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Abstract

In this paper, we examine the sensitivity of trust-region algorithms on parameters related to the

step acceptance test and to the update of the trust region radius. We show, in the context of

unconstrained programming, that the numerical efficiency of these algorithms can easily be im-

proved by choosing appropriate parameters. We recommend ranges of values for these parameters

based on extensive numerical tests.
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1 Introduction

Trust-region methods form a popular class of iterative optimization algorithms, in which

the objective function is approximated by a model and this model is minimized in a

neighbourhood—the trust region—of the current iterate. Originally proposed in the con-

text of nonlinear least-squares fitting [13, 15, 18], this class of methods was then developed

[9, 19, 26] to form a robust theoretical and practical framework containing a number of

locally convergent algorithms for smooth unconstrained minimization problems, and, in

particular, Newton method. The reader is referred to [4, 16, 17] for additional motivation

and convergence analysis.

Like many other algorithms, trust-region methods depend on the choice of a set of

parameters, which specify when a trial step is deemed successful and how the trust-region

size is updated as the iterations proceed. The purpose of this paper is to present an

experimental study of the sensitivity, measured in terms of efficiency, of a trust-region

algorithm for smooth unconstrained optimization as a function of these parameters.

We first present the trust-region algorithm in §2 and discuss the values of its parameters.

We next describe the setting of our numerical experiments in §3, report on its results from

the point of view of efficiency in §4. Some conclusions and perspectives are finally presented

in §5.

2 The problem and algorithm

We consider the problem
minimize f(x),

x ∈ IRn (2.1)

where f is a twice continuously differentiable function from IRn into IR. We assume that

the problem is well defined in that f is bounded below. The philosophy of trust-region

methods is to calculate, at iterate xk, a model mk of the objective function in the trust

region

Bk = {xk + s | ‖s‖ ≤ ∆k},

where ‖ · ‖ is the Euclidean norm on IRn and ∆k > 0 is the trust-region radius. A step sk

is then computed that approximately minimizes this model within the trust region. If the

value of the objective function computed at the trial point xk + sk produces a decrease in

the objective function which is comparable to that predicted by the model, the trial point

is accepted as the next iterate and the trust-region radius is possibly increased. Otherwise,

the trial step is rejected and the radius decreased. More formally, our algorithm is defined

as Algorithm 2.1.

A number of choices are possible for the model mk. Let 〈·, ·〉 denote the usual inner

product in IRn. In what follows, we focus on a quadratic model of the form

mk(xk + s) = f(xk) + 〈∇xf(xk), s〉 + 1

2
〈s,∇xxf(xk)s〉, (2.4)
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Algorithm 2.1: The Basic Trust-Region Algorithm

Step 0. [Initialization] An initial point x0 and an initial trust-region radius ∆0 are

given, as well as the parameters η1, η2, α1 and α2 that satisfy

0 ≤ η1 < η2 < 1 and 0 < α1 < 1 < α2. (2.2)

Compute f(x0) and set k = 0.

Step 1. [Model definition] Define a model mk(xk + s) of f(xk + s) in Bk.

Step 2. [Step calculation] Compute a step sk that “sufficiently reduces the model”

mk and such that xk + sk ∈ Bk.

Step 3. [Acceptance of the trial point] Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
. (2.3)

If ρk ≥ η1, then set xk+1 = xk + sk; otherwise, set xk+1 = xk.

Step 4. [Trust-region radius update] Set

∆k+1 =







α1‖sk‖ if ρk < η1

∆k if η1 ≤ ρk < η2

max[α2‖sk‖, ∆k] if ρk ≥ η2.

Increment k by one, and loop back to Step 1.

which is sometimes known as Newton’s model. Note that the model and objective func-

tion coincide up to second order at xk, i.e., mk(xk) = f(xk), ∇xmk(xk) = ∇xf(xk) and

∇xxmk(xk + s) = ∇xxf(xk) for all s.

We will not expand in full detail on what we mean by “sufficient model reduction” in

Step 2. If we define the Cauchy point xC

k to be a model minimizer along the intersection of

the steepest descent direction and the trust region and the eigen point to be the point on the

trust-region boundary along a direction of (approximately) maximal negative curvature,

we say that a step sk produces sufficient decrease if and only if

mk(xk) − mk(xk + sk) ≥ κred [mk(xk) − min [mk(x
C

k), mk(x
E

k)]] , (2.5)

for some κred ∈ (0, 1). The quantity mk(xk) − mk(xk + sk) is referred to as the predicted

decrease. Condition (2.5) is known to ensure global convergence of the algorithm to second-

order critical points of problem (2.1) under suitable assumptions [4], [16]. In the next

section, we return to the choice of an algorithm ensuring (2.5) when the model (2.4) is

considered.
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The algorithm depends on the constants η1, η2, α1 and α2, whose values are only re-

stricted to satisfy (2.2). The values

η1 = 0.25, η2 = 0.75 (2.6)

(see, for instance, [1, 2, 14, 20, 21, 22]) and

α1 = 0.5 and α2 = 2 (2.7)

(see, for instance, [2, 5, 7, 20, 22]) have been used in practical implementations. Is the

behaviour of the algorithm relatively insensitive to variations in these values? The purpose

of this note is to examine this question by analyzing the performance of the algorithm for

a set of alternative parameter values over a reasonable set of test problems.

The choice of η1 also has a theoretical implication: choosing η1 > 0 is known to be

necessary in order to guarantee that all limit points of the sequence of iterates satisfy the

first-order optimality conditions [16, 24, 27]. It is thus also of interest to investigate the

effect of this condition on numerical efficiency.

The authors are aware that, at least the choice of α1 and α2 may be made less crucial if

an interpolation scheme is used to determine the value of ∆k+1 from that of f(xk), f(xk+sk)

and ∇xf(xk) [3, 6, 14]. However, good values for these parameters remain helpful in simpler

implementations of the trust-region method.

3 The framework for the numerical experiments

We now turn to the discussion of the framework in which our numerical experiments are

conducted. Obviously, such an experimental investigation is never perfect, and several of

the choices made here, although reasonable from our point of view, are not the only ones

that one could consider. We are well aware of the limitations of our approach. We briefly

discuss them and propose directions for additional research in §5.

A first decision entices selecting a suitable performance measure for the algorithm.

We have chosen to measure algorithm efficiency by the number of iterations to obtain

convergence, which is declared as soon as

‖∇xf(xk)‖ ≤ 10−5. (3.8)

(We are aware that relative/weighted tests might be more useful for badly-scaled/non-

linear problems.) We had intended to declare failure when (3.8) was not met in the first

1000 iterations of the algorithm, but this situation never happened in our tests. Note

that since we are only considering unconstrained minimization, this measure in terms

of iteration counts is equivalent to considering the number of function evaluations and

is justified in the frequent case where objective function evaluations are computationally

costly and dominate the internal work of the algorithm. If evaluating the objective function

is relatively cheap compared to the algorithm’s internal work, which might be the case when
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problem name dimension problem name dimension

BIGGSB1 1000 NCB20B 1000

CURLY10 1000 NONCVXU2 1000

CURLY20 1000 NONDIA 1000

CURLY30 1000 NONDQUAR 1000

EDENSCH 2000 PENALTY1 1000

EIGENBLS 1056 POWER 1000

FREUROTH 1000 QUARTC 1000

GENROSE 1000 SINQUAD 1000

LINVERSE 999 SPARSINE 1000

MSQRTALS 1024 SPMSRTLS 1000

MSQRTBLS 1024 VAREIGVL 999

NCB20 1000 WOODS 1000

Figure 3.1: The test problems set from the CUTEr collection

the dimension of the problem is large and the linear algebra therefore more expensive, then

overall CPU time is the obvious choice for measuring performance.

The second important choice is that of the procedure to compute, at each iteration, a

trial step sk that approximately minimizes the model within the trust region. We have cho-

sen to use the truncated conjugate-gradient iteration, or Steihaug-Toint algorithm [23, 25],

as implemented in the GLTR module of the GALAHAD library [10, 12]. In this method, the

iterates generated by the conjugate-gradient algorithm are used until either they leave the

trust region or negative curvature is discovered—in either of these cases the last conjugate-

gradient step is truncated on the trust-region boundary. Thus, the Steihaug-Toint proce-

dure terminates at xk + s that satisfies

‖∇xf(xk + s)‖ ≤ min

[

1

10
, ‖∇xf(xk)‖

1/2

]

or ‖s‖ = ∆k.

This procedure is known to guarantee (2.5).

We decided to test the algorithm on what we believe is a reasonably representative

set of 24 problems from the CUTEr collection [11], whose average dimension is around

1000. All problems are unconstrained, with some of them being highly nonlinear. These

problems have proved to be reasonably hard in the past. Their name and size can be found

in Figure 3. The number of problems in our test set had to be kept relatively low in order

to make the test for a large number of parameter values tractable.

Finally, we decided on a set of parameter values to be experimented with. In a first

stage, we chose to let (η1, η2) vary in the (coarse) uniform grid

GC

η =







η1 ∈ {0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45},

(η1, η2)

η2 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}







,
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while (α1, α2) varies in the grid

Gα =







α1 ∈ {0.25, 0.33, 0.5, 0.66, 0.75},

(α1, α2)

α2 ∈ {1.5, 2.0, 2.5, 3.0, 3.5, 5}







.

Preliminary experiments using the grids GC

η and Gα seemed to indicate that the region

Z = {0 ≤ η1 ≤ 0.1, 0.7 ≤ η2 < 1}

was worth being discretized more finely as it appeared to be where the best efficiency would

occur. As a result, the coarse grid GC

η was replaced by the finer, but no longer uniform,

grid

GF

η =







η1 ∈ {0, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4}

(η1, η2)

η2 ∈ {0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999}







.

The grid Gα remained unchanged. Altogether, this gives a set of 3,960 different values for

(η1, η2, α1, α2). We then applied the algorithm using these values on the 24 test problems,

which resulted in a grand total of 95,040 test runs. All tests were performed in double

precision Fortran 90 on an 1.6GHz Intel Pentium IV Linux PC with 512 MBytes of RAM.

4 Numerical results and analysis

4.1 Combined performance

Remarkably, optimizing the trust-region algorithm parameters seems to depend only marginally

on whether one aims for a minimum number of iterations (and thus of function/derivatives

calculations) or for a minimum CPU time. The performance measured in these two quan-

tities seems indeed very related, as is clear from Figure 4.2, where the couples consisting of

the average iteration count and the average CPU time (the averages being taken on all test

problems) are plotted for each of the 3,960 tested variants. In this figure, the performance

of the “standard” parameter choice, as defined by (2.6) and (2.7), is identified as the point

at the intersection of the vertical and horizontal cross lines.

The “comet-like” structure of the cloud of performance couples is very elongated for our

test set. Moreover, the densest “core” part of the cloud appears to correspond to relatively

efficient variants, the worst ones being quite far in the sparser “tail”. The standard variant

belongs to the core, but just barely, which shows that many significantly better parameter

choices exist.

Figure 4.3 is obtained by zooming on the tip of the core, i.e., the part of the figure

containing the most efficient variants. This figure shows several vertical clusters of points

corresponding to variants using exactly the same average number of iterations and slightly
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Figure 4.2: Combined performance of all 3,960 tested variants (standard parameter choice

marked by crosshair)

different CPU times. These clusters reflect the inaccuracy of the timing routine used (a few

percent), and should therefore be interpreted as a single combined performance measure.

We now explore in more details the clusters of the efficient frontier of the above figures.

This frontier is defined as the set of clusters that are not dominated by any other cluster,

that is the clusters such that there is no other cluster in the figure giving better average

number of iterations and better average CPU time.

The first cluster on the left corresponds to the best variant in terms of iterations. The

associated performance is presented in Table 4.1, which shows the associated parameter

values, the total number of iterations and the CPU time for this cluster, for the worst choice

of the parameters, and for the “standard” choice. Note that the CPU time in brackets is

a rounded average of the times associated with all the variants in the entire cluster.

η1 η2 α1 α2 # its CPU

Parameter choices [0,10−2] 0.99 0.25 3.5 14.750 (9.45)

for first cluster

Standard choice 0.25 0.75 0.5 2 20.625 17.13

Worst choice 0.4 0.5 0.75 5 47.000 63.90

Table 4.1: Average iteration counts and CPU times (s) for the best, standard and worst

parameter choices in terms of iterations

We see that the best parameter choice results in an algorithm that requires, on average,
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Figure 4.3: Combined performance of the more efficient tested variants

14.750/20.625 = 0.715 as many iterations as the standard one. On the other hand, the worst

choice produces a method that needs, on average, 47/14.75 = 3.19 as many iterations as

the best, and 47/20.625 = 2.28 as many as the standard. The proportions in time reinforce

these trends.

Another outcome of our tests is that the performance of the variants cannot be distin-

guished if they differ only by the choice of η1 in the range 0 to 10−4. For most choices of

the other parameters, this is also the case for η1 up to 10−2. This is interesting because

it seems to imply that a small strictly positive value of η1 is as good as possible from the

numerical efficiency point of view, while, at the same time, ensuring the best theoretical

convergence properties. Conversely, this indicates that choosing η1 = 0 may not have a

numerically detrimental effect despite being theoretically less satisfactory. This behaviour

is also apparent in Table 4.1.

Pursuing our exploration of the efficient frontier in Figure 4.3, the next dominant cluster

is that corresponding to variants taking on average 15 iterations. It is in fact made up from

two similar but distinct choices of parameters, as indicated in Table 4.2. Strictly speaking,

only the first of those is really part of the efficient frontier, since it marginally dominates

the second.

Algorithms using these choices of parameters require, on average, 15/20.625=0.727 as

many iterations as the standard choice and 15/47= 0.319 as many as the worst. Again,

the ratios for CPU time confirm the trends observed for iterations.

The third and last point on the efficient frontier is given by the variant which is best

in terms of CPU time (i.e., is lowest in the figure). Table 4.3 shows the (unique) set of
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η1 η2 α1 α2 # its CPU

Parameter choices [0, 10−1] {0.995, 0.999} 0.25 5 15.000 (9.15)

for middle cluster [0, 10−4] 0.999 0.33 3.5 15.000 (9.35)

Standard choice 0.25 0.75 0.5 2 20.625 17.13

Worst choice 0.4 0.5 0.75 5 47.000 63.90

Table 4.2: Average iteration counts and CPU times (s) for the middle dominant cluster of

variants, and for the standard and worst ones

parameter values and total CPU time for this variant, and compares them again with the

standard and worst choices.

η1 η2 α1 α2 # its CPU

Parameter choice 0.15 0.999 0.33 5 15.25 8.76

for third cluster

Standard choice 0.25 0.75 0.5 2 20.625 17.13

Worst choice 0.4 0.5 0.75 5 47.000 63.90

Table 4.3: Average iteration counts and CPU times (s) for the best, standard and worst

parameter choices in terms of CPU time

Following the same logic as above, we note that this parameter choice results in an

algorithm that is, on average, 17.13/8.76 = 1.96 as fast as the standard one. On the other

hand, the worst choice produces a method that is, on average, 63.90/8.76 = 7.3 times

slower than the best, and 63.90/17.13 = 3.73 slower than the standard. We note that this

best variant in CPU time is close to those in the middle cluster, except for a surprisingly

larger value of η1. We might thus see it as the result of a particularly lucky set of time

measures.

4.2 Iterations sensitivity

We now examine the sensitivity in iterations of the above conclusions for the parameter

choices of the first cluster (most efficient in terms of iterations).

Table 4.4 presents the relative performance, compared to the best, of all considered

choices of η1 and η2 when α1 and α2 are fixed to their optimal value (see Table 4.1). We

note in this table that, as indicated above, the results are identical for all values of η1 that

are between 0 and 0.01. This indicates that small values of this parameter are best, but also

that the precise choice of a small value of η1 is not crucial. A second observation is that a

choice of η2 larger that 0.99 is comparatively better than that of a smaller value. Globally

the performance degrades nearly monotonically when η1 grows and/or η2 decreases.

The relative performance of all considered choices of α1 and α2 (for values of η1 and

η2 fixed to one of their optimal values) are shown in Table 4.5. Again, the neigbouhood
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η2 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.995 0.999

η1

0.000000 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

0.000001 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

0.000010 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

0.000100 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

0.001000 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

0.010000 0.75 0.79 0.80 0.78 0.75 0.76 0.82 0.83 1.00 0.89 0.94

0.100000 0.69 0.78 0.75 0.80 0.80 0.78 0.86 0.84 0.91 0.83 0.87

0.150000 0.72 0.72 0.75 0.77 0.80 0.74 0.76 0.78 0.95 0.86 0.90

0.200000 0.74 0.70 0.74 0.75 0.73 0.77 0.81 0.85 0.92 0.90 0.91

0.250000 0.70 0.72 0.70 0.78 0.72 0.76 0.84 0.77 0.90 0.86 0.87

0.300000 0.70 0.66 0.72 0.78 0.71 0.76 0.76 0.78 0.91 0.90 0.89

0.400000 0.71 0.72 0.72 0.74 0.73 0.77 0.80 0.80 0.88 0.87 0.86

Table 4.4: Relative performance in iterations as a function of η1 and η2 for fixed α1 = 0.25

and α2 = 3.5

of the best values is clear. One notices that the optimal values for α2, around 3.5, are

considerably larger than their standard (2). It therefore seems more efficient to increase the

radius relatively unfrequently (η2 close to 1) but to do so more decisively when it happens.

This is supported by the observation that the choice α2 = 5 remains very satisfactory for

α1 = 0.25 and α1 = 0.33 (see Tables 4.2 and 4.3). The best value α1 = 0.25 shows that

unsuccessful iterations (ρk < η1), although not frequent, should not reduce the trust-region

radius too aggressively.

α2 1.50 2.00 2.50 3.00 3.50 5.00

α1

0.10 0.79 0.87 0.90 0.87 0.94 0.92

0.25 0.79 0.81 0.90 0.93 1.00 0.95

0.33 0.83 0.92 0.88 0.90 0.93 0.94

0.50 0.83 0.86 0.85 0.85 0.79 0.93

0.75 0.71 0.71 0.74 0.72 0.72 0.68

Table 4.5: Relative performance in iterations as a function of α1 and α2 for fixed η1 = 10−5

and η2 = 0.99

We conclude our sensitivity analysis in terms of number of iterations by considering the

performance profile [8] for the worst, standard and best parameter choices. Such profiles

are defined as follows. Assume a certain set A of competing algorithms A1, . . . ,Aq is tested

on a set S of p test problems and algorithm Ai reports a certain measure of performance

πi,t (iteration counts, in our case) when run on test problem t such that Algorithm Ai

is “better” than Algorithm Aj on this problem t if πi,t ≤ πj,t. If we define the indicator
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function

κ(π1, π2; σ) ≡

{

1 if π1 ≤ σπ2,

0 otherwise,

the performance profile of Algorithm Ai on the test set S with respect to the performance

measure π is defined as the function

πi(σ) ≡

∑p
t=1

κ(πi,t, πmin,t; σ)

p
, for every σ > 0,

where πmin,t = mini=1,...,q πi,t is the best perfomance achieved on problem t. Hence, πi(σ)

is a measure of the probability for the performance of Algorithm Ai to be within a factor

σ of the performance of the best algorithm. For instance, πi(1) measures the probability

for the performance of Algorithm Ai to be the best, and limσ→∞
πi(σ) is the probability

that Algorithm Ai solves a problem.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

σ

p(
σ)

Best
Standard
Worst

Figure 4.4: Iteration performance profiles for the best, standard and worst parameter

choices

The iteration performance profile for the algorithms corresponding to the worst, stan-

dard and best parameter choices is presented in Figure 4.4. Interestingly, the standard

choice is less often the best (σ = 1) than the worst and best.

4.3 CPU time sensitivity

We now turn to sensitivity in CPU time and analyze the third cluster of the efficient

frontier, which is the most efficient for this criterion.
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η2 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.99 0.995 0.999

η1

0.000000 0.47 0.44 0.46 0.47 0.51 0.63 0.72 0.86 0.97 0.97 0.89

0.000001 0.46 0.44 0.46 0.47 0.51 0.64 0.72 0.86 0.98 0.97 0.89

0.000010 0.46 0.44 0.45 0.47 0.51 0.63 0.72 0.86 0.96 0.97 0.88

0.000100 0.45 0.43 0.45 0.47 0.51 0.62 0.72 0.85 0.96 0.96 0.87

0.001000 0.45 0.43 0.45 0.46 0.50 0.61 0.70 0.85 0.96 0.97 0.87

0.010000 0.45 0.43 0.45 0.55 0.51 0.62 0.71 0.91 0.96 0.96 0.87

0.100000 0.32 0.40 0.43 0.44 0.57 0.60 0.79 0.91 0.97 0.92 0.97

0.150000 0.28 0.35 0.41 0.43 0.54 0.50 0.74 0.92 0.93 0.96 1.00

0.200000 0.31 0.34 0.42 0.44 0.48 0.52 0.82 0.73 0.85 0.86 0.86

0.250000 0.32 0.39 0.39 0.44 0.44 0.49 0.76 0.73 0.87 0.91 0.91

0.300000 0.30 0.34 0.41 0.42 0.45 0.53 0.74 0.72 0.90 0.85 0.85

0.400000 0.28 0.34 0.39 0.37 0.48 0.50 0.66 0.72 0.81 0.80 0.80

Table 4.6: Relative performance in CPU time as a function of η1 and η2 for fixed α1 = 0.33

and α2 = 5

Table 4.6 presents the relative performance in CPU time of all considered choices of η1

and η2 when α1 and α2 are fixed to their optimal value (see Table 4.3). Although the best

performance is obtained for η1 = 0.15 and η2 = 0.999, we see that the choices of η1 between

0 and 0.1 for η2 = 0.99 and 0.995 remain highly efficient. The general conclusions in terms

of CPU time are thus very consistent with those obtained when considering iteration

counts: small values of η1 are best and a choice of η2 larger that 0.99 is comparatively

better than that of a smaller value.

The relative CPU time performance of all considered choices of α1 and α2 (for values

of η1 and η2 fixed to their optimum) are finally shown in Table 4.7. Again, the conclusions

follow the lines stated above: values of α1 should be moderate while values of α2 should

definitely exceed the standard choice of 2.

α2 1.50 2.00 2.50 3.00 3.50 5.00

α1

0.10 0.67 0.77 0.87 0.92 0.74 0.90

0.25 0.79 0.78 0.87 0.79 0.82 0.94

0.33 0.75 0.89 0.88 0.78 0.79 1.00

0.50 0.72 0.78 0.67 0.71 0.73 0.69

0.75 0.58 0.66 0.56 0.47 0.49 0.54

Table 4.7: Relative performance in CPU time as a function of α1 and α2 for fixed η1 = 0.15

and η2 = 0.999

Finally, Figure 4.5 shows the CPU-time performance profiles for the best, standard and

worst parameter choices. Again the profile for the best choice indicates a clear superiority

of this variant on the other two.
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Figure 4.5: CPU time performance profiles for the best, standard and worst parameter

choices

4.4 Tentative recommendations

Recommending parameter values in general is always somewhat risky. The actual perfor-

mance of an algorithm may indeed strongly depend on the class of problems on which it is

applied, and the conclusions of this study rely on a particular test-problem set. The values

suggested here are therefore best seen as appropriate for general purpose use and are not

intended to replace application dependent choices. This said, it seems that a reasonable

parameter choice could be

η1 = 0.0001, η2 = 0.99, α1 = 0.25, α2 = 3.5.

If distinguishing between the two measures of efficiency is critical, the values suggested in

Sections 4.2 and 4.3 might be considered, but direct experience remains of course the best

source of inspiration.

5 Conclusions

We have performed simple, systematic, tests with a basic trust-region algorithm for uncon-

strained programming. The test problems are taken from the CUTEr collection and our

algorithm underwent tests for nearly 4000 values of the trust-region parameters. The com-

monly used “standard” values for these parameters appear not to be the best choice and

13



alternative values have been pointed out, emphasizing the gain that these could produce

over the standard values.

Only simple, multiplicative, updating rules have been used in this algorithmic frame-

work. The authors are well aware that other rules could have been tested and that a much

finer grid could have been used. The values of the α parameters could also be determined

dynamically using a second or third degree polynomial interpolation of the objective func-

tion, or of the ρ function. While the conclusions drawn here therefore remain tentative

and dependent on a particular set of test problems, the authors believe that they may be

of interest for algorithm developers.
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[14] C. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization

problems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[15] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

SIAM Journal on Applied Mathematics, 11:431–441, 1963.
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