	-10	0.003	4	-13	0.004	4	-13	0.004	
BLOWEYC	č	4002	4	4	-13	0.005	2	-10	0.004	4	-13	0.005	4	-13	0.004	
BQPGAUSS	Ŭ	2003	552	552	-	-	14	06	0.004	40	-10	0.009	40	-11	0.009	
BRAINPC0	č	6907	3452	3452	-	-	4	-8	0.010	5	-8	0.010	5	-8	0.009	
BRAINPC1	C	6907	3452	3452	-	-	4	-11	0.010	5	-11	0.010	5	-11	0.010	
BRAINPC2	С	13807	6902	6902	-	-	4	-9	0.021	5	-9	0.020	5	-8	0.020	
BRAINPC3	\mathbf{C}	6907	3452	3452	-	-	4	-8	0.010	5	-8	0.010	5	-8	0.010	
BRAINPC4	\mathbf{C}	6907	3452	3452	-	-	4	-8	0.010	5	-8	0.010	5	-8	0.011	
BRAINPC5	\mathbf{C}	6907	3452	3452	-	-	4	-8	0.010	5	-8	0.011	5	-8	0.010	
BRAINPC6	\mathbf{C}	6907	3452	3452	-	-	4	-8	0.010	5	-8	0.010	5	-8	0.010	
BRAINPC7	\mathbf{C}	6907	3452	3452	-	-	4	-8	0.010	5	-8	0.010	5	-8	0.010	

Table A.1: Reproducing Hessians for quadratic examples: Complete results

				Alg	2.1	Algorithm 2.2			Alg	orithm	2.2/3	Algorithm 2.3			
name	ty	n	deg	sys	err	time	sys	err	time	sys	err	time	sys	err	time
BRAINPC8	C	6907	3452	3452	-	-	4	-8	0.011	5	-8	0.010	5	-8	0.010
BRAINPU9 PRATUID	U	5002	3452	3452	10	0.006	4	-8	0.010	2	-8	0.010	2	-8	0.010
BRATU2D	C	5184	1	1	-12	0.000	1	-11	0.003	1	-12	0.000	1	-12	0.003
BRATU2DT	C	5184	1	1	-19	0.005	1	-19	0.004	1	-19	0.004	1	-19	0.004
BRATU3D	č	4913	1	1	-17	0.003	1	-17	0.003	1	-17	0.003	1	-17	0.003
BRIDGEND	С	2734	1	1	-20	0.002	1	-20	0.002	1	-20	0.003	1	-20	0.004
BROWNALE	C	200	10	10	-15	0.001	10	-14	0.000	10	-15	0.002	10	-15	0.000
BROYDN3D	\mathbf{C}	5000	1	1	-16	0.006	1	-16	0.003	1	-16	0.005	1	-16	0.004
BROYDN7D	U	5000	6	6	-11	0.010	4	231	0.007	6	-11	0.011	6	-11	0.010
BROYDNBD	\mathbf{C}	5000	1	1	-15	0.004	1	-15	0.004	1	-15	0.004	1	-15	0.004
BRYBND	U	5000	13	13	-10	0.028	7	-8	0.012	13	-10	0.028	13	-10	0.027
CAMSHAPE	С	800	5	5	-13	0.002	3	-11	0.001	5	-13	0.001	5	-13	0.002
CAR2	С	5999	5999	5999	-		11	235	0.026	17	-13	0.044	17	-12	0.043
CATENA	C	3003	3	3	-13	0.005	2	-11	0.004	3	-13	0.003	3	-13	0.005
CATENARY	C	3003	4	4	-13	0.003	2	-11	0.003		-13	0.004	4	-13	0.004
CATMIX	C	2403	5	5	-15	0.003	3	-12	0.003	5	-15	0.004	5	-15	0.004
CBRAIU2D	C	3200	2	2	-15	0.004	2	-15	0.003		-15 15	0.004	2	-15	0.003
CHAIN	C	802	2	2	-15	0.002	2	-14	0.002	2	-15	0.002	2	-15	0.003
CHAINWOO	U U	4000	4	4	-11	0.001	2	-10	0.001		-11	0.001	4	-11	0.001
CHANNEL	č	9600	2	2	-12	0.006	2	-12	0.007	2	-12	0.009	2	-12	0.006
CHEMRCTA	č	5000	2	2	-9	0.004	2	-7	0.006	2	-9	0.004	2	-9	0.006
CHEMRCTB	C	5000	1	1	-16	0.004	1	-16	0.004	1	-16	0.005	1	-16	0.004
CHENHARK	U	5000	5	5	-12	0.009	3	-10	0.006	5	-12	0.009	5	-12	0.009
CHNROSNB	U	50	3	3	-14	0.001	2	-13	0.001	3	-14	0.001	3	-15	0.001
CHNRSBNE	\mathbf{C}	50	1	1	-16	0.000	1	-16	0.001	1	-16	0.001	1	-16	0.001
CLNLBEAM	\mathbf{C}	6003	1	1	-17	0.003	1	-17	0.004	1	-17	0.003	1	-17	0.003
CLPLATEA	U	5041	5	5	-10	0.009	3	19	0.007	5	-10	0.010	5	-9	0.007
CLPLATEB	U	5041	5	5	-10	0.009	3	19	0.007	5	-10	0.009	5	-9	0.009
CLPLATEC	U	5041	5	5	-9	0.009	3	19	0.006	5	-9	0.009	5	-9	0.010
CONT5-QP	С	40601	1	1	-19	0.002	1	-19	0.003	1	-19	0.003	1	-19	0.003
CONT6-QQ	C	20002	2	2	-17	0.018	2	-16	0.018	2	-17	0.018	2	-17	0.017
CORKSCRW	C	4506	3	3	-13	0.002	2	-13	0.002	3	-13	0.002	3	-13	0.003
COSHFUN	C II	10000	2	2	-13	0.005	2	-13	0.005	2	-13	0.006	2	-13	0.006
CDACCIVY	U	5000	3	3	-11	0.011	2	-9	0.009	3	-11	0.011	3	-11	0.011
CURIV10	U	10000	01 01	21	-0	0.007	11	-0	0.000	21	-0	0.000	21	-0	0.000
CURIND	U	10000	41	41	-11	0.124	21	-0	0.047	41	-11	0.122	41	-11	0.110
CURLY30	U	10000	61	61	-10	1 207	31	-6	0.131	50	-10	0.408	61	-10	1 1 98
CVXBOP1	U	10000	9	9	-11	0.029	7	48	0.017	9	-11	0.028	9	-11	0.026
CVXQP1	č	10000	9	9	-11	0.027	7	48	0.018	9	-11	0.027	9	-11	0.027
CVXQP2	С	10000	9	9	-11	0.027	7	48	0.018	9	-11	0.028	9	-11	0.025
CVXQP3	\mathbf{C}	10000	9	9	-11	0.027	7	48	0.017	9	-11	0.027	9	-11	0.026
DALLASL	\mathbf{C}	906	1	1	-16	0.001	1	-16	0.001	1	-16	0.001	1	-16	0.001
DEGENQP	\mathbf{C}	50	1	1	-16	0.002	1	-16	0.001	1	-16	0.000	1	-16	0.001
DITTERT	\mathbf{C}	1133	127	127	-	-	10	-9	0.003	37	-12	0.004	37	-12	0.004
DIXCHLNV	\mathbf{C}	1000	5	5	-7	0.002	3	-5	0.002	5	-7	0.003	5	-7	0.003
DIXMAANA	U	3000	5	5	-11	0.005	4	18	0.003	5	-11	0.006	5	-11	0.006
DIXMAANB	U	3000	5	5	-11	0.006	4	19	0.005	5	-11	0.006	5	-11	0.006
DIXMAANC	U	3000	5	5	-11	0.005	4	18	0.004	5	-11	0.006	5	-11	0.006
DIXMAAND	U	3000	о 5	5	-11	0.007	4	19	0.005	5	-11	0.005	- Э Б	-11	0.006
DIXMAANE	U	3000	5	5	-11	0.007	4	19	0.003	5	-11	0.000	5	-12	0.000
DIXMAANG	U	3000	5	5	-11	0.005	4	18	0.004	5	-11	0.000	5	-11	0.005
DIXMAANH	Ŭ	3000	5	5	-11	0.006	4	19	0.005	5	-11	0.005	5	-11	0.005
DIXMAANI	Ũ	3000	5	5	-11	0.005	4	19	0.004	5	-11	0.006	5	-11	0.005
DIXMAANJ	U	3000	5	5	-11	0.006	4	18	0.004	5	-11	0.005	5	-11	0.006
DIXMAANK	U	3000	5	5	-11	0.006	5	-11	0.004	5	-11	0.005	5	-11	0.006
DIXMAANL	U	3000	5	5	-11	0.007	4	19	0.004	5	-11	0.005	5	-11	0.006
DIXON3DQ	U	10000	3	3	-12	0.012	2	-9	0.010	3	-12	0.013	3	-12	0.012
DQDRTIC	U	5000	1	1	-16	0.004	1	-16	0.004	1	-16	0.004	1	-16	0.004
DQRTIC	U	5000	1	1	-16	0.005	1	-16	0.005	1	-16	0.005	1	-16	0.003
DRCAV1LQ	U	4489	41	41	-8	0.197	21	115	0.059	41	-8	0.194	41	-7	0.189
DRCAV2LQ	U	4489	41	41	-8	0.196	21	115	0.058	41	-8	0.192	41	-7	0.189
DRCAV3LQ	U	4489	41	41	-8	0.196	21	115	0.060	41	-8	0.195	41	-7	0.190
DRCAVTYI	C	4489	41	41	-9	0.195	21	111	0.058	41	-9	0.201	41	-9	0.187
DRCAVTV2	C	4469	41	41	-9	0.193	21	119	0.059	41	-9	0.193	41	-9	0.100
DRUGDIS	c	4489 6004	6004	6004	-0	0.194	41	-14	0.038	41 A	-0 -14	0.194	41 A	-9 -14	0.130
DRUGDISE	č	603	601	601	-	-	5	-14	0.003	7	-10	0.002	7		0.002
DTOC1L	č	5998	1	1	-16	0.005	1	-16	0.005		-16	0.005	1	-16	0.005
DTOC1NA	č	5998	5	5	-12	0.008	3	-12	0.007	5	-12	0.009	5	-12	0.007
DTOC1NB	č	5998	5	5	-11	0.009	3	-11	0.007	5	-11	0.008	5	-12	0.008
DTOC1NC	\mathbf{C}	5998	5	5	-11	0.008	3	-11	0.008	5	-11	0.008	5	-12	0.008
DTOC1ND	\mathbf{C}	5998	5	5	-11	0.008	3	-11	0.006	5	-11	0.009	5	-12	0.009
DTOC2	\mathbf{C}	5998	6	6	-12	0.012	6	-11	0.009	6	-12	0.012	6	-11	0.010
DTOC3	\mathbf{C}	4499	1	1	-19	0.004	1	-19	0.003	1	-19	0.003	1	-19	0.003
DTOC4	\mathbf{C}	4499	2	2	-15	0.004	2	-14	0.005	2	-15	0.004	2	-15	0.005
DTOC5	С	9999	1	1	-19	0.006	1	-19	0.008	1	-19	0.008	1	-19	0.007
DTOC6	C	10001	2	2	-13	0.008	2	-11	0.010	2	-13	0.009	2	-13	0.009
EDENSCH	U	2000	3	3	-13	0.003	2	-10	0.003	3	-13	0.002	3	-13	0.003

Table A.1: Reproducing Hessians for quadratic examples: Complete results (continued)

name y a deg yer res					Alg	orithm	2.1	Al	gorithm	1.2.2	Alg	orithm	2.2/3	Algorithm 2.3			
EG2 Ú Liño piño - - 1	name	tv	n	deg	svs	err	time	svs	err	time	svs	err	time	svs	err	time	
EC3 C 0 0 1	EG2	U	1000	999	999	-	-	2	-13	0.003	2	-13	0.002	2	-13	0.003	
EIGENA C 2330 51 31 42 0.141 51 38 0.079 51 420 0.210 51 420 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.210 51 430 0.211 51 430 431 430 0.211 51 430	EG3	C	10001	10001	10001	-	-	4	-12	0.020	4	-12	0.019	4	-12	0.019	
LIGENAL C 2500 51 51 10 0.213 51 10 0.213 51 10 0.213 51 10 0.213 51 10 0.213 51 10 0.213 51 10 0.018 51 10 0.213 51 10 0.213 52 11 0.213 52 11 0.213 52 11 0.213 52 11 0.213 52 11 0.213 52 11 0.213 52 11 0.213 52 11 0.213 52 11 0.213 53 11 0.001 2 110 <td>EIGENA</td> <td>č</td> <td>2550</td> <td>51</td> <td>51</td> <td>-12</td> <td>0.214</td> <td>51</td> <td>-9</td> <td>0.079</td> <td>51</td> <td>-12</td> <td>0.210</td> <td>51</td> <td>-12</td> <td>0.210</td>	EIGENA	č	2550	51	51	-12	0.214	51	-9	0.079	51	-12	0.210	51	-12	0.210	
EIGENN C 2500 51 51 120 0.079 51 120 0.201 51 120 0.201 51 120 0.201 51 120 0.201 51 120 0.201 51 120 0.201 51 120 0.210 51 120 0.210 51 120 0.210 51 120 0.210 51 120 0.210 51 120 0.210 51 120 0.210 51 120 <	EIGENA2	č	2550	51	51	-10	0.213	51	-8	0.077	51	-10	0.213	51	-10	0.207	
LIGENNI C 2350 31 31 -12 0.078 51 -12 0.201 51 -12 0.201 51 -12 0.201 51 -12 0.201 51 -12 0.201 52 13 0.211 52 13 0.211 52 13 0.211 52 13 0.211 52 13 0.211 52 13 0.211 52 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 <	EIGENAU	C	2550	51	51	-12	0.213	51	-9	0.079	51	-12	0.210	51	-12	0.209	
FIGENRP C 2350 31 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1</th1<>	EIGENB	č	2550	51	51	-12	0.213	51	-9	0.078	51	-12	0.210	51	-12	0.207	
LIGENC C 2 2 2 1 0 214 52 2 3 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0	EIGENB2	č	2550	51	51	-12	0.210	51	-10	0.077	51	-12	0.212	51	-12	0.206	
FIGENC2 C 2 2 2 0 2 8 0.02 5 0 0.116 5 0 0.116 0 <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<>	EIGENC	č	2652	52	52	-11	0.214	52	-9	0.082	52	-11	0.212	52	-11	0.213	
ENCVA15. U 5000 -3 -12 0.000 -2 -10 0.000 -3 -12 0.000 -3 -12 0.000 -13 -14 0.001 -12 -10 0.000 -13 -16 0.001 -15 0.000 -14	EIGENC2	Č	2652	52	52	_9	0.211	52	-8	0.082	52	-9	0.215	52	_9	0.210	
INTRUPOS U 30 3 14 0.001 2 12 0.000 3 14 0.001 3 14 0.001 3 14 0.001 3 14 0.001 3 15 0.001 3 15 0.001 3 15 0.001 3 15 0.001 3 15 0.001 3 15 0.001 3 16 0.001 3 16 0.001 3 16 0.001 3 16 0.001 3 16 0.001 3 16 0.001 3 13 0.001 3 13 0.001 3 13 0.001 13 13 0.001 13 13 0.001 13 13 0.001 13 0.001 13 0.001 13 0.001 13 0.001 13 0.001 0.001 0.001 13 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.	ENGVAL1	U U	5000	3	3	-12	0.006	2	-10	0.002	3	-12	0.007	3	-12	0.007	
TXPLIN U 1200 3 3 1-16 0.001 2 1-15 0.000 3 1-16 0.001 3 1-16 0.000 3 1-16 0.000 3 1-16 0.000 3 1-10 0.001 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-12 0.000 3 1-16 0.000 1-16 0.000 3 3 1-0 0.000 3 3 1-0 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 0.000 1-10 <	ERRINROS	U U	50	3	3	13	0.000	2	12	0.000	3	13	0.001	3	13	0.001	
EXPRUAD U 1200 3 15 0.001 2 15 0.001 3 15 0.002 3 15 0.002 3 15 0.002 3 15 0.002 3 15 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 3 13 0.001 13 13 0.001 13 13 0.001 13 13 0.002 13 13 0.001 13 13 0.001 13 13 0.001 13 13 0.001 13 13 0.002 13 13 0.001 13 13 0.001 13 13 0.001 13 13 0.001 13 13 0.001 13 13 0.001 13 1	EXPLIN	U	1200	3	3	-15	0.001	2	15	0.000	3	-15	0.000	3	-15	0.001	
EXTRONA U 1300 1100 1.00 1.2 2 1.9 0.003 3 3.12 0.002 3 3.2 0.001 3 3.3 0.001 3 3.3 0.001 3 3.3 0.002 3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 1.3 0.001 3 3 1.3 0.001 3 3 1.3 0.001 3 3 0.001 3 3 0.002 3 3 0.000 3 3 0.000 3 3 0.001 0.001 3 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001<	EVDLIN9	U	1200	3	2	-10	0.001	2	-15	0.000	2	-10	0.001	2	-10	0.001	
EXTROSNE U 1000 1.3 1.43 0.33 1.2 0.001 2 1.4 0.001 2 1.4 0.001 2 1.4 0.001 2 1.4 0.001 2 0 - 200 200 200 <	EXPOUND	U	1200	1100	1100	-10	0.001	2	-15	0.001	2	-10	0.000	2	-10	0.000	
EXPERTISENC C 1200	EXTQUAD	11	1200	1100	1100	- 10	- 002		-9	0.003	3	-12	0.002	3	-12	0.001	
PIETCINC: U 5000 20 -10 0.000 2 -12 0.007 20 -12 0.007 3 -12 0.007 3 -12 0.007 3 -12 0.007 3 -13 0.007 3 -13 0.000 3 -33 0.000 3 -34 0.000 3 -35 0.000 3 -35 0.000 3 -35 0.000 3 -35 0.000 3 -35 0.000 3 -35 0.000 3 -35 0.000 3 -10 0.007 5 3 0.001 9 -10 0.007 5 3 0.004 9 -10 0.007 9 -11 0.005 FMINSHY U 5000 3 -13 0.018 3 -14 0.007 3 -13 0.010 3 -11 0.007 3 -11 0.007 3 -13 0.010 3 -11 0.007 3	EAINUSND	C	2200	300	300	-15	0.003	200	-11	0.001	200	-15	0.001	200	-15	0.002	
TETCON3 U 3000 3 1.1 0.000 3 1.4 0.000 3 <td>FERRISDU</td> <td>U U</td> <td>2200</td> <td>200</td> <td>200</td> <td>10</td> <td>-</td> <td>200</td> <td>10</td> <td>-</td> <td>200</td> <td>10</td> <td>0.007</td> <td>200</td> <td>10</td> <td>0.005</td>	FERRISDU	U U	2200	200	200	10	-	200	10	-	200	10	0.007	200	10	0.005	
FLETCHEN U 0000 3 -1.3 0.0002 3 -1.6 0.0002 3 -1.6 0.0002 3 -1.6 0.0002 3 -1.8 0.0002 1.0 0.0002 9 -1.0 0.006 9 -1.0 0.006 9 -1.0 0.006 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.0 0.007 9 -1.1 0.006 5 3 0.001 9 -1.0 0.007 9 -1.1 0.007 5 3 0.001 9 -1.1 0.007 5 -1.2 0.006 3 -1.1 0.007 3 -1.1 0.007 3 -1.1 0.007 3 -1.2 0.001 3 -1.2 0.001	FLEICBV2	U	5000	3		-12	0.000		-10	0.000	3 2	-12	0.007	3	-12	0.005	
THETCHICH U 1000 3 3 3 3 3 0.001 2 3 3 3 0.001 FLOSP2HL C 2883 9 9 -10 0.007 5 3 0.004 9 -10 0.006 9 -10 0.007 5 3 0.004 9 -10 0.007 9 -11 0.006 FLOSP2HL C 2883 9 9 -10 0.007 5 3 0.004 9 -10 0.007 9 -11 0.005 FLOSP2HL C 2883 9 9 -10 0.007 5 3 0.001 3 -11 0.005 3 -10 0.007 3 -11 0.005 3 -11 0.006 3 -11 0.007 3 -12 0.001 3 -12 0.006 3 -12 0.006 3 -12 0.006 1 -10 0.007	FLEICBV3	U	5000	3	3	-13	0.007	2	-12	0.006	3	-13	0.006	3	-13	0.006	
Intersement C Jass	FLEICHEV	11	1000	3	3	-0	0.000		-0	0.005	3	-0	0.005	3	-0	0.007	
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	FLEICHUR	C	1000	3	3	-13	0.001	2	-11	0.002	3	-13	0.002	3	-12	0.001	
$ \begin{array}{c} \text{FLOSEPTIL} \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	FLOSP2HH	C	2883	9	9	-10	0.006	5	3	0.004	9	-10	0.006	9	-11	0.006	
	FLOSP2HL	C	2883	9	9	-10	0.007	5	3	0.004	9	-10	0.006	9	-11	0.006	
PLOSP21:H C 2885 9 9 10 0.007 5 3 0.008 9 -10 0.007 5 3 0.004 9 -11 0.007 FMORSHE7 C 2883 9 9 -10 0.007 5 3 0.004 9 -11 0.007 GANSHEA C 2840 79 71 0.044 14 3 -11 0.047 3 -11 0.047 GENNORE C 2140 79 79 -11 0.045 11 -0.04 3 -12 0.004 3 -12 0.004 3 -12 0.003 -13 0.007 3 -12 0.003 -13 0.007 3 -12 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.007 1 -16 0.007 1 -16 0.007 1 -16 0.006 1 -16 0.006 </td <td>FLOSP2HM</td> <td>C</td> <td>2883</td> <td>9</td> <td>9</td> <td>-10</td> <td>0.007</td> <td>5</td> <td>3</td> <td>0.005</td> <td>9</td> <td>-10</td> <td>0.007</td> <td>9</td> <td>-11</td> <td>0.006</td>	FLOSP2HM	C	2883	9	9	-10	0.007	5	3	0.005	9	-10	0.007	9	-11	0.006	
FLOSP21L C 2883 9 9 10 0.007 5 3 0.004 9 -10 0.007 5 -10 0.007 5 -10 0.007 5 -11 0.007 5 -11 0.007 5 -11 0.007 5 -11 0.007 5 -11 0.007 5 -12 0.007 5 -12 0.007 5 -12 0.004 5 -12 0.001 5 -12 0.001 0.013 0.013 0.012 0.001 0.013 0.012 0.001 0.013 0.012 0.001 0.013 0.012 0.001 0.013 0.012 0.004 0.013 0.012 0.001 0.013 0.012 0.004 0.013 0.012 0.013 0.012 0.000 0.013 0.012 0.010 0.000 0.013 0.012 0.010 0.000 0.01 0.013 0.010 0.011 0.013 0.013 0.010 0.010 0.013 </td <td>FLOSP2TH</td> <td>C</td> <td>2883</td> <td>9</td> <td>9</td> <td>-10</td> <td>0.007</td> <td></td> <td>3</td> <td>0.003</td> <td>9</td> <td>-10</td> <td>0.007</td> <td>9</td> <td>-11</td> <td>0.005</td>	FLOSP2TH	C	2883	9	9	-10	0.007		3	0.003	9	-10	0.007	9	-11	0.005	
FLOSREY: A C 2883 9 9 10 0.007 5 3 0.004 9 10 0.007 9 -11 0.007 FREUROTH C 0.000 3 3 12 0.001 2 -3 0.005 3 -11 0.007 3 -11 0.017 GENUMMPS U 5000 3 -12 0.001 2 -9 0.004 40 -12 0.001 3 -13 0.001 GENNOSE U 5000 3 -33 0.001 2 -9 0.004 1 -16 0.003 3 -12 0.001 GULDQR2 C 19999 3 3 -12 0.012 2 -10 0.009 3 -12 0.023 -11 10.023 -11 10.023 -11 10.023 -11 10.023 -11 10.023 -11 10.023 -11 10.023 -11 10.023 11<	FLOSP2TL	C	2883	9	9	-10	0.007	5	3	0.004	9	-10	0.007	9	-11	0.007	
FAILWORT 0 5622 9 9 9 1-33 0.019 5 4.1 0.011 9 1-13 0.018 9 -13 0.016 CASOLL C 10403 1602 1602 - - 5 12 0.006 5 -12 0.001 3 -11 0.017 GAUSSELM C 2140 0.90 3 3 -10 0.014 3 -14 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.002 3 -12 0.002 3 -12 0.003 3 -12 0.001 3 -12 0.012 3 -12 0.002 3 -12 0.012 3 -13 0.010 3 -14 0.023 3 -13 0.010 3 -14 0.020 3 -14 0.010 <td>FLOSP2TM</td> <td>C</td> <td>2883</td> <td>9</td> <td>9</td> <td>-10</td> <td>0.007</td> <td>5</td> <td>3</td> <td>0.004</td> <td>9</td> <td>-10</td> <td>0.007</td> <td>9</td> <td>-11</td> <td>0.005</td>	FLOSP2TM	C	2883	9	9	-10	0.007	5	3	0.004	9	-10	0.007	9	-11	0.005	
FREE NGVIH 0 5000 3 3 -11 0.005 2 -9 0.005 3 -11 0.007 3 -11 0.007 3 -11 0.007 3 -11 0.006 3 -11 0.005 3 -12 0.006 3 -11 0.005 3 -11 0.006 3 -11 0.006 3 -11 0.005 3 -11 0.006 3 -11 0.006 3 -12 0.008 3 -11 0.006 1 -14 0.006 6 -12 0.009 3 -12 0.009 3 -12 0.009 3 -12 0.001 3 -14 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006<	FMINSRF2	U	5625	9	9	-13	0.019	5	41	0.011	9	-13	0.018	9	-13	0.018	
CARSULL C 10403 1002 1602 - - 5 12 0.006 5 -12 0.006 5 -12 0.001 5 -12 0.001 5 -12 0.001 3 13 0.012 49 -11 0.041 3 -13 0.001 3 -13 0.001 3 -13 0.001 3 -13 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.002 3 -12 0.001 3 -12 0.002 3 -12 0.003 3 -12 0.003 3 -12 0.003 3 -13 0.001 3 -14 0.003 3 -14 0.007 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.005 <td>FREUROTH</td> <td>U</td> <td>5000</td> <td>3</td> <td>3</td> <td>-11</td> <td>0.005</td> <td></td> <td>-9</td> <td>0.005</td> <td>3</td> <td>-11</td> <td>0.007</td> <td>3</td> <td>-11</td> <td>0.007</td>	FREUROTH	U	5000	3	3	-11	0.005		-9	0.005	3	-11	0.007	3	-11	0.007	
GAUSSELM C 2140 79 79 71 0.045 41 3 0.015 49 0.041 3 -12 0.047 3 1.2 0.001 GENNUMPS U 500 3 3 -13 0.001 2 -12 0.001 3 -13 0.001 GLIDER C 5200 1 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.005 1 -12 0.005 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.007 3 -14 0.006 1 -16 0.007 3 -13 0.006 <td>GASOIL</td> <td>C</td> <td>10403</td> <td>1602</td> <td>1602</td> <td>-</td> <td>-</td> <td>5</td> <td>-12</td> <td>0.006</td> <td>5</td> <td>-12</td> <td>0.004</td> <td>5</td> <td>-12</td> <td>0.006</td>	GASOIL	C	10403	1602	1602	-	-	5	-12	0.006	5	-12	0.004	5	-12	0.006	
GENROSE U 5000 3 -12 0.001 2 -9 0.004 3 -12 0.007 3 -12 0.006 GENROSE U 5000 1 1 -16 0.004 1 -16 0.004 1 -16 0.006 6 -12 0.008 6 -12 0.008 6 -12 0.008 6 -12 0.008 6 -12 0.0012 3 -12 0.013 GOULDQP3 C 1999 4 4 -12 0.012 18 -12 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -13 0.016 00 13 -13 0.016 00 13 <td>GAUSSELM</td> <td>C</td> <td>22140</td> <td>79</td> <td>79</td> <td>-11</td> <td>0.045</td> <td>41</td> <td>3</td> <td>0.018</td> <td>49</td> <td>-11</td> <td>0.042</td> <td>49</td> <td>-11</td> <td>0.041</td>	GAUSSELM	C	22140	79	79	-11	0.045	41	3	0.018	49	-11	0.042	49	-11	0.041	
GLENRONE U 500 3 3 3 3 3 3 3 13 0.001 3 13 0.001 GLIDER C 5000 1 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.004 1 -16 0.005 10 85 0.021 18 -2 0.005 11 0.16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 11 11 <t< td=""><td>GENHUMPS</td><td>U</td><td>5000</td><td>3</td><td>3</td><td>-12</td><td>0.005</td><td>2</td><td>-9</td><td>0.004</td><td>3</td><td>-12</td><td>0.007</td><td>3</td><td>-12</td><td>0.005</td></t<>	GENHUMPS	U	5000	3	3	-12	0.005	2	-9	0.004	3	-12	0.007	3	-12	0.005	
	GENROSE	U	500	3	3	-13	0.001	2	-12	0.001	3	-13	0.002	3	-13	0.001	
GLIDER C 5214 1605 1605 - - 4 -9 0.006 6 -12 0.008 5 -12 0.008 5 -12 0.012 3 -12 0.0109 3 -12 0.012 3 -112 0.012 3 -12 0.012 3 -12 0.012 3 -12 0.001 3 -12 0.001 3 -12 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.007 3 -13 0.009 3 -13 0.010 0.01 0.01 0.01 0.01 0.01 0	GILBERT	С	5000	1	1	-16	0.004	1	-16	0.004	1	-16	0.004	1	-16	0.003	
GOULDQP2 C 19999 3 3 -12 0.013 2 -10 0.009 4 -12 0.012 3 -12 0.012 3 -12 0.012 3 -12 0.012 3 -12 0.010 3 -12 0.024 4 -11 0.023 GRIDNETA C 7564 1 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.016 60 -10 0.010 60 -13 0.015 60 -13 0.015 60 -13 0.015	GLIDER	С	5214	1605	1605	-	-	4	-9	0.006	6	-12	0.008	6	-12	0.009	
GOULDQP3 C 19999 4 4 -12 0.019 4 -12 0.024 1 -10 0.039 4 -11 0.023 GRIDGEMA U 6218 18 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.006 1 -16 0.007 3 -13 0.009 3 -13 0.008 3 -13 0.009 3 -13 0.008 3 -13 0.008 3 -13 0.006 1 1 0.016 60 -10 0.007 3 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 1 -13 0.016 13 1.015 60 1	GOULDQP2	С	19999	3	3	-12	0.013	2	-10	0.009	3	-12	0.012	3	-12	0.012	
GRIDGENA U 6218 18 1 1 2 0.055 10 85 0.005 1 -16 0.006 GRIDNETB C 7564 1 1 1.66 0.007 1 -1.66 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.000 3 -1.3 0.000 3 -1.3 0.000 3 -1.3 0.010 60 -1.0 0.000 60 -1.3 0.015 60 -1.3 0.016 GRIDNETT C 7564 61 61 -1.4 0.004 20 -1.1 0.003 1 2.0 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.003 1 2.0 0.003	GOULDQP3	\mathbf{C}	19999	4	4	-12	0.022	2	-10	0.019	4	-12	0.024	4	-11	0.023	
GRIDNETA C 7564 1 1 1-66 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 1 -1.6 0.006 3 -1.3 0.009 3 -1.3 0.009 3 -1.3 0.009 3 -1.3 0.000 3 -1.3 0.001 60 -1.0 0.001 60 -1.3 0.016 60 -1.0 0.003 2.0 -1.4 0.004 3 -1.2 0.001 1 -2.0 0.002 1 -2.0 0.002 1 -2.0 0.002 1 -2.0 0.001 1	GRIDGENA	U	6218	18	18	-2	0.055	10	85	0.026	18	-2	0.054	18	-2	0.052	
GRIDNETE C 7564 1 1 1-66 0.007 1 1-66 0.006 1 1-66 0.006 GRIDNETD C 7564 3 3 -14 0.009 2 -11 0.007 3 -14 0.009 3 -13 0.008 GRIDNETE C 7564 3 3 -14 0.009 2 -10 0.007 3 -14 0.009 3 -13 0.016 GRIDNETC C 7564 61 61 -14 0.016 60 -10 0.010 60 -14 0.015 60 -13 0.016 60 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.006 3 -17 0.006 3 -17 0.006 3 -17 0.006 3 -17 0.006 3 -17 0.006 3 -17 0.006 3 -11	GRIDNETA	\mathbf{C}	7564	1	1	-16	0.006	1	-16	0.005	1	-16	0.006	1	-16	0.006	
GRIDNETC C 7564 1 1 1-66 0.006 1 -16 0.005 GRIDNETE C 7564 3 3 -14 0.009 2 -11 0.007 3 -14 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.016 60 -10 0.001 60 -13 0.016 60 -10 0.000 60 -13 0.016 60 -10 0.000 60 -13 0.016 60 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.007 3 3 -17 0.001 1 -20 0.002 14 0.006 14	GRIDNETB	\mathbf{C}	7564	1	1	-16	0.007	1	-16	0.006	1	-16	0.006	1	-16	0.007	
GRIDNETD C 7564 3 3 -13 0.009 2 -11 0.007 3 -13 0.008 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.001 3 -13 0.016 GMINETT C 7564 61 61 -14 0.016 60 -10 0.009 60 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.006 20 -14 0.006 3 -17 0.006 3 -17 0.006 3 -17 0.007 5 -16 0.007 5 -16 0.007 5	GRIDNETC	\mathbf{C}	7564	1	1	-16	0.006	1	-16	0.007	1	-16	0.006	1	-16	0.005	
GRIDNETE C 7564 3 3 -14 0.009 2 -10 0.001 3 -14 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.009 3 -13 0.001 3 0.015 60 -13 0.016 60 -13 0.015 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 14 0.006 21 -20 0.002 11 -20 0.002 11 -20 0.003 11 -20 0.003 11 -20 0.003 11 -20 0.003 11 -20 0.003 11 -20 0.003 11 -20 0.001 11 -21 0.001 11 -21 0.001 11<	GRIDNETD	\mathbf{C}	7564	3	3	-13	0.009	2	-11	0.007	3	-13	0.009	3	-13	0.008	
GRIDNETF C 7564 3 -13 0.009 2 -10 0.008 3 -13 0.009 3 -13 0.001 GRIDNETH C 7564 61 61 -14 0.016 60 -10 0.010 60 -13 0.016 GRIDNETT C 7564 61 61 -14 0.016 60 -13 0.016 GRIDNETT C 7564 61 61 -14 0.004 20 -11 0.003 20 -14 0.006 3 -17 0.004 3 -17 0.004 3 -17 0.005 1 -16 0.007 3 3 -10 0.001 3 -17 0.005 1 -21 0.001 3 -17 0.005 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21	GRIDNETE	\mathbf{C}	7564	3	3	-14	0.009	2	-10	0.007	3	-14	0.009	3	-13	0.010	
GRIDNETG C 7564 61 -14 0.016 60 -11 0.010 60 -13 0.015 60 -13 0.016 GRIDNETI C 7564 61 61 -13 0.016 60 -10 0.000 60 -13 0.016 60 -13 0.016 HADAMARD C 401 20 0.02 11 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.003 1 -20 0.003 1 -20 0.003 1 -20 0.004 1 -11 0.007 1 -21 0.001 1 -21 0.005 1 -11 0.007 HASGER4 C 5000	GRIDNETF	\mathbf{C}	7564	3	3	-13	0.009	2	-10	0.008	3	-13	0.009	3	-13	0.008	
GRIDNETH C 7564 61 61 -14 0.010 60 -14 0.015 60 -13 0.016 HADAMARD C 401 20 20 -14 0.004 20 -14 0.003 20 -14 0.006 20 -14 0.006 HAGER1 C 5001 3 3 -17 0.006 2 -14 0.006 3 -17 0.004 HAGER1 C 5001 5 5 -16 0.005 3 -17 0.006 3 -17 0.005 HAGER4 C 5001 3 3 -17 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 3 -22 0.001 3 -22 0.001 3 -21 0.001 3 </td <td>GRIDNETG</td> <td>\mathbf{C}</td> <td>7564</td> <td>61</td> <td>61</td> <td>-13</td> <td>0.016</td> <td>60</td> <td>-11</td> <td>0.010</td> <td>60</td> <td>-13</td> <td>0.015</td> <td>60</td> <td>-13</td> <td>0.014</td>	GRIDNETG	\mathbf{C}	7564	61	61	-13	0.016	60	-11	0.010	60	-13	0.015	60	-13	0.014	
GRIDNETI C 7564 61 61 -10 0.009 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 60 -13 0.016 20 -14 0.006 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.002 1 -20 0.003 1 -20 0.006 3 -17 0.005 3 -17 0.005 3 -17 0.005 3 -17 0.005 1 1 0.007 13 3 0.006 3 -17 0.005 1 -10 0.007 HAAGERA C 5000 1 1 -17 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001	GRIDNETH	\mathbf{C}	7564	61	61	-14	0.016	60	-10	0.010	60	-14	0.015	60	-13	0.016	
HADAMARD C 401 20 -14 0.003 20 -14 0.006 20 -14 0.006 HAGER1 C 5001 3 3 -17 0.006 3 -17 0.006 HAGER3 C 5001 5 -16 0.005 5 -16 0.006 3 -17 0.006 HAGER4 C 5001 3 3 -17 0.005 2 -16 0.006 5 -16 0.007 5 -11 0.005 HANGING C 3600 5 -12 0.001 1 -21 0.001 1 -20 0.003 1 -20 0.001 1 -20 0.003 1 -16 0.005 1 -17 0.001 HUESTIS C 5000 1 1 -17 0.001 3 -12 0.001 3 -12 0.001 3 -12 0.001 HVDROEL	GRIDNETI	\mathbf{C}	7564	61	61	-13	0.016	60	-10	0.009	60	-13	0.016	60	-13	0.015	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HADAMARD	\mathbf{C}	401	20	20	-14	0.004	20	-11	0.003	20	-14	0.006	20	-14	0.005	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HAGER1	\mathbf{C}	5001	1	1	-20	0.002	1	-20	0.003	1	-20	0.002	1	-20	0.002	
HAGER4 C 5001 5 5 -16 0.008 3 -14 0.005 5 -16 0.007 5 -16 0.007 HAGER4 C 5001 3 -17 0.005 3 -17 0.007 5 -11 0.007 HAGER4 C 1408 1 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.005 1 -1mf 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.002 3 -10 0.010	HAGER2	\mathbf{C}	5001	3	3	-17	0.006	2	-14	0.006	3	-17	0.006	3	-17	0.004	
HAGER4 C 5001 3 3 -17 0.005 2 21 0.004 3 -17 0.005 HANGING C 3600 5 5 -12 0.007 3 3 0.006 5 -12 0.007 1 -10 0.007 HELSBY C 1408 1 1 -20 0.003 1 -20 0.005 1 -20 0.005 HUESTIS C 5000 1 1 -16 0.004 3 -12 0.001 1 -20 0.005 1 -20 0.005 HVYCRASH C 4004 3 3 -22 0.001 3 -12 0.004 3 -12 0.001 3 -13 0.003 HYDROELM C 5000 5000 -0 - - 3 -10 0.011 3 -10 0.013 -22 0.001 3 -10 0.010 3 -10 0.010 3 -10 0.010 3 -10 0.010 <t< td=""><td>HAGER3</td><td>\mathbf{C}</td><td>5001</td><td>5</td><td>5</td><td>-16</td><td>0.008</td><td>3</td><td>-14</td><td>0.005</td><td>5</td><td>-16</td><td>0.007</td><td>5</td><td>-16</td><td>0.007</td></t<>	HAGER3	\mathbf{C}	5001	5	5	-16	0.008	3	-14	0.005	5	-16	0.007	5	-16	0.007	
HANGING C 3600 5 -12 0.007 3 3 0.006 5 -12 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -21 0.001 1 -20 0.005 1 -20 0.004 1 -11 -100 0.001 HUESSMO C 5000 1 1 -inf 0.004 3 -12 0.004 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -22 0.001 3 -20 0.010 3 -10 0.010 3 -10 0.010 3 -10 0.010 3 -10 0.010 3 -10 0.010 3 -10 0.010 3 -10 0.010 3 <td>HAGER4</td> <td>\mathbf{C}</td> <td>5001</td> <td>3</td> <td>3</td> <td>-17</td> <td>0.005</td> <td>2</td> <td>-15</td> <td>0.004</td> <td>3</td> <td>-17</td> <td>0.005</td> <td>3</td> <td>-17</td> <td>0.005</td>	HAGER4	\mathbf{C}	5001	3	3	-17	0.005	2	-15	0.004	3	-17	0.005	3	-17	0.005	
HELSBY C 1408 1 1 -21 0.001 1 -21 0.002 HUES-MOD C 5000 1 1 -20 0.003 1 -20 0.003 1 -20 0.004 HUES-MOD C 5000 1 1 -inf 0.004 1 -inf 0.005 1 -20 0.004 HVYCRASH C 4004 3 3 -22 0.002 2 -20 0.001 3 -12 0.004 3 -12 0.004 3 -22 0.001 HYDROELL C 505 3 3 -22 0.001 1 -17 0.001 1 -17 0.001 3 -10 0.001 3 -22 0.001 JANSON3 C 20000 3 3 -11 0.017 2 -12 0.018 3 -11 0.018 3 -11 0.010 3 29	HANGING	\mathbf{C}	3600	5	5	-12	0.007	3	3	0.006	5	-12	0.007	5	-11	0.007	
HUES-MODC 5000 11 -20 0.003 1 -20 0.005 1 -20 0.005 1 -100 0.005 HUYCRASHC 4004 3 -12 0.004 3 -11 -100 0.005 1 -100 0.005 1 -100 0.005 1 -100 0.005 HYDROELLC 1009 33 -22 0.002 2 -20 0.002 3 -22 0.001 3 -22 0.001 HYDROELMC 505 33 -22 0.002 2 -20 0.001 3 -12 0.001 3 -12 0.001 INDEFU 5000 5000 -500 -5 3 -10 0.010 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 1 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2	HELSBY	\mathbf{C}	1408	1	1	-21	0.001	1	-21	0.001	1	-21	0.001	1	-21	0.002	
HUESTIS C 5000 1 1 -inf 0.005 1 -inf 0.005 HVYCRASH C 4004 3 3 -12 0.004 3 -12 0.004 3 -12 0.001 3 -22 0.001 3 -22 0.001 HYDROELL C 1009 3 -22 0.001 3 -22 0.001 3 -22 0.001 INDEF U 5000 5000 - - 3 -10 0.010 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 1.01 0.017 3 12 0.017 3 -12 0.017 3 12 0.017 5 -12 0.017 3 12	HUES-MOD	\mathbf{C}	5000	1	1	-20	0.003	1	-20	0.003	1	-20	0.005	1	-20	0.004	
HYYCRASH C 4004 3 -12 0.004 3 -12 0.004 3 -13 0.003 HYDROELL C 1009 3 3 -22 0.002 2 -20 0.001 3 -22 0.001 INDEF U 5000 5000 5000 - - 3 -10 0.010 3 -10 0.001 3 -22 0.001 INTEGREQ C 502 1 1 -17 0.001 1 -17 0.001 1 -17 0.001 3 -10 0.009 3 -10 0.010 JANNSON3 C 2000 3 3 -11 0.017 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 5 -12 0.017 3 29 0.013 5 -12	HUESTIS	\mathbf{C}	5000	1	1	-inf	0.004	1	-inf	0.005	1	-inf	0.005	1	-inf	0.005	
HYDROELL C 1009 3 -22 0.002 2 -20 0.002 3 -22 0.001 3 -22 0.002 HYDROELM C 505 3 3 -22 0.002 2 -20 0.001 3 -22 0.001 3 -22 0.001 INDEF U 5000 5000 5000 - 3 -10 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 1 -17 0.001 3 -21 0.017 3 29 0.013 5 -12 0.016 5 -12 0.016 3 <t< td=""><td>HVYCRASH</td><td>\mathbf{C}</td><td>4004</td><td>3</td><td>3</td><td>-12</td><td>0.004</td><td>3</td><td>-12</td><td>0.004</td><td>3</td><td>-12</td><td>0.004</td><td>3</td><td>-13</td><td>0.003</td></t<>	HVYCRASH	\mathbf{C}	4004	3	3	-12	0.004	3	-12	0.004	3	-12	0.004	3	-13	0.003	
HYDROELM C 505 3 3 -22 0.001 3 -22 0.001 INDEF U 5000 5000 5000 - - - 3 -10 0.010 3 -10 0.001 INTEGREQ C 502 1 1 -17 0.001 1 -17 0.001 3 -10 0.010 JANNSON3 C 20000 3 3 -11 0.017 2 -12 0.018 3 -11 0.018 JANNSON4 C 10000 2 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 3 39 123 0.127 5 -12 0.017 3 29	HYDROELL	\mathbf{C}	1009	3	3	-22	0.002	2	-20	0.002	3	-22	0.001	3	-22	0.002	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HYDROELM	\mathbf{C}	505	3	3	-22	0.002	2	-20	0.001	3	-22	0.001	3	-22	0.001	
INTEGREQ C 502 1 1 -17 0.001 1 -17 0.001 1 -17 0.001 JANNSON3 C 20000 3 3 -11 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -12 0.017 5 -12 0.017 3 29 0.013 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.016 5 -12 0.016 5 -12 0.016 5 -12 0.016 5 -12 0.016 5 -12 0.016 5 -12 0.016 5	INDEF	U	5000	5000	5000	-	-	3	-10	0.010	3	-10	0.009	3	-10	0.010	
JANNSON3 C 20000 3 3 -11 0.017 2 -12 0.018 3 -11 0.018 3 -11 0.018 JANNSON4 C 10000 2 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 3 29 0.013 5 -12 0.017 5 -12 0.017 5 -12 0.017 3 28 0.013 5 -12 0.017 5 -12 0.017 3 29 0.013 5 -12 0.017 3 29 0.013 5 -12 0.017 5 -12 0.017 4 4 0.004 4 -14	INTEGREQ	\mathbf{C}	502	1	1	-17	0.001	1	-17	0.001	1	-17	0.001	1	-17	0.001	
JANNSON4 C 10000 2 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 2 -16 0.007 3 29 0.013 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.016 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.016 5 -12 0.017 5 12 0.017 <td>JANNSON3</td> <td>\mathbf{C}</td> <td>20000</td> <td>3</td> <td>3</td> <td>-11</td> <td>0.017</td> <td>2</td> <td>-12</td> <td>0.018</td> <td>3</td> <td>-11</td> <td>0.018</td> <td>3</td> <td>-11</td> <td>0.018</td>	JANNSON3	\mathbf{C}	20000	3	3	-11	0.017	2	-12	0.018	3	-11	0.018	3	-11	0.018	
JIMACK U 3549 81 81 -9 0.636 39 128 0.123 39 123 0.127 81 -9 0.589 JNLBRNG1 U 10000 5 5 -12 0.017 3 29 0.013 5 -12 0.017 5 -12 0.017 JNLBRNG2 U 10000 5 5 -12 0.017 3 28 0.012 5 -12 0.017 5 -12 0.016 JNLBRNGB U 10000 5 5 -12 0.017 3 29 0.013 5 -12 0.016 5 -12 0.016 5 -12 0.016 5 -12 0.016 4 -13 0.011 7 -14 0.014 KISSING2 C 100 25 -13 0.002 25 -13 0.003 25 -13 0.003 25 -13 0.001 2 -14 <td< td=""><td>JANNSON4</td><td>\mathbf{C}</td><td>10000</td><td>2</td><td>2</td><td>-16</td><td>0.007</td><td>2</td><td>-16</td><td>0.007</td><td>2</td><td>-16</td><td>0.007</td><td>2</td><td>-16</td><td>0.007</td></td<>	JANNSON4	\mathbf{C}	10000	2	2	-16	0.007	2	-16	0.007	2	-16	0.007	2	-16	0.007	
JNLBRNG1 U 10000 5 5 -12 0.017 3 29 0.013 5 -12 0.017 5 -12 0.017 JNLBRNG2 U 10000 5 5 -12 0.017 3 28 0.013 5 -12 0.017 5 -12 0.016 JNLBRNGB U 10000 5 5 -12 0.017 3 28 0.012 5 -12 0.016 5 -12 0.017 5 -12 0.016 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.016 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 -12 0.017 5 5 -12 0.017 5 10 0.012 5 -12 0.016 \$ \$ 13 0.014 \$	JIMACK	U	3549	81	81	-9	0.636	39	128	0.123	39	123	0.127	81	-9	0.589	
JNLBRNG2 U 10000 5 5 -12 0.018 3 29 0.013 5 -12 0.017 5 -12 0.017 JNLBRNGA U 10000 5 5 -12 0.017 3 28 0.012 5 -12 0.017 5 -12 0.017 JNLBRNGB U 10000 5 5 -12 0.017 3 29 0.013 5 -12 0.016 5 -12 0.016 JUNKTURN C 10010 7 7 -14 0.016 4 -13 0.011 7 -14 0.015 7 -14 0.016 KISSING2 C 100 25 25 -13 0.003 25 -13 0.002 25 -13 0.002 25 -13 0.002 25 -13 0.002 25 -13 0.001 25 -13 0.003 25 -13 0.002 1 -16 0.007 11 -8 0.010 1 1 -8 0.010<	JNLBRNG1	U	10000	5	5	-12	0.017	3	29	0.013	5	-12	0.017	5	-12	0.017	
JNLBRNGA U 10000 5 5 -12 0.017 3 28 0.012 5 -12 0.017 5 -12 0.017 JNLBRNGB U 10000 5 5 -12 0.017 3 29 0.013 5 -12 0.016 5 -12 0.016 JUNKTURN C 10010 7 7 -14 0.006 42 -11 0.001 7 -14 0.007 42 -14 0.006 KISSING C 127 42 42 -14 0.006 42 -11 0.004 42 -14 0.007 42 -14 0.001 KISSING2 C 100 25 25 -13 0.001 2 -10 0.000 3 -15 0.001 3 -10 0.001 LCH C 3000 11 11 -8 0.012 1 -11 0.009 2 -11<	JNLBRNG2	U	10000	5	5	-12	0.018	3	29	0.013	5	-12	0.017	5	-12	0.016	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JNLBRNGA	U	10000	5	5	-12	0.017	3	28	0.012	5	-12	0.017	5	-12	0.017	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JNLBRNGB	U	10000	5	5	-12	0.017	3	29	0.013	5	-12	0.016	5	-12	0.016	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JUNKTURN	\mathbf{C}	10010	7	7	-14	0.016	4	-13	0.011	7	-14	0.015	7	-14	0.014	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KISSING	\mathbf{C}	127	42	42	-14	0.006	42	-11	0.004	42	-14	0.007	42	-14	0.006	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	KISSING2	\mathbf{C}	100	25	25	-13	0.003	25	-11	0.001	25	-13	0.003	25	-13	0.002	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	KTMODEL	\mathbf{C}	726	3	3	-15	0.001	2	-10	0.000	3	-15	0.001	3	-10	0.001	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LCH	\mathbf{C}	3000	11	11	-8	0.012	9	154	0.007	11	-8	0.012	11	-8	0.010	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LIARWHD	U	5000	5000	5000	-	-	2	-11	0.008	2	-11	0.009	2	-11	0.009	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LINCONT	\mathbf{C}	1257	3	3	-13	0.002	2	-15	0.002	3	-13	0.001	3	-13	0.003	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LINVERSE	U	1999	9	9	-12	0.007	5	60	0.004	9	-12	0.007	9	-12	0.007	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LISWET1	\mathbf{C}	2002	1	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LISWET10	\mathbf{C}	2002	1	1	-inf	0.002	1	-inf	0.002	1	-inf	0.003	1	-inf	0.002	
LISWET12 C 2002 1 -inf 0.003 1 -inf 0.002 1 -inf 0.003 1 -inf 0.002 LISWET2 C 2002 1 1 -inf 0.002 1 -inf 0.001 1 -inf 0.002 1<	LISWET11	\mathbf{C}	2002	1	1	-inf	0.001	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	
LISWET2 C 2002 1 -inf 0.002 1 -inf 0.001 LISWET4 C 2002 1 1 -inf 0.001 1 -inf 0.002 1 -inf 0.001	LISWET12	\mathbf{C}	2002	1	1	-inf	0.003	1	-inf	0.002	1	-inf	0.003	1	-inf	0.002	
	LISWET2	\mathbf{C}	2002	1	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	
LISWET4 C 2002 1 1 -inf 0.002 1 -inf 0.001 1 -inf 0.002 1 -inf 0.001	LISWET3	Ĉ	2002	1	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	1	-inf	0.002	
	LISWET4	\mathbf{C}	2002	1	1	-inf	0.002	1	-inf	0.001	1	-inf	0.002	1	-inf	0.001	

Table A.1: Reproducing Hessians for quadratic examples: Complete results (continued)

				Alg	orithm	2.1	Algorithm 2.2			Alg	orithm	2.2/3	Algorithm 2.3			
name	ty	n	deg	sys	err	time	sys	err	time	sys	err	time	sys	err	time	
LISWET5	C	2002	1	1	-1nf	0.002	1	-1nf	0.002		-1nf	0.002	1	-1nf	0.002	
LISWET6	C	2002	1	1	-inf	0.001	1	-inf	0.001		-inf	0.002		-inf	0.002	
LISWETS	č	2002	1	1	-IIII inf	0.002	1	-1111 inf	0.002		-IIII inf	0.003	1	-IIII inf	0.002	
LISWET9	C	2002	1	1	-inf	0.001	1	-inf	0.002	1	-inf	0.002	1	-inf	0.001	
LMINSURF	Ŭ	5625	9	9	-13	0.019	5	43	0.011	9	-13	0.020	9	-13	0.018	
LUBRIF	č	3751	6	6	-9	0.007	3	-9	0.004	6	-9	0.005	6	-11	0.005	
LUBRIFC	C	3751	6	6	-6	0.005	3	-7	0.004	6	-6	0.006	6	-10	0.006	
LUKVLE1	\mathbf{C}	10000	3	3	-11	0.012	2	-9	0.010	3	-11	0.011	3	-11	0.011	
LUKVLE10	\mathbf{C}	10000	2	2	-13	0.010	2	-12	0.009	2	-13	0.010	2	-13	0.008	
LUKVLE11	\mathbf{C}	9998	4	4	-11	0.012	3	42	0.010	4	-11	0.012	4	-11	0.012	
LUKVLE12	\mathbf{C}	9997	2502	2502	-	-	3	-10	0.012	4	-10	0.014	4	-10	0.013	
LUKVLE13	С	9998	3	3	-12	0.011	2	-12	0.010	3	-12	0.011	3	-12	0.010	
LUKVLE14	С	9998	2	2	-8	0.009	2	-10	0.010	2	-8	0.009	2	-8	0.009	
LUKVLE15	С	9997	3	3	-8	0.012	2	-7	0.010	3	-8	0.013	3	-10	0.011	
LUKVLE16	C	9997	3	3	-12	0.010	2	-12	0.009	3	-12	0.010	3	-12	0.011	
LUKVLE17	C	9997	3	3	-12	0.010	2	-12	0.009	3	-12	0.009	3	-12	0.009	
LUKVLE18	C	10000	3	3	-12	0.010	2	-12	0.010	3	-12	0.009	3	-12	0.010	
LUKVLE3	C	10000	4	4	-10	0.012	2	-9	0.009	4	-10	0.011	4	-11	0.012	
LUKVLE4	C	10000	3	3	-11	0.014	2	1	0.012	3	-11	0.014	3	-10	0.013	
LUKVLE5	č	10002	5	5	-10	0.018	3	-9	0.013	5	-10	0.017	5	-11	0.017	
LUKVLE6	č	9999	13	13	-9	0.057	7	-7	0.026	13	-9	0.055	13	-9	0.055	
LUKVLE7	\mathbf{C}	10000	3	3	-12	0.007	2	-10	0.009	3	-12	0.008	3	-12	0.008	
LUKVLE8	\mathbf{C}	10000	5	5	-10	0.017	5	-9	0.013	5	-10	0.017	5	-9	0.015	
LUKVLE9	\mathbf{C}	10000	3	3	-12	0.008	2	-10	0.008	3	-12	0.009	3	-11	0.009	
LUKVLI1	\mathbf{C}	10000	3	3	-11	0.012	2	-9	0.011	3	-11	0.012	3	-11	0.011	
LUKVLI10	\mathbf{C}	10000	2	2	-13	0.010	2	-12	0.009	2	-13	0.010	2	-13	0.010	
LUKVLI11	\mathbf{C}	9998	4	4	-11	0.012	3	42	0.010	4	-11	0.012	4	-11	0.012	
LUKVLI12	С	9997	2502	2502	-	-	3	-10	0.012	4	-10	0.014	4	-10	0.015	
LUKVLI13	С	9998	3	3	-12	0.010	2	-12	0.010	3	-12	0.011	3	-12	0.010	
LUKVLI14	C	9998	2	2	-8	0.010	2	-10	0.008	2	-8	0.008	2	-8	0.009	
LUKVLI15	C	9997	3	3	-8	0.012	2	-7	0.013	3	-8	0.012	3	-10	0.011	
LUKVLI15	C	9997	3	3	-12	0.010	2	-12	0.009	3	-12	0.009	3	-12	0.009	
LUKVLI17	C	9997	3	3	-12	0.009	2	-12	0.009	3	-12	0.011	3	-12	0.009	
LUKVLIS	C	10000	3	3	-12	0.009	2	-12	0.009	3	-12	0.010	3	-12	0.009	
LUKVLI3	C	10000	4	4 4	-10	0.012	2	-9	0.010	4	-10	0.013	4	-10	0.013	
LUKVLI4	č	10000	3	3	-4	0.012	2	1	0.011	3	-4	0.013	3	-4	0.012	
LUKVLI5	č	10002	5	5	-10	0.017	3	-9	0.011	5	-10	0.018	5	-11	0.016	
LUKVLI6	\mathbf{C}	9999	13	13	-9	0.056	7	-7	0.027	13	-9	0.056	13	-9	0.055	
LUKVLI7	\mathbf{C}	10000	3	3	-12	0.007	2	-10	0.007	3	-12	0.007	3	-12	0.006	
LUKVLI8	\mathbf{C}	10000	5	5	-10	0.018	5	-9	0.014	5	-10	0.017	5	-9	0.016	
LUKVLI9	С	10000	3	3	-12	0.009	2	-10	0.008	3	-12	0.010	3	-11	0.009	
MADSSCHJ	C	201	1	1	-16	0.001	1	-16	0.000	1	-16	0.001	1	-16	0.001	
MANNE	C	11215	401	401	-10	0.004	1	-10	0.003		-10	0.003	1	-10	0.003	
MCCOBMCK	U	5000	3	3	-12	0.007	2	-12	0.005	3	-12	0.005	3	-12	0.005	
METHANOL	č	12005	2405	2405	-12	-	6	-12	0.008	7	-11	0.009	7	-12	0.008	
MINC44	č	1113	127	127	-	-	10	-8	0.003	37	-12	0.004	37	-12	0.003	
MINPERM	C	1113	127	127	-	-	10	-8	0.002	37	-12	0.003	37	-12	0.004	
MINSURFO	U	5306	7	7	-13	0.013	4	24	0.009	7	-13	0.014	7	-13	0.012	
MODBEALE	U	20000	3	3	-11	0.022	2	-9	0.018	3	-11	0.022	3	-11	0.021	
MOREBV	U	5000	5	5	-12	0.009	3	-10	0.006	5	-12	0.009	5	-12	0.009	
MOSARQP1	\mathbf{C}	2500	10	10	-15	0.002	10	-14	0.002	10	-15	0.004	10	-14	0.002	
MOSARQP2	С	2500	10	10	-15	0.002	10	-14	0.002	10	-15	0.002	10	-14	0.002	
MSQRTA	С	1024	64	64	-12	0.139	63	176	0.044	63	171	0.066	64	-12	0.136	
MSQRTB	C	1024	64	64	-12	0.139	63	176	0.044	63	171	0.047	64	-12	0.134	
NCB20	U	5010	40	40	-11	0.204	20	-7	0.061	40	-11	0.203	40	-11	0.201	
NCVYROP1	U	10000	39	39	-8	0.214	20	-1 19	0.060	39	-8	0.201	39	-8	0.208	
NCVXBQP1 NCVXBOP2	U	10000	9	9	-11	0.029	7	48	0.018	9	-11	0.028	9	-11	0.020	
NCVXBOP3	U	10000	9	9	-11	0.027	7	40	0.017	9	-11	0.027	9	-11	0.020	
NCVXOP1	č	10000	9	9	-11	0.027	7	48	0.017	9	-11	0.027	9	-11	0.025	
NCVXQP2	č	10000	9	9	-11	0.026	7	48	0.018	9	-11	0.028	9	-11	0.026	
NCVXQP3	\mathbf{C}	10000	9	9	-11	0.029	7	49	0.016	9	-11	0.027	9	-11	0.026	
NCVXQP4	\mathbf{C}	10000	9	9	-11	0.029	7	48	0.017	9	-11	0.028	9	-11	0.026	
NCVXQP5	\mathbf{C}	10000	9	9	-11	0.030	7	48	0.018	9	-11	0.027	9	-11	0.026	
NCVXQP6	\mathbf{C}	10000	9	9	-11	0.027	7	49	0.016	9	-11	0.028	9	-11	0.027	
NCVXQP7	\mathbf{C}	10000	9	9	-11	0.027	7	48	0.018	9	-11	0.027	9	-11	0.026	
NCVXQP8	С	10000	9	9	-11	0.028	7	48	0.017	9	-11	0.028	9	-11	0.026	
NCVXQP9	С	10000	9	9	-11	0.027	7	49	0.019	9	-11	0.028	9	-11	0.026	
NET4 NUMBURE	C	66816	13	13	-10	0.105	4	-10	0.075		-10	0.105	13	-12	0.096	
NORNDTOR	U	0020 F 470	9	9	-13	0.019	5	42	0.011	9	-13	0.019	9	-13	0.018	
NONCVYU2	U	0470 5000	5 7	5 7	-12	0.010	3	18	0.008		-12	0.009	5 7	-12	0.009	
NONCVAUZ	U II	5000	(0	(0	-11	0.014	0 7	33 40	0.010		-11	0.013		-12 -19	0.012	
NONDIA	U U	5000	4999	4999	-14		2	-19	0.008	2	-12	0.008	2	-12	0.008	
NONDQUAR	Ŭ	5000	5000	5000	_	_	3	-9	0.010	4	-11	0.010	4	-11	0.011	
NONMSORT	Ú	4900	70	70	-11	0.840	70	-8	0.255	70	-11	0.939	70	-11	0.806	
NONSCOMP	U	5000	3	3	-12	0.007	2	-10	0.005	3	-12	0.005	3	-11	0.005	
NUFFIELD	С	940	25	25	-5	0.013	13	53	0.006	25	-5	0.014	25	-6	0.013	

Table A.1: Reproducing Hessians for quadratic examples: Complete results (continued)

				Alg	orithm	2.1	Algorithm 2.2			Alg	orithm	2.2/3	Algorithm 2.3			
name	ty	n	deg	sys	err	time	sys	err	time	sys	err	time	sys	err	time	
OBSTCLAE	U	10000	5	5	-13	0.018	3	27	0.013	5	-13	0.018	5	-12	0.016	
OBSTCLAL	U	10000	5	5	-13	0.024	3	27	0.013	5	-13	0.016	5	-12	0.018	
OBSTCLBL	U	10000	5	5	-13	0.017	3	27	0.013	5	-13	0.017	5	-12	0.016	
OBSTCLBM	U	10000	5	5	-13	0.018	3	27	0.013	5	-13	0.018	5	-12	0.016	
OBSTCLBU	U	10000	5	5	-13	0.016	3	27	0.013	5	-13	0.017	5	-12	0.017	
ODC	U	5184	7	7	-11	0.012	4	24	0.008	7	-11	0.012	7	-11	0.013	
OPTCDEG2	\mathbf{C}	4502	1	1	-18	0.002	1	-18	0.002	1	-18	0.002	1	-18	0.002	
OPTCDEG3	\mathbf{C}	4502	1	1	-19	0.002	1	-19	0.002	1	-19	0.003	1	-19	0.002	
OPTCTRL3	\mathbf{C}	4502	1	1	-16	0.005	1	-16	0.005	1	-16	0.005	1	-16	0.003	
OPTCTRL6	\mathbf{C}	4502	1	1	-16	0.003	1	-16	0.004	1	-16	0.003	1	-16	0.005	
OPTMASS	\mathbf{C}	3010	1	1	-16	0.001	1	-16	0.002	1	-16	0.002	1	-16	0.001	
ORBIT2	\mathbf{C}	2698	2698	2698	-	-	16	87	0.018	25	-15	0.037	25	-15	0.038	
ORTHRDM2	\mathbf{C}	8003	8003	8003	-	-	5	-10	0.020	5	-11	0.021	5	-11	0.020	
ORTHRDS2	\mathbf{C}	5003	5003	5003	-	-	5	-11	0.011	5	-11	0.012	5	-11	0.014	
ORTHREGA	\mathbf{C}	8197	8193	8193	-	-	5	-11	0.020	5	-12	0.021	5	-11	0.019	
ORTHREGC	\mathbf{C}	5005	5001	5001	-	-	5	-10	0.013	5	-11	0.013	5	-11	0.012	
ORTHREGD	\mathbf{C}	5003	5003	5003	-	-	5	-11	0.012	5	-11	0.012	5	-11	0.012	
ORTHREGE	\mathbf{C}	7506	2504	2504	-	-	5	3	0.010	5	2	0.011	5	1	0.009	
ORTHREGF	\mathbf{C}	4805	3203	3203	-	-	5	-12	0.010	5	-13	0.010	5	-13	0.010	
ORTHRGDM	\mathbf{C}	10003	10003	10003	-	-	5	-10	0.024	5	-12	0.031	5	-12	0.024	
ORTHRGDS	\mathbf{C}	5003	5003	5003	-	-	5	-11	0.012	5	-11	0.012	5	-11	0.012	
PENTDI	U	5000	5	5	-12	0.009	3	-9	0.007	5	-12	0.009	5	-12	0.007	
PINENE	\mathbf{C}	8805	602	602	-	-	4	-11	0.004	4	-12	0.003	4	-12	0.004	
POROUS1	\mathbf{C}	5184	1	1	-13	0.004	1	-13	0.004	1	-13	0.005	1	-13	0.004	
POROUS2	\mathbf{C}	5184	1	1	-12	0.003	1	-12	0.005	1	-12	0.005	1	-12	0.004	
PORTSNOP	\mathbf{C}	100000	1	1	-inf	0.100	1	-inf	0.067	1	-inf	0.068	1	-inf	0.087	
PORTSOP	C	100000	1	1	-inf	0.065	1	-inf	0.079	1	-inf	0.071	1	-inf	0.067	
POWELL20	C	5000	1	1	-inf	0.003	1	-inf	0.005	1	-inf	0.005	1	-inf	0.003	
POWELLSG	Ũ	5000	3	3	-13	0.006	3	-10	0.005	3	-13	0.007	3	-12	0.005	
PRIMAL2	Č	649	1	1	-inf	0.001	1	-inf	0.001	1	-inf	0.001	1	-inf	0.001	
PRIMAL3	č	745	1	1	-inf	0.001	1	-inf	0.001	1	-inf	0.001	1	-inf	0.001	
PRIMAL4	č	1489	1	1	-inf	0.001	1	-inf	0.002	1	-inf	0.001	1	-inf	0.001	
PRIMALC8	č	520	1	1	-inf	0.001	1	-inf	0.001	1	-inf	0.001	1	-inf	0.001	
OPBAND	č	50000	3	3	-12	0.001	2	-8	0.050	3	-12	0.056	3	-11	0.055	
OPNBAND	Ĉ	50000	3	3	12	0.055	2	-0	0.040	3	12	0.063	3	11	0.055	
OB3D	C	610	40	40	-14	0.000	21	-12	0.043	40	-14	0.003	40	-13	0.033	
OB3DBD	Ĉ	457	23	-10	14	0.010	21	12	0.004	23	14	0.010	23	14	0.014	
ORTOUAD	U	5000	3000	3000	-14	0.000	21	-12	0.004	20	12	0.000	20	12	0.010	
QUARTC	U	5000	1	1	16	0.005	1	-0	0.003	1	-12	0.007	1	-12	0.003	
OUDLIN	U	5000	3	3	-10	0.003	2	-10	0.004	3	-10	0.003	3	-10	0.004	
BAVBENDL	U	2050	6	6	13	0.004	4	-10	0.004	6	13	0.004	6	13	0.004	
DAVDENDS	U	2050	14	14	-13	0.004	4	79	0.004	14	-13	0.004	14	-13	0.004	
READINCI	C	4002	14	14	12	0.013	2	10	0.007	14	10	0.012	14	12	0.017	
READING1 READING3	C	4002	2	2	-12	0.004	2	-12	0.005		-12	0.004	2	-12 12	0.004	
READINGS	C	5001	2	2	-12	0.005	2	-12	0.005	2	-12	0.004	2	10	0.005	
READING4	C	5001	2	2	-9	0.000	2	-1	0.000	2	-9	0.000	2	-10	0.000	
READING5	C	1002	3	3	-9	0.000	2	-1	0.003	2	-9	0.000	0	-10	0.000	
DEADING	C	2002	2	2	-13	0.002	2	-13	0.001		-13	0.001	2	-13	0.002	
READINGO	C	2002	2	2	-11	0.002	2	-11	0.003		-11	0.003	2	-11	0.002	
READING9	c	10002	2000	2000	-10	0.009	2	-10	0.009		-10	0.009	2	-17	0.009	
ROBUTARM	C	4412	3209	3209	-	-	3	-13	0.007	3	-14	0.007	3	-13	0.008	
ROCKET	C	2407	2006	2006	-	-	5	-0	0.005		-12	0.006	(-11	0.005	
ROTDISC	C	905	3	3	-14	0.001	2	-14	0.001	3	-14	0.001	3	-15	0.001	
SARO	C	4754	11	11	-1nf	0.015	11	-1nf	0.010		-1nf	0.022	11	-1nf	0.015	
SAROMM	C	5120	11	11	-1nf	0.016	11	-1nf	0.010		-1nf	0.015	11	-1nf	0.015	
SAWPATH	C	583	1	1	-16	0.002		-16	0.001	1	-16	0.001	1	-16	0.001	
SERVEND	U	5000	13	13	-5	0.027		8	0.014		-5	0.028	13	-4	0.028	
SCHMVETT	0	5000	5	5	-12	0.009	3	-9	0.006	5	-12	0.008	5	-12	0.010	
SCOSINE	U	5000	3	3	-8	0.006	2		0.004	3	-8	0.007	3	-8	0.005	
SCURLY10	U	10000	21	21	-11	0.121	11	-1nf	0.047		-11	0.121	21	-11	0.122	
SCURLY20	U	10000	41	41	-10	0.469	21	-ınf	0.133		-10	0.470	41	-10	0.468	
SCURLY30	U	10000	61	61	-10	1.200	31	1	0.277	50	2	0.277	61	-10	1.192	
SEMICN2U	C	5002	1	1	-19	0.004	1	-19	0.004		-19	0.004	1	-19	0.004	
SEMICON1	C	5002	1	1	-17	0.003	1	-17	0.003	1	-17	0.005	1	-17	0.004	
SEMICON2	С	5002	1	1	-19	0.004	1	-19	0.005	1	-19	0.005	1	-19	0.003	
SINEALI	U	1000	3	3	-12	0.001	2	-11	0.001	3	-12	0.003	3	-12	0.003	
SINQUAD	U	5000	5000	5000	-	-	2	-11	0.009	2	-11	0.008	2	-11	0.009	
SINROSNB	C	1000	3	3	-12	0.002		-10	0.001		-12	0.002	3	-11	0.002	
SMMPSF	C	720	60	60	-13	0.024	40	-4	0.007	40	-3	0.007	60	-13	0.021	
SOSQP1	C	5000	2	2	-14	0.005	2	-inf	0.005	2	-14	0.006	2	-14	0.005	
SOSQP2	С	5000	2	2	-14	0.005	2	-inf	0.004	2	-14	0.005	2	-14	0.005	
SPARSINE	U	5000	56	56	-8	0.161	26	inf	0.052	48	62	0.125	48	-8	0.132	
SPARSQUR	U	10000	56	56	-8	0.353	26	300	0.108	48	93	0.269	50	-8	0.277	
SPMSQRT	\mathbf{C}	4999	6	6	-12	0.010	4	25	0.008	6	-12	0.010	6	-12	0.009	
SPMSRTLS	U	4999	8	8	-12	0.014	5	10	0.009	8	-12	0.019	8	-12	0.013	
SREADIN3	\mathbf{C}	4002	2	2	-12	0.004	2	-12	0.005	2	-12	0.005	2	-12	0.004	
SROSENBR	U	5000	2	2	-11	0.005	2	-11	0.004	2	-11	0.004	2	-11	0.005	
SSC	U	5184	5	5	-11	0.009	3	16	0.006	5	-11	0.010	5	-11	0.009	
SSNLBEAM	\mathbf{C}	3003	1	1	-16	0.001	1	-16	0.002	1	-16	0.002	1	-16	0.002	
STCQP1	\mathbf{C}	8193	121	121	-	-	43	144	0.052	49	136	0.057	75	-10	0.177	
STCQP2	\mathbf{C}	8193	121	121	-	-	43	144	0.052	49	136	0.057	75	-10	0.168	
STEENBRC	\mathbf{C}	540	15	15	-12	0.005	15	-9	0.002	15	-12	0.005	15	-12	0.004	
STEENBRE	С	540	15	15	-12	0.004	15	-9	0.002	15	-12	0.004	15	-12	0.004	

Table A.1: Reproducing Hessians for quadratic examples: Complete results (continued)

				Algorithm 2.1			Algorithm 2.2			Alg	orithm	2.2/3	Algorithm 2.3			
name	$_{\rm ty}$	n	deg	sys	err	time	sys	err	time	sys	err	time	sys	err	time	
STEENBRG	С	540	15	15	-12	0.004	15	-9	0.003	15	-12	0.004	15	-12	0.004	
STEERING	\mathbf{C}	2006	1204	1204	-	-	2	-11	0.003	2	-11	0.003	2	-11	0.003	
STNQP1	\mathbf{C}	8193	121	121	-	-	43	144	0.052	49	136	0.059	75	-10	0.169	
STNQP2	\mathbf{C}	8193	121	121	-	-	43	144	0.052	49	136	0.057	75	-10	0.168	
SVANBERG	\mathbf{C}	5000	1	1	-15	0.007	1	-15	0.005	1	-15	0.004	1	-15	0.003	
TESTQUAD	U	5000	1	1	-16	0.003	1	-16	0.003	1	-16	0.005	1	-16	0.003	
TOINTGSS	U	5000	5	5	-12	0.009	3	-10	0.007	5	-12	0.008	5	-12	0.009	
TORSION1	U	5476	5	5	-12	0.010	3	18	0.007	5	-12	0.009	5	-12	0.010	
TORSION2	U	5476	5	5	-12	0.010	3	18	0.007	5	-12	0.010	5	-12	0.009	
TORSION3	U	5476	5	5	-12	0.009	3	18	0.007	5	-12	0.009	5	-12	0.009	
TORSION4	U	5476	5	5	-12	0.010	3	18	0.007	5	-12	0.010	5	-12	0.009	
TORSION5	U	5476	5	5	-12	0.009	3	18	0.007	5	-12	0.010	5	-12	0.010	
TORSION6	U	5476	5	5	-12	0.013	3	18	0.008	5	-12	0.009	5	-12	0.009	
TORSIONA	U	5476	5	5	-13	0.010	3	18	0.008	5	-13	0.010	5	-12	0.008	
TORSIONB	U	5476	5	5	-13	0.010	3	18	0.008	5	-13	0.010	5	-12	0.009	
TORSIONC	U	5476	5	5	-13	0.010	3	18	0.008	5	-13	0.010	5	-12	0.008	
TORSIOND	U	5476	5	5	-13	0.009	3	18	0.007	5	-13	0.010	5	-12	0.009	
TORSIONE	U	5476	5	5	-13	0.010	3	18	0.008	5	-13	0.010	5	-12	0.010	
TORSIONF	U	5476	5	5	-13	0.010	3	18	0.007	5	-13	0.009	5	-12	0.009	
TQUARTIC	U	5000	5000	5000	-	-	2	-13	0.008	2	-13	0.009	2	-13	0.008	
TRAINF	\mathbf{C}	4008	2	2	-16	0.002	2	-17	0.002	2	-16	0.002	2	-16	0.002	
TRAINH	\mathbf{C}	4008	2	2	-16	0.004	2	-16	0.003	2	-16	0.002	2	-16	0.004	
TRIDIA	U	5000	3	3	-12	0.006	2	-10	0.006	3	-12	0.006	3	-12	0.007	
TWIRIBG1	\mathbf{C}	3127	1886	1886	-	-	105	-	-	105	-	-	1885	-	-	
TWIRIMD1	\mathbf{C}	1247	660	660	-	-	63	24	0.077	63	24	0.076	652	-	-	
UBH1	\mathbf{C}	9009	1	1	-inf	0.003	1	-inf	0.003	1	-inf	0.003	1	-inf	0.003	
UBH5	\mathbf{C}	5010	1	1	-16	0.001	1	-16	0.001	1	-16	0.001	1	-16	0.001	
WALL10	U	1461	42	42	-10	0.016	12	23	0.007	42	-10	0.016	42	-10	0.016	
WALL100	U	149624	42	42	-8	1.947	12	$_{inf}$	0.811	42	-8	1.950	42	-7	1.743	
WALL20	U	5924	42	42	-9	0.068	12	61	0.027	42	-9	0.068	42	-8	0.066	
WALL50	U	37311	42	42	-8	0.456	12	144	0.176	42	-8	0.459	42	-8	0.433	
WOODSNE	\mathbf{C}	4000	1	1	-16	0.002	1	-16	0.001	1	-16	0.002	1	-16	0.002	
YAO	\mathbf{C}	2002	1	1	-inf	0.002	1	-inf	0.001	1	-inf	0.002	1	-inf	0.002	
YATP1SQ	\mathbf{C}	123200	352	352	-	-	3	-9	0.141	3	-9	0.140	3	-10	0.140	
YATP2SQ	\mathbf{C}	123200	352	352	-	-	3	-11	0.147	3	-11	0.154	3	-11	0.147	
ZAMB2	\mathbf{C}	3966	5	5	-14	0.004	3	-13	0.003	5	-14	0.004	5	-14	0.004	
ZIGZAG	\mathbf{C}	3004	1	1	-16	0.000	1	-16	0.001	1	-16	0.001	1	-16	0.001	

Table A.1: Reproducing Hessians for quadratic examples: Complete results (continued)

References

- E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. *LAPACK* Users' Guide. SIAM, Philadelphia, third edition, 1999.
- [2] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices and graph coloring problems. *Mathematical Programming*, 28:243–270, 1984.
- [3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large scale nonlinear optimization problems and the LANCELOT project. In R. Glowinski and A. Lichnewsky, editors, *Computing Methods in Applied Sciences and Engineering*, pages 42–51, Philadelphia, USA, 1990. SIAM.
- [4] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Numerical experiments with the LANCELOT package (Release A) for large-scale nonlinear optimization. *Mathematical Programming, Series A*, 73(1):73–110, 1996.
- [5] E. Corwin and A. Logar. Sorting in linear time variations on the bucket sort. Journal of Computing Sciences in Colleges, 20(1):197–202, 2004.
- [6] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983. Reprinted as Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.
- [7] R. Fletcher. An optimal positive definite update for sparse Hessian matrices. SIAM Journal on Optimization, 5(1):192–217, 1995.
- [8] R. Fletcher, A. Grothey, and S. Leyffer. Computing sparse Hessian and Jacobian approximations with optimal hereditary properties. In A.R. Conn L.T. Biegler, T.F. Coleman and F.N. Santosa, editors, *Large-Scale Optimization with Applications*, *Part II: Optimal Design and Control*, volume 93 of *IMA Volumes in Mathematics and its Applications*, pages 37–52, Heidelberg, Berlin, New York, 1997. Springer Verlag.
- [9] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Computing forwarddifference intervals for numerical optimization. SIAM Journal on Scientific and Statistical Computing, 4:310–321, 1983.
- [10] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a Constrained and Unconstrained Testing Environment, revisited. ACM Transactions on Mathematical Software, 29(4):373–394, 2003.
- [11] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Transactions on Mathematical Software, 29(4):353–372, 2003.

- [12] A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separable functions. In M. J. D. Powell, editor, *Nonlinear Optimization 1981*, pages 301–312, London, 1982. Academic Press.
- [13] A. Griewank and Ph. L. Toint. Partitioned variable metric updates for large structured optimization problems. *Numerische Mathematik*, 39:119–137, 1982.
- [14] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia, second edition, 2008.
- [15] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large-scale optimization. *Mathematical Programming, Series B*, 45(3):503–528, 1989.
- [16] J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35:773–782, 1980.
- [17] J. Nocedal and S. J. Wright. Numerical Optimization. Series in Operations Research. Springer Verlag, Heidelberg, Berlin, New York, second edition, 2006.
- [18] M. J. D. Powell and Ph. L. Toint. On the estimation of sparse Hessian matrices. SIAM Journal on Numerical Analysis, 16(6):1060–1074, 1979.
- [19] H. H. Seward. Information sorting in the application of electronic digital computers to business operations. Report R-232, Digital Computer Laboratory, Massachusetts Institute of Technology, USA, 1954.
- [20] D. C. Sorensen. An example concerning quasi-Newton estimates of a sparse Hessian. SIGNUM Newsletter, 16(2):8–10, 1981.
- [21] Ph. L. Toint. On sparse and symmetric matrix updating subject to a linear equation. Mathematics of Computation, 31(140):954–961, 1977.
- [22] Ph. L. Toint. Some numerical result using a sparse matrix updating formula in unconstrained optimization. *Mathematics of Computation*, 32(143):839–851, 1978.