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1 Introduction
We consider the bound-constrained linear least-squares problem

minimize f(z) := 1 ||Az —b||> where X == {z e R": 2" <z < z"}. (1.1)
zeX
Here, we are given a vector of m observations b, a linear model Az that aims to match b,
written in terms of an m by n matrix A, and vectors of lower and upper bounds z*, 2" € R",
some of whose components may be infinite. We are particularly concerned with problems
for which n and m are large, and A is sparse.
Throughout we use the Euclidean inner product (-,-), the corresponding norm ||-|| =
||-|l5, and the projection operator

Py[z] = max(z", min(2", 7)),

where min and max are applied componentwise. We denote the residual by r(z) := Az —b,
and the gradient and (constant) Hessian of f by g(z) := ATr(z) and H := ATA. We
partition the indices of x € A into bounded and free sets via

B'(x) :={j € Ny : [z]; = [«"];}, B'(w) :={j € Ny : [z]; = [z7);},

B(z) := B*(z) UB"(z) and F(x):={j €N, : [z"]
where N, := {1,--- ,n} and [z];

J
matrix whose columns are those of A indexed by the set 7 C N,,, and e; € R" is the j-th

coordinate vector.

j < lzl; < [2%];},

is the jth component of x. Finally we let A; be the

2 Method

To solve (1.1), we use an accelerated gradient-projection method. Given a iterate x; € X,
an improvement x_; is found as follows:
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1. Stop if z;, satisfies suitable termination criteria.
2. Compute
xy, = Py[rp — ag(wy)]

for some suitable oy, for which f(z})) < f(z).

3. Compute z}, as an approximation to

arg min f(z) subject to z; = z; for j € B"(z}) and z; = z,, for j € B"(z},)
x€R"

4. Compute
Tpir = Prley + Bi(x) — o))

for some suitable 3, for which f(z,.1) < f(z}).

Steps 3 and 4 may sometimes be omitted if good progress is made in Step 2.

The dominant computations involved are the piecewise linesearches in Steps 2 and 4,
and the linear least-squares minimization with fixed variables in Step 3. We consider each
in turn.

2.1 Piecewise linesearches

Given a base point 2° and a search direction d, consider the path
z(a) := Py(2° + ad)

for & > 0. On this path, our aim is to find a point for which f(z(«)) is “suitably” smaller
than f(z°). Clearly x(«a) is piecewise linear, and changes direction at a finite sequence of
“breakpoints” «; > «a;_;, for i = 1,...m, with oy = 0. At breakpoint «;, one or more of
the variables [z];, j € B;, encounters a bound, and each is fixed at that value for a > o;.
In particular,

z(a; + Aa) = z; + Aad; (2.2)

for all Aa € [0, Aq;], where

r; = z(q;) = Py(2° + od),

0 if jel _ By or
d;). = k=0 2.
(], { [d]; otherwise, (23)
Aa; = a1 — (2.4)

and specifically

By :={j:[z°]; =[z"]; and [d]; <0 or [z°]; =[z"]; and [d]; >0 or [d]; = 0}.
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While it might appear that the breakpoints need be sorted in advance, this is not necessary.
Let

[xU]] - [IS]] i '
) o (2.5)
af = [2"]; — 27 _— o 2.5
i, f [d]; <0 and
0 if [d]; =0

for 5 € N,, be the unordered breakpoints. Then the i-th ordered breakpoint may be found
efficiently knowing the ¢ —1-st by arranging the {oz?} in a heap, and using the Heapsort
method [10]. In practice, breakpoints that are very close together are considered as a single
point.

2.1.1 An exact piecewise minimizer

We now consider f(z) on the segment (2.2). It follows immediately that

f(z(a; + Aa)) = f(x; + Aad;) = L [|A(z; + Aad;) — bH2
=3 ||7”i+Aa3i||2 (2.6)
= Lrll? + Aalry, s;) + 1A% |5,

1
2

where

and

Notice that (2.6) implies that f(z(«)) is convex, and that it achieves its smallest value at
i'w =y — <ﬁjz:;12>

so long as this is lies in the interval [ay, a;4]. Thus an obvious method to find the global
minimum on z(«) is to step through the breakpoints «; in increasing order until either
(r;,;s;) > 0, in which case the minimizer occurs at o = a; or ;' < 4, in which case a
minimizer is at a = o} [2, §3], [3, Alg.17.3.1 with typo corrections|. The process is finite,
since there are only at most n + 1 breakpoints. As we shall now show, the whole process
can be implemented while moving from one segment to the next by evaluating and using
the product Av, where v is a vector whose non-zeros occur only in positions corresponding
to components of x that reach bounds as the segment ends; typically v is extremely sparse,
usually only having a single nonzero.

Superficially, the scheme suggested above requires that we calculate the slope and
curvature

fz, = <Ti7$i> and fz,/ = ||$Z'||27
but as we shall now see these may be recurred with modest expense rather than formed
afresh. The key is the definition (2.3) of d;. In particular

dip1 = di — Vi, (2.9)
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where

v = Y [d)je,

i€Bita
and v, is almost certainly a very sparse vector. Thus since A is sparse, it is also highly
likely that so is
Piy1 = Aviyg; (2.10)
each column of A can only be accessed a single time during the entire iteration. Hence,
using (2.8), (2.9) and (2.10),
Sit1 = Si — Pit1 (2.11)
differs from s; in only a few components and therefore may be updated efficiently rather
than recomputed. Therefore

fz‘,ﬁd = ||31;+1”2 = |Is; _pi+1H2 = ”31,“2 + <pi+1 - 23iapi+1> = fi” + <pi+1 - 251’»1’i+1>

which may be updated using a sparse inner product involving p;, .
Recurring the slope f; = (r;, s;) is only slightly more awkward. To proceed, let

r® = Az® — b, (2.12)
g = AT, (2.13)
Az, == x; —2° and (2.14)
q; = AAx;. (2.15)

It then follows from (2.7), (2.12), (2.14) and (2.15) that
r, =A@+ Ax;) —b=Ax® —b+ AAx, = Az® —b+q =1+ ¢,
and hence from (2.8) and (2.13) that
(riysi) = (" + @, 80) = (r°, s0) + (@i, s0) = b + %,

where
li == <9S7di> and 7, := (g;, 8i)- (2.16)
Thus (2.9) and (2.16) give

li+1 = <gsudi+1> = <gs7di - Ui+1> = <Qsa di> - <gsuvi+1> =1; - <gsavi+1> =1, — <7”Sypi+1>;

and so [;;; may be updated from /; using a sparse inner product involving either v;,; or
Dit1- Since (2.2) gives

Ty = ; + Aayd;,
it follows from (2.8), (2.14) and (2.15) that

Qi1 = AAz; 1 = Az — 2°) = Az, + Aoyd; — 2°)
= ¢ + Aas;.
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Combining this with (2.11), we find

Yir1 = (Qiv1, Siv1) = (@ + Daysy, 8; — Div1) = (G, 8i) + D (s;, 8) — (Qiv1, Piv1)

2.18
=7 + Aai fi = (Gis1, Piv1), ( )

where we only need to take the inner product over components j for which [p;4]; # 0.
Unfortunately, the update (2.17) for ¢;,; does not involve a sparse vector, and we need to
dig a little deeper. The secret is to define

Uity = ip1 — X8, With ug = 0. (2.19)

Then it follows from (2.17), Ao; — a1 = —a; from (2.4), and (2.11) that

f
U1 = ¢+ Doy 8; — 18 = ¢ + (A — )8 = ¢ — 5, = ¢ — o8, — ;)
= u; + a;p;,

and this is a sparse update. Thus rather than recurring ¢;, we may instead recur u; and
obtain g1, = w4 + ;1 8; from (2.19) as required. The important difference is that the
recursions for u;,, and s; only involve the likely-sparse p;. In particular, the recurrence for
Vig1 in (2.18) becomes

Yig1 = Vi + A%fz‘// - <ui+lapi+l> - 0%‘+1<5i7p¢+1>-

We summarize our findings as Algorithm 2.1; this is essentially a specific case of a more
general framework [5, Alg.4]. Notice that we also record the value f; = f(z;) as a bi-
product, and that this may be updated using (2.6) as we proceed from breakpoint to
breakpoint.

Algorithm 2.1: Finding the piecewise arc minimizer ¢ = Py(2°+a°d) of f

0. Initialization: The initial point 2° € X and search direction d are given. Com-
pute the residual r° = Az® —b, and the breakpoints ¢ from (2.5) for all j € N,,.
Let oy =0, uy =0,

By={jeN,:a; =0} and dy =d — Z[d]jej’
J€By
compute

Po = AdOa
2 2
fo=51r°I17, fo=(r®po) and fo' = Ipoll”,
and set s; = py and 7 = 0.
1. Find the next breakpoint: Determine o, the first breakpoint beyond «;.

2. Check the current interval for arc minimizer:

If f{ >0, set o = o, 2° = Px[$8 + Oécd], f(xc) = f;, and stop.



6 Working Note RAL NA-2023-1 — Nicholas I. M. Gould

If £ > 0 and @, — f/ £ < oy, set o = o — fI/ 1, o = Pala® + ad]
f(z9) = fi+ (@ — ) fi + L(a® — o;)’f!', and stop.

3. Prepare for the next interval: Set Aa; = ;1 — oy, recur

Ujp = U; + 04D,
let
By={jeN,: 04}3 = a1} and v = Z [d]e;,
JEB; 11

and compute

Pip1 = Avgy.
4. Compute the value, slope and curvature: Compute

fir1 = fi + Doy fi + 1(Aay)? £,
fiv1 = fi+ Doy f! — (r® +uy + 044185, pi41) and
i1 = fi 4 (Piv1 — 285, Div1),
update

Si+1 = Si — Pi+1>

increment ¢ by 1 and return to Step 1.

7In practice, we compute fi,; afresh when |f;,,/fi| becomes small to guard against
possible accumulated rounding errors in the recurrences. An earlier variant 1] based on
algorithms for general quadratic objectives [2, §3], but specialised for the least-squares
case, required products with both A and A’ at each breakpoint.

2.1.2 An approximate piecewise minimizer

In some cases, it may instead be advantageous to approximate the piecewise minimizer
using a safeguarded, backtracking, piecewise linesearch [8]. The idea is simply to pick
an initial stepsize «, backtracking reduction factor 5 € (0,1) and decrease tolerance
n € (0,1), and to choose a sequence of decreasing stepsizes a; := aoﬁi for increasing i > 0
until

fa;) < f(2°) +nld;, 9°), (2.20)

involving the trial point x; = Py[z® + o;d], the trial step d; = x; — 2°, and the gradient at
the base point ¢° = A" (Az® — b).

To do so, we take advantage of the structure of the trial step d; and basic properties of
the backtracking projected line search. In particular, we know that once a component, say
the jth, satisfies [z;]; < [x;]; < [27];, then [27]; < [2,]; < [27]; will continue to hold for all
¢ > 4. Thus, by contrast to the search for the exact minimizer in Section 2.1.1 that moves
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forward along the piecewise projected gradient path fixing variables, the search here frees
variables from their bounds as it proceeds backwwards towards z°.
With this in mind, we compute the index set

A*={j:[d; =0 or [2°]; = [z"]; and [d]; <0 or [2°]; = [¢"]; and [d]; > 0}  (2.21)

J

of components that are fixed at the base point on the piecewise search arc, record the
vector " for which

[ S]j lfj € AS?
[2°]; = { [2"]; ifj ¢ A° and [d]; < 0, and (2.22)
[2"]; if j ¢ A% and [d]; > 0,

and maintain the sets of active (i.e., fixed) and free components

Ai={j ¢ A : [z;]; = [z"];} and (2.23)
Fi={j¢gA: [:]; # [2°];}, (2.24)

for i > 0, as well as the intermediate components, those that change from active to free,
T = FNA_, (2.25)
for i > 1, at ;. As we have already mentioned,
Fi CFipr and Ay CA; foralli >0

as a consequence of the approximate piecewise search.
It is immediate that, permuting the variables in the obvious way,

SA,
d; = : 2.2

where
B S
s=x —x.
Hence
r, = AI’Z —b= A(Z‘S + dz) —b= TS + Adl = TS + A-AiS-Ai + 06114]:161]:I = TiA + O{in,
where

ri =1 4+ Ay s, and v = Ardg, (2.27)

and therefore
Fla) = sIrd 1P + i, rl) + 2ol | |12

Thus f(z;) may be found trivially from the three quantities

2= yrM?, fFe= Gt el and f2 2. 2.28
2 (3
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Although it is possible to compute these quantities afresh, it is usually more efficient
to recur them as the piecewise linesearch proceeds instead. To do so, note that

Ai = Ai—l \IZ and .F; = ‘F:i—l UIZ, (229)
and thus that
ri =risg —p; and 17 =1 + g (2.30)
where
p; = Agrsz, and ¢, == Az dyg,. (2.31)

Therefore, when A is sparse and if a modest number of variables move off bounds at x;, the
vectors p; and ¢; will most likely be sparse, indeed, aside from exact cancellations, their
nonzeros will occur in the same positions. It then follows from (2.28) and (2.31) that

£ = £ = (pi,riy) + tHiml
fiL = fiL—l + <qi77ﬂ?—1> - <pivrf—1> - <Q7,7pz> and (232)
fz‘Q = iQ—l + <Qiarffl> + %||qz‘||27

involving sparse inner products.

In order to check (2.20), we also need to compute
<di7 gS> = <ATd'i> TS> = <AAiSA,-7 TS> + ai<A.7-—,-d]-'i7 ,rS> = ’71A + ai7§7 (233)

where
= <AAZ_5A1_,7“S> and 7, = <Afid;i,7“s>,

using (2.26). It then follows from (2.29) and (2.31) that

7? = <AA¢71SA1'717 TS) - <AI¢SIi7TS> = 7?—1 - <pi7 TS) and

2.34
71F - <Afi_1dfi_1vrs> + <AIidIi7TS> - ’VzF—l + <Qi7rs>' ( )

Thus we may obtain (2.33) by recurring 7;' and ~; using (2.34), and the latter simply
requires a further pair of sparse inner products.

It is important to notice that the crucial likely-sparse vectors p; and ¢; in (2.31) needed
by the recurrences (2.32) and (2.34) only depend on the set of indices Z; that change
status from fixed to free during the i-th backtrack. Although formally we define this using
x;, in practice we do not need to form z;, indeed to do so would require a projection
Py[2° + a,d] for each attempted step «;. Instead, just as in Section 2.1.1, we find the
unordered breakpoints (2.5), and then arrange them in a “backward” heap starting at the
first for which o > . We then adjust the heap to find precisely the indices I, of those
between «; and «a;; using the Heapsort algorithm as required.

We summarize our discussion as Algorithm 2.2 on the next page.
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Algorithm 2.2: Find an approximate backtracking arc minimizer z€ of f

0. Initialization: The initial point 2° € X, search direction d, initial stepsize oy >

0, reduction factor § € (0,1) and decrease tolerance n € (0,1) are given.

Compute the residual 7° = Az® — b, the initial objective value f(z*) = 1|r°||?,
the base fixed set A® from (2.21), the breakpoints o from (2.5) for all j € N,,,
the end of the arc z” from (2.22) and its direction s = z” — 2°, the initial
search point xy = Py[z® + ayd], the active and free components at x,

Ao={j:ay>0aj} and Fy={j ¢ A : ap < o)},

and the corresponding residuals
e =7°+p, and 75 = qq
using the matrix-vector products

po = AuSa, and gy = Ax dz,.

Initialize

15 =316 1°, f5 = (r6,r6) and f§ = 3lirg]?,
as well as

% = (po,7°) and 1o = (g, 7).
Set 7 = 0.

1. Check for an approximate arc minimizer: Compute
fi= M+ ofi +0if? and v, =7+ ai.
If f; < f(=°) + 0y, set
a® = q;, 2° = Pylz® +a°d] and f(z°) = f;,
and stop.

2. Find the next set of indices that change status: Let a;,; = B, and
compute
L ={J aiq < af <oy}

using the Heapsort algorithm.

3. Update the components of the objective and its slope: Compute

Piv1 = AIMSIM and ¢ 41 = Azmdziﬂa
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update
fivn = fi — i1, i) + %szurlH?,
fiv1 = fi ¥ {tiv1,70) — Piv1> 1) — (Qigrs Piga)s
1 = fo 4 (@i ri) + lginll?,
A A S
Yi+1 = Vi Piv1,T ),

— )

Yirr = Vi + {Gir1,77),
A A

Tiv1 =T — Pit1 and

F F
Tit1 = Ti + it

increment ¢ by 1 and return to Step 1.

It is also possible to contemplate a variant in which the iterates advances further along
the piecewise arc if the initial point z is acceptable. To be specific, if

flzo) < f(2°) +nlzg — 2%, ¢°), (2.35)
we terminate at the arc point x; with the smallest ¢ > 0 for which
f@ia) > f(2°) + e —2°, %), (2.36)

where, as before, z; = Py[2°+;d], but now «; = o' > ap. The only essential difference

is that in this case
Fipq1n CF;, and A, C A, foralli >0,

and components in J;,; := A;;; N F; change from free to active, i.e.,
A1 = A, UT and Fipy = Fi \ Jig1 (2.37)

This leads to
A A d rF = pF
Tig1 =73 T Pip1 and 7 =7 — Giqq,

where p; and ¢; are given by (2.31), and the obvious changes to (2.32) and (2.34). We
summarize the necessary enhancements in Algorithm 2.3.

Algorithm 2.3: Find an approximate piecewise arc minimizer z€ of f

The same as Algorithm 2.2 on the previous page except that Step 1 becomes

1. Check for an approximate backtracking arc minimizer: Compute
fi= P +afi +oif? and v =7 + o
If f; < f(2°) + 0, go to Step 4 if i = 0 but otherwise, i.e., if i > 0, set
a’ = q;, 1°= Pylz®+a] and f(z°) = f;,

and stop.
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and additionally

4. Find the next set of indices that change status: Let o, = ey, and

compute
T =1 a; < CY? < a1}

using the Heapsort algorithm.

5. Update the components of the objective and its slope: Compute

Piy1 = AJZ-HSJHI and ¢ = A$+1d$+1’
update

firn = f7 4+ Piga, i) + %sz'+1”2,

firn = i = @i, i) + ®@ig1: 71 ) — (Gig1, Pigr),s
2= 2= () + gl

Yirr =% + i1, 7%,
F F S

Yi+1 = Vi — <qz‘+1»7" >;

Tiy1 =T + Py and

TiF+1 =7 — Qit1-
6. Check for an approximate extended arc minimizer: Compute
forr = Fn + o fin + o f and i = 9 + 017
If fiy1 > f(2°) 4+ 0y or oy > max; o, set
a’ = q;, 1°= Pylz®+a] and f(z°) = f;,
and stop. Otherwise, increment ¢ by 1 and return to Step 4.

Notice the extra stopping check in Step 6: this is simply to prevent the search extending
beyond the end of the piecewise arc.
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2.2 Linear least-squares minimization with fixed variables

Let Z[v] be the operator that sets the components of a given vector v to zero, i.e.,

0 21€eZ
[v]; otherwise,

200l = {

for a specified subset Z C N,, of indices of x that are to be fixed; in the context of Step
3 in the generic framework described at the start of Section 2, Z at iteration £ will be
B(x}) U BY(z};). To minimize f(x) over the set of variables that are in F := N, \ Z,
while fixing the remaining components at the values that they have at x,, we may apply
the following well-known preconditioned conjugate-gradient iterative scheme [7, 9]—here
the preconditioner M may be any symmetric, positive-definite matrix, for which the cost
of solving Mv = g is modest.

Algorithm 2.4: The preconditioned conjugate-gradient least-squares
method

Given g, set 1y = Azy — b and gy = Z[ATr], and let vy = Z[M ~'g,] and py = —vy.

For k = 0,1, ... until convergence, perform the iteration
. = Apy,
= (G V) /> Q&)
Tpy1 = Tp+ Py,
Tk+1 = Tkt Ok,
Ie+1 = Z[ATTk-H]a
Ukt1 = Z[Milngrl]a
B = {9rs1,Vrr1)/ {9k, Vi) and
Prt1 = —Upgr T BrDe-

Notice that the product ¢, = Ap, only requires access to the columns of A with indices
that lie in F. Likewise, only the components of A'r, 41 with indices that lie in F are
needed. A good “preconditioner” M will be such that the eigenvalues of M 'AZAx are
clustered around one, although it is not necessarily easy to achieve this [6]; at the very
least, picking M = diag(A" A) is often helpful, and in particular the required diagonal
entries are then simply the squares of the norms of the columns of A.

3 Regularization

In practice, it is common to consider the regularized bound-constrained linear least-squares
problem

minimize ¢(z,0) = L ||Az — b|* + Lo |||, (3.38)
zeEX
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in which we allow an extra regularization term with weight o > 0. Since ¢(z, o) is a linear
sum of f(z) and the regularization term, we may use linearity to compute derivatives
involving those that we have already seen plus o times those of p(x) := i[|z|*. Trivially,
the gradient and Hessian of p are x and [ respectively, where I is the n by n identity
matrix. Equally p(z) mat be interpreted as a sum-of-squares function 1||Az — b||* in the
special case for which A = I and b = 0. Such a perspective then simply allows us to derive
the necessary changes in p(x) as we investigate the piecewise-linear path z(«).

To generalise the method for finding the exact piecewise minimizer described in Sec-
tion 2.1.1, we must consider p(x) on the segment (2.2). Plainly we have that

2 "

p(x(a; + Aa)) = p(x; + Aad;) = 4 ||z; + Aady||* = p; + Aap + 120’ (3.39)
involving the value, slope and curvature
1 2 /o "o, 2
pi =5 llzill”s pii= (2, di) and p; = ||di|

at breakpoint ¢. Mechanically repeating the arguments in Section 2.1.1, leads to the
following generalisation of Algorithm 2.1 for the regularization case.

Algorithm 3.1: Finding the piecewise arc minimizer z° = Py(2°+a°d) of ¢

0. Initialization: The initial point 2° € X and search direction d are given. Com-
pute the residual r° = Az® —b, and the breakpoints ¢ from (2.5) for all j € N,,.
Let oy =0, uy =0, wy =0,

By={j€N,:a} =0} and dy=d— > _[de;,
JEBy
compute

2
po=L12°1°, po=(2°,do) and pf = ||do|*,
Po = Ad07

2
Jo=1 HTSH ) fé = <7’Sap0> and f(/), = HPOHZ,

and set vy = dy, S = py and © = 0.
1. Find the next breakpoint: Determine o, , the first breakpoint beyond «;.

2. Check the current interval for arc minimizer:
Compute
¢ = fi+opi, ¢ =fi+op; and ¢ = f' +op].
If ¢; > 0, set a° = ay, 2° = Py[2® + a°d], ¢(x,0) = ¢;, and stop.
If ¢f >0 and o; — ¢/¢57 < aipq, set @ = a; — ¢i/¢7, 2° = Py[z° + a°d]
¢(~TC, o) =¢; + (Oéc — Oéi)cﬁ; + %(ozc = ai)2¢;~', and stop.
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3. Prepare for the next interval: Set Aa; = ;1 — a, recur

Wity = W; + Q;v;,
Ujpy = U; + Qg
let
By ={jeN,: CY? = a;41} and vy = Z [d]j€j7

JEB; 11

and compute

Piy1 = AUz’H-

4. Compute the value, slope and curvature: Compute

2 N

Piv1 = pi + Dayp; + L(Aa;) pi

P;+1 = pi + Aaypi — (2° + Wiyt + ¥y1d;, Vi),

Piv1 = Pi + (Vi1 — 2d;,vi41),

fiv1 = fi + Doy fi + %(Aaz’)zfil/;

fivn = fi + Doy fi — (r® + ugq + 4184, pi1) and
i1 =i + (Pix1 — 284, Di1)

update
di-‘,—l =d; — Vit1,

Si+1 = 8 — Pi+1)
increment ¢ by 1 and return to Step 1.
Slightly less obviously, it is straightforward to show that
(di, vig1) = (Vi1 Viga)s
and thus (3.40) and (3.41) may be written instead as

/ / i S
Pit1 = Pi + Dayp; — (27 4+ Wigq + QUi Viga),
and

"o
Pit1 = Pi — <Ui+17 Ui+1>7

with no need to recur d; in Step 4. Crucially, each of the recursions needed to maintain

/ U . . . .
w;, p;, p; and p; only requires operations involving the sparse vector v;.

To adapt the method for finding an approximate piecewise minimizer described in

Section 2.1.2 to cope with regularization, the only significant issue is to consider how the

regularization term p(z) evolves as we move backwards or forwards along the search arc.
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Plainly we have that
;=2 4+ d; =2+ sS4, T ady, = xp + agd;

1
where

z; =1 +sy and di :=dg,

and therefore
p(z;) = pi + cupi + aip?,
where

pi = tzt?, pii=(at di) = (2°,d) and pff = 1|d]]]%.

1
2

It is then easy to simplify the recurrences described in the earlier section to deal with this.
The generalisation of Algorithm 2.1 for the regularization case is then simply as follows.

Algorithm 3.2: Find an approximate backtracking arc minimizer z of ¢

0. Initialization: The initial point 2° € X, search direction d, initial stepsize aq >

0, reduction factor 5 € (0,1) and decrease tolerance n € (0,1) are given.

Compute the residual 7° = Az® — b, the initial objective value f(z°) = 1|7°||?,
the base fixed set A" from (2.21), the breakpoints a; from (2.5) for all j € N,,,
the end of the arc z” from (2.22) and its direction s = z” — 2°, the initial
search point xy = Py[z° + ad], the active and free components at z,

Ao ={j: ap >} and foz{jéAS:ozogaf},

and the corresponding values

ry ="+ 5,4, and dy =dg,
and residuals

ro =1 +py and 15 = qo
using the matrix-vector products

po = Au,sa, and qo = Ar dz,.

Initialize
7§ = 481, £ = (rdord) and £ = 5P, and
o5 = slad |’ pb = (", d§) and p§ = 3dgI%,
as well as
% = (r,po) and g = (r°,q), and
Iug = <J}S7S_AO> and Mg == <=’L‘S7d}—0>'
Set 7 = 0.

1 . .
Here s 4, and dz, are considered as n-vectors, whose nonzero components are fed by the index sets
and F;, respectively.
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1. Check for an approximate arc minimizer: Compute

fi=fi +afi+ alzfiQa

pi = p5 + cipf + aip?,

¢; = fi +op; and

Vi =% oy +o(u + o).

If ¢, < ¢(2°,0) + 0y, go to Step 4 if i = 0 but otherwise, i.e., if i > 0, set
a = q;, 1°= Py[z°+a%d], f(z°)=f; and ¢(z°, 0) = ¢,
and stop.

2. Find the next set of indices that change status: Let o, ; = B, and
compute
Ty ={j i <o <5}

using the Heapsort algorithm.

3. Update the components of the objective and its slope: Compute

Diy1 = AI,+1SIi+1 and ¢y = Azlﬂdzi+1

update
fo =15 = (i) + 3P|l
fiL+1 = fi + {r; 7qz+1> - <7‘1‘Fapi+1> — (Pit1 Git1)
2= I+ g + gl
’YZA+1 =5 —(r 7pi+1>7 Vi1 =7 + <7"Saq2'+1>a
Tiv1 =15 — Pip1 and 754 =77 + g,
as well as

pzc-s-l = p; — (z i ST )
pip1 = pi + (7, dIZH)
p?+1 = pz + < 1+1>
— (o, SIH_1> i = p; + (2%, dIi+1>7

A

A F
Tiy1 = T; — SZH—I and di+1 = dl + dZi+1’

slldz

2 1+1|| ?

A
Hip1 =

increment ¢ by 1 and return to Step 1.

4. Find the next set of indices that change status: Let o, = 6_1%, and
compute

Ji1 = {Jra; < 04;3 < 041'+1}

using the Heapsort algorithm.
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5. Update the components of the objective and its slope: Compute

Pit1 = A~71:+1Ss7i+1 and ¢; 1 = A~—7i+1d~—7i+1

update
fion = F5 4+ piy) + i |1,
fin = fi = (i pr) + (8, Dig1) — Bigs @),
o1 =F2 = (i, gp) + Sllginll?,
Yirr =% D)y Y =% — % G,
Tiv1 =7i + D1 and 7y =75 — G,
as well as

L

pir1 = pi + (; ,sz+1> L|pizall?,

Piv1 = <$ dyg 1> <df73$+1> <dj+1> J,-H),
pi1 =t —{di dg, )+ sldg |7,

/~Lz'+1 = p; + <$ 3$+1>a Mz’+1 =t — (x dJZ+1>

A A F F
Tiv1 = 4 + Sji+1 and di—‘rl = d dthl

6. Check for an approximate extended arc minimizer: Compute

fir1 = fin + i fin + 041‘2+1 i

Pit1 = Piy1 + Quiy1pipr + ai2+1p?+17

Giy1 = fiy1 + opip1 and

Yir1 = Yir1 + Qp1Vipr + o (Mi1 + Qg1 fi)-

If ¢ > ¢(a°,0) + 1,1 OF a;yy > max; oy, set
Oéc = Qy, xC = PX['rS + acd]a f(xc> = fz and ¢(x070.) = (bi?

and stop. Otherwise, increment ¢ by 1 and return to Step 4.

3.1 Regularized linear least-squares minimization with fixed vari-

ables

Algorithm 3.3: The preconditioned conjugate-gradient regularized-least-
squares method

Given xy, set 1y = Axg — b and gy = Z[ATry + o], and let vy = Z[M ' go] and
Po = —vy. For k=0,1,... until convergence, perform the iteration
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@ = Apy,

= {9k )/ (k> @) + 0 (Prs DR))
Tpy1 = Tp+ Qppg,
Tk+1 = Tkt gy,
g1 = Z[ATrp + o),
Uk+1 = Z[M_lgk+1]a

Br = (911, Vkt1)/ {9k v) and
Pet1 = —Upgr + Bibe

Notice that throughout only components [p,];, ¢ € F, can be nonzero, and this should
be exploited when forming Ap, and (p;,p;). The preconditioner needs to take account of
the regularization term, and, at the very least, M = diag(A” A) + o1 is appropriate.

Availability

The algorithms described have been implemented as the modern Fortran package blls,
and the later is available as part of the GALAHAD library [4].



