
Technical Report

RAL-TR-2004-018

Council for the Central Laboratory of the Research Councils

May 2004

Jennifer A. Scott

Multilevel hybrid spectral element ordering

algorithms

c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be

addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the

use of information contained in any of their reports or in any communication about their tests or

investigations.

RAL-TR-2004-018

Multilevel hybrid spectral element ordering

algorithms1,2

Jennifer A. Scott

Abstract

For frontal solvers to perform well on finite-element problems it is essential that the elements

are ordered for a small wavefront. Multilevel element ordering algorithms have their origins in

the profile reduction algorithm of Sloan but for large problems often give significantly smaller

wavefronts. We examine a number of multilevel variants with the aim of finding the best methods

to include within a new state-of-the-art frontal solver for finite-element applications that we are

currently developing. Numerical experiments are performed using a range of problems arising

from real applications and comparisons are made with existing element ordering algorithms.

Keywords: large sparse linear systems, finite elements, element ordering, frontal method.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 This work was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

May 2004.

1 Introduction

The frontal method is frequently the method of choice for solving the large sparse systems of

linear equations that arise during the solution of finite-element problems. These systems are of

the form

AX = B, (1.1)

where the n × n matrix A is a sum of nelt finite-element matrices

A =
nelt
∑

l=1

A(l), (1.2)

and B is an n × nrhs matrix (nrhs ≥ 1) of known right-hand sides. Each matrix A(l) has

nonzeros only in a few rows and columns; A(l) corresponds to the contribution from element

l and is normally held as a small dense matrix. One reason for choosing a frontal method is

that only a small amount of main memory is required to solve the problem. This allows very

much larger problems to be solved than is possible using a direct solver that works entirely in-

core. However, this is only true if it is possible to preorder the elements to ensure small fronts

throughout the computation. If aij and a
(l)
ij denote the (i, j)th entry of A and A(l), respectively,

the basic assembly operation for constructing A is of the form

aij ⇐ aij + a
(l)
ij . (1.3)

The main feature of the frontal method is that the Gaussian elimination operation

aij ⇐ aij − ail[all]
−1alj (1.4)

may be performed once all the terms in the triple product in (1.4) are fully summed. A variable is

fully summed if it is involved in no further sums of the form (1.3) and is partially summed if it has

appeared in at least one of the elements assembled so far but is not yet fully summed. Thus by

assembling the contributions A(l) from the finite-elements one at a time and (provided numerical

stability conditions are satisfied) performing eliminations as variables become fully summed, the

construction of the assembled coefficient matrix A is avoided.

At each stage of the assembly and elimination processes, the fully and partially summed

variables are held in an in-core frontal matrix. In the innermost loop of the numerical

factorization, dense linear algebra operations are performed on the frontal matrix. For efficiency,

in terms of both storage and arithmetic operations, the elements must be assembled in an order

that keeps the size of the frontal matrix, known as the wavefront, as small as possible. In other

words, the elements need to be ordered so that partially summed variables become fully summed

as soon as possible. Of interest is:

1

• the maximum wavefront, since this affects the in-core storage needed,

• the sum of the wavefronts, known as the profile, since this determines the total storage

needed for the matrix factors, and

• the root-mean-square wavefront, since the work performed when eliminating a variable is

proportional to the square of the current wavefront.

Reflecting the popularity of the frontal method, a number of algorithms for automatically

ordering finite elements for small wavefront and profile have been reported on in the literature

(see, for example, Scott, 1999 for references to element ordering algorithms). Duff, Reid and

Scott (1989) divide element ordering algorithms into direct and indirect algorithms. As the name

suggests, direct algorithms order the elements directly while indirect algorithms use a two-step

approach in which the variables are first relabelled and then used to resequence the elements;

the new variable indices are subsequently discarded. Duff et al. report that both approaches can

be used effectively and in their experiments neither was found to be consistently superior to the

other.

Some of the most well-known element ordering algorithms are based on the profile and

wavefront reduction algorithm of Sloan (1986). The Sloan algorithm exploits the close relationship

between a matrix A of order n with a symmetric sparsity pattern and its undirected graph with n

nodes, that is, the adjacency graph G(A). In particular, it uses the level set structure of G(A). In

the late 1990s, Scott (1999) developed an element ordering package MC63 for inclusion in the HSL

mathematical software library (HSL, 2004). This package provides efficient implementations of a

number of variants of Sloan’s algorithm. In particular, it offers a hybrid variant in which Sloan’s

algorithm is used to refine an ordering provided by the user. Numerical results reported by Scott

(1999) showed that if the user inputs a spectral ordering then, for large problems, the hybrid

method is a significant improvement on Sloan’s algorithm (that is, it generally produces smaller

maximum and root-mean-squared wavefronts). The disadvantage of the hybrid spectral-Sloan

algorithm is the need to compute a spectral ordering, which can add significantly to the overall

cost of ordering the elements.

Spectral orderings are expensive because they are dependent upon the computation of the

eigenvector corresponding to the smallest non-trivial eigenvalue of the Laplacian matrix associated

with the graph of the problem, the so-called Fiedler vector (Fiedler, 1975). Recently, a new flexible

software package that implements both an efficient multilevel algorithm for computing the Fiedler

vector and a number of multilevel profile reduction algorithms has been designed and developed

by Hu and Scott (2003). The new Fortran 95 code is called HSL MC73 and will be included in HSL

(2004). The aim of this article is to report on using HSL MC73 to obtain high quality multilevel

element orderings efficiently for use with a frontal solver.

The outline of this report is as follows. In Section 2, the new code HSL MC73 is briefly described

then, in Section 3, we look at how we can use HSL MC73 to obtain a number of multilevel element

ordering algorithms. Both direct and indirect variants will be proposed. Numerical results are

presented for the multilevel algorithms in Section 4. Finally, some concluding remarks are made

in Section 5.

2

2 A new multilevel profile reduction code

We start by briefly describing the new multilevel Fiedler and profile reduction code HSL MC73.

Following the success of spectral orderings for graph partitioning, Barnard, Pothen and Simon

(1995) first proposed using the Fiedler vector to obtain profile reducing orderings for matrices A

with symmetric sparsity patterns. Their algorithm is motivated as an attempt to minimize the

two-sum

min
x∈P

{
∑

{i<j: aij 6=0}

(xi − xj)
2}, (2.5)

where P denotes the set of vectors whose components are permutations of

i − (n + 1)/2, i = 1, 2, . . . , n.

That is,

min
x∈P

xT Lx, (2.6)

where L is the Laplacian of A given by

L = {lij} =

−1 if i 6= j and aij 6= 0

0 if i 6= j and aij = 0
∑

i6=j |lij | if i = j.

(2.7)

To make this problem tractable, albeit at the expense of not computing a guaranteed optimal

solution, a heuristic is introduced. Instead of minimizing over the discrete set P, the problem

(2.6) is relaxed to x ∈ Rn with xTe = 0 (e = [1, 1, . . . , 1]T) and ‖x‖2 = ‖p‖2 for any p ∈ P. The

solution is then the eigenvector corresponding to the second smallest eigenvalue of L, that is, the

Fiedler vector. Applying the permutation induced by ordering the components of this vector into

monotonic order to the matrix A gives the so-called spectral ordering. In general, it not only

reduces the two-sum but also the profile and wavefront of A.

The main problem with implementing the spectral method is that computing eigenvectors of

large matrices is expensive. This led Barnard and Simon (1994) to propose a multilevel algorithm

for computing the Fiedler vector. The basic multilevel Fiedler algorithm proceeds as follows:

• Starting with the adjacency graph G(A), a series of graphs of successively coarser (smaller)

sizes is generated.

• At some point the graph has so few nodes that it is very cheap to compute the Fiedler

vector of the associated Laplacian.

• The coarse graph Fiedler vector is projected from one level to another. At each level

some refinement is performed until, finally, an (approximate) Fiedler vector for the original

Laplacian is obtained.

In broad terms, this is the algorithm that is implemented within the new software package

HSL MC73. A key observation is that, for both graph partitioning and for profile reduction

algorithms, it is not necessary to obtain the Fiedler vector to high accuracy; instead an

approximate Fiedler vector is sufficient. Thus HSL MC73 is designed to compute an approximate

Fiedler vector and a number of parameters under the user’s control are used in determining how

3

accurate the requested eigenvector is. Full details of the algorithm, its implementation and user

interface are given in Hu and Scott (2003).

As well as offering a multilevel spectral ordering algorithm for profile reduction, HSL MC73

includes implementations of the hybrid Sloan algorithm of Kumfert and Pothen (1997) and the

multilevel Sloan algorithm of Hu and Scott (2001). The Sloan algorithm for profile and wavefront

reduction employs the adjacency graph G(A) of A and has two distinct phases:

1. Selection of a start node s and a target end node e.

2. Node reordering.

The first phase computes a pseudodiameter of G(A) and uses it to provide s and e. In the second

phase, the chosen start node is numbered first and a list of nodes that are eligible to be numbered

next is formed. At each stage of the numbering, the list of eligible nodes comprises the neighbours

of the nodes that have already been renumbered together with their neighbours. The next node

to be numbered is selected from the list of eligible nodes to maximise the priority function

P (i) = −W1 inc(i) + W2 dist(i, e), (2.8)

where (W1,W2) are fixed positive weights. The first term, inc(i), is the amount by which the

wavefront will increase if node i is ordered next. The second term, dist(i, e), is the distance

between nodes i and the end node e. Thus, a balance is maintained between the aim of keeping

the wavefront small and bringing in nodes that have been left behind (that is, those far away

from the target end node e). A node has a high priority if it causes either no increase or only a

small increase to the current wavefront size and is at a large distance from the end node e.

Kumfert and Pothen (1997) observed that there are problems on which the spectral algorithm

can perform poorly and this motivated them to propose a hybrid method that combines use of

the spectral ordering with a modified version of the second phase of Sloan’s algorithm. The first

term in (2.8) affects the priority function in a local way, by giving higher priority to nodes that

will result in a small (or negative) increase to the current wavefront. This is done in a greedy

fashion, without consideration of the long-term effect. The second term acts in a more global

manner, ensuring nodes lying far away from the end node are not left behind. The second phase

of the Sloan algorithm can therefore be viewed as an algorithm that refines the ordering implied

by the distance function dist(i, e). Thus Kumfert and Pothen modified the second phase of

Sloan’s algorithm so that, in place of the distance function, it refined the spectral ordering. Their

numerical experiments showed that, for large problems, the resulting hybrid method generally

gives significantly smaller profiles than those obtained using the standard Sloan algorithm. This

led us to design the package HSL MC73 to include an option to compute a multilevel spectral

ordering which is then refined to obtain the so-called hybrid spectral-Sloan ordering (for further

details, see Reid and Scott, 1999 and Hu and Scott, 2003).

The main disadvantage of the hybrid profile reduction method is that it requires significantly

more CPU time than Sloan’s algorithm because it is more expensive to compute the Fiedler

vector than it is to find a pseudodiameter for A using the (modified) Gibbs-Poole-Stockmeyer

algorithm of Reid and Scott (1999). Even if the Fiedler vector is computed as in HSL MC73 using

a multilevel approach, the hybrid algorithm can be relatively expensive. In an attempt to avoid

computation of the Fiedler vector while still maintaining the quality of the hybrid algorithm,

Hu and Scott (2001) proposed a multilevel version of Sloan’s algorithm. Mirroring the multilevel

Fiedler algorithm, the multilevel Sloan profile reduction algorithm comprises three separate steps:

4

• A series of graphs of successively smaller sizes is generated.

• The coarsest graph is reordered using the Sloan algorithm.

• The coarse graph ordering is projected from one level to another by first mapping the

ordering for the previous (coarser) level onto the current level and then performing

refinement using the second phase of Sloan’s algorithm.

Numerical results presented by Hu and Scott confirm that this approach is faster than the

hybrid method and, with appropriate coarsening and refinement, produces orderings that are of

comparable quality. Thus, in addition to the multilevel spectral and hybrid methods, HSL MC73

includes an efficient implementation of the multilevel Sloan algorithm for profile reduction.

3 Multilevel element orderings

The input required by the package HSL MC73 is the sparsity pattern of the matrix A or,

equivalently, the adjacency graph G(A). In fact, any undirected (unweighted) graph can be

input and we use this facility to obtain multilevel element ordering algorithms.

There are a number of possible graphs associated with a finite-element problem that have been

used for element resequencing. We consider two that our previous experiments (Duff et al., 1989

and Scott, 1999) found to be efficient with the Sloan algorithm: the supervariable connectivity

graph and the element communication graph. We will input these graphs to HSL MC73 and use

them to obtain multilevel indirect and direct element orderings, respectively.

In the variable connectivity graph the nodes are the variables defined on the finite-element

mesh, and the edges are constructed by making the variables of each element pairwise adjacent.

This graph is the adjacency graph G(A) of the assembled finite-element matrix A. However,

because in many finite-element problems there are a number of degrees of freedom at each node of

the finite-element mesh, a more compact representation of the finite-element problem is generally

possible through the use of supervariables. A supervariable is a collection of one or more variables,

such that each variable belongs to the same set of finite elements. The finite-element mesh can be

transformed into a supervariable connectivity graph GS , whose nodes are the supervariables and

whose edges are formed by making the supervariables of each finite element pairwise adjacent.

For finite-element problems, element connectivity graphs may be defined in which the nodes

are the finite elements. There is more than one way in which the element connectivity may then

be defined. We restrict our attention to the element communication graph GEC in which two

elements are defined as being adjacent whenever they share at least one variable in common.

3.1 Indirect multilevel element orderings

Our indirect multilevel element ordering algorithms proceed as follows:

• Generate the supervariable graph GS of A.

• Apply HSL MC73 to GS to obtain an ordering of the supervariables.

• Order the elements in ascending sequence of their lowest numbered supervariable and then

discard the supervariable ordering.

5

When HSL MC73 is applied to GS we have two options. We can either use the multilevel

Sloan algorithm or the hybrid spectral-Sloan algorithm (which employs the multilevel Fiedler

algorithm). We have performed experiments with both approaches and include results in

Section 4. We can also try and improve the HSL MC73 supervariable ordering prior to resequencing

the elements using the Hager exchange algorithms. Hager (2002) suggested two methods for

improving any given profile reducing permutation of a symmetric matrix A; a down exchange

algorithm and an up exchange algorithm, which he proposed using in an iterative fashion (further

details and results illustrating the effectiveness of the exchanges are given in Reid and Scott,

2002). HSL MC73 includes an option to perform a user-chosen number of down/up exchanges; we

include results in Section 4 for using this option within our indirect multilevel element ordering

algorithm.

3.2 Direct multilevel element orderings

Using an analogous approach, our direct multilevel element ordering algorithms comprise the

following steps:

• Generate the element communication graph GEC of A.

• Apply HSL MC73 to GEC to obtain either a multilevel spectral ordering or a multilevel Sloan

ordering for GEC .

• Refine the element ordering using a modified version of the second step of Sloan’s algorithm.

The modified version of Sloan’s algorithm that we use to refine the element ordering computed by

GEC is described in detail in Scott (1999) and is implemented in the HSL package MC63. Again,

Hager exchanges may be used when ordering GEC using HSL MC73.

4 Numerical results

The numerical experiments reported on in this section were performed on a single Xeon 3.06 GHz

processor of a Dell Precision Workstation 650 with 4 GBytes of RAM under the Fedora Core 1

Linux operating system. The NAG Fortran 95 compiler was used with the compiler optimization

flag -O. All timings are CPU times, measured using the Fortran 95 routine cpu time and are

given in seconds. Unless otherwise stated, the default values are used for all MC63 and HSL MC73

control parameters.

The test problems used in our numerical experiments are listed in Table 4.1. The problems

range in size from fewer than 1,000 elements to more than 70,000 elements with almost 225,000

degrees of freedom. For each problem the order n of A together with the number nsup of

supervariables is given. For cham and tubu, only lists of supervariables belonging to each element

were available so for these problems n = nsup. For the remaining problems, we note that the

number of supervariables is significantly less than the number of variables.

4.1 Use of supervariables

To illustrate the importance of using supervariables, in Table 4.2 we present results for the indirect

multilevel Sloan algorithm using the variable connectivity graph G(A) and the supervariable

6

Table 4.1: The test problems. n and nsup denote the number of variables and supervariables,

respectively.

Identifier n nsup Elements Description/discipline

cham 12834 12834 11070 Part of an engine cylinder

crplat2 18010 3004 3152 Corrugated plate field

fcondp2 201822 33913 35836 Oil production platform

fullb 199187 33442 59738 Full-breadth barge

halfb 224617 38556 70211 Half-breadth barge

inv-ext-2 78142 19734 7193 Fluid flow

mt1 97578 17044 5328 Tubular joint

opt1 15449 3802 977 Part of condeep cylinder

ship 001 34920 5843 3431 Ship structure - predesign

ship 003 121728 20287 45464 Ship structure - production

shipsec1 140874 23479 41037 Section of a ship

shipsec5 179860 17260 52272 Section of a ship

shipsec8 114919 19532 32580 Section of a ship

srb1 54924 9154 9240 Space shuttle rocket booster

thread 29736 8838 2176 Threaded connector

trdheim 22098 2868 813 Mesh of the Trondheim fjord

troll 213453 48435 41084 Structural analysis

tsyl201 20685 2881 960 Part of condeep cylinder

tubu 26573 26573 23446 Engine cylinder model

x104 108384 17260 26019 Beam joint

graph GS . We see that using supervariables leads to large savings in the time required to reorder

the elements. For most of our examples, the time is reduced by a factor of more than 10.

Furthermore, for many of the problems, the root-mean-square wavefront is significantly smaller if

supervariables are used. It appears that the initial coarsening of the variable connectivity graph

by using supervariables is generally more effective than the coarsening used within the multilevel

code HSL MC73. Note that, although not given here, the root-mean-square wavefronts for the

direct multilevel element ordering algorithms are not affected by using supervariables in place of

variables but there is a small time saving if supervariables are used. All results in the remainder

of this report are computed using supervariables.

4.2 Sloan vs multilevel algorithms

In Table 4.3 we compare the performance of the Sloan algorithm (as implemented within

MC63) with the multilevel algorithms. We include both direct and indirect variants. For the

multilevel algorithms, we report results for the hybrid spectral-Sloan algorithm (with the spectral

ordering computed using HSL MC73) and for the multilevel Sloan algorithm (again computed using

HSL MC73 and, for the direct algorithm, refined using MC63). For each problem, the smallest root-

mean-square wavefront (and any within 5 per cent of the smallest) are highlighted in bold. Note

that when assessing the relative performance of the algorithms we make no distinction between

7

Table 4.2: The root-mean-square wavefronts and times required by the indirect multilevel Sloan

algorithm using the variable and supervariable connectivity graphs.

Identifier r.m.s time

G(A) GS G(A) GS

crplat2 332 260 0.24 0.01

fcondp2 2631 1862 3.25 0.23

fullb 1943 3110 3.32 0.33

halfb 1638 1462 3.49 0.35

inv-ext-2 3378 2272 9.18 0.37

mt1 1339 1626 2.37 0.15

opt1 530 526 0.44 0.04

ship 001 460 450 1.57 0.05

ship 003 1400 1544 3.28 0.22

shipsec1 2398 1686 2.51 0.22

shipsec5 1496 1370 2.80 0.28

shipsec8 2377 1701 1.86 0.19

srb1 318 327 0.71 0.05

thread 2294 1706 1.06 0.13

trdheim 145 161 0.42 0.02

troll 4265 2377 3.71 0.46

tsyl201 505 513 0.57 0.02

x104 1020 1106 3.56 0.11

the smallest wavefront and those that are close to the smallest since tie-breaking strategies within

the implementation of each algorithm can lead to small variations in the computed wavefronts.

Looking first at the results for the direct ordering algorithms (that is, the numbers in columns

2, 4 and 6), we see that both the hybrid spectral-Sloan and the multilevel Sloan algorithms are

generally an improvement on the Sloan algorithm. For many of the larger problems, including

fcondp2 and shipsec1, the improvements are substantial. Comparing the two direct multilevel

variants, the direct multilevel Sloan algorithm does not perform as well as the direct hybrid

spectral-Sloan. Similar conclusions can be drawn when comparing the different indirect variants.

Overall, the best method appears to be the indirect hybrid spectral-Sloan algorithm, with the

advantage over the MC63 Sloan algorithm being greatest for the large test problems (those with

more than about 10,000 elements). The indirect hybrid algorithm produces the best (or close to

the best) results for the majority of our test problems.

If only a single or small number of matrix factorizations and solves are to be performed

following the reordering of the elements, the cost of reordering the elements may be a concern.

Timings for a subset of our test problems are given in Table 4.4. The Sloan algorithm (MC63) is

clearly significantly faster than the multilevel and hybrid variants, particularly for the problems

with a large number of supervariables and elements. As already noted, Hu and Scott (2001)

introduced the multilevel Sloan profile reduction algorithm to save on the time required to

compute a spectral ordering and we do achieve some savings in the element ordering times

by using the multilevel Sloan algorithm rather than the spectral approach. For our examples,

the indirect multilevel algorithm is between 25 and 50 per cent faster than the indirect hybrid

8

Table 4.3: The root-mean-square wavefronts computed by the Sloan and multilevel algorithms.
∗ indicates the wavefront is larger than for the original ordering.

Identifier Sloan Hybrid Multilevel

(MC63) spectral-Sloan Sloan

direct indirect direct indirect direct indirect

cham 332 332 334 332 368 691

crplat2 334 327 234 244 271 257

fcondp2 3024 2667 1827 1700 2164 1863

fullb 2172 2021 1879 1833 2152 3110

halfb 1776 1608 1411 1365 1500 1462

inv-ext-2 8429∗ 3379∗ 8632∗ 2272 8699∗ 2272

mt1 1546 1335 1018 1176 1149 1626

opt1 619 528 539 557 592 526

ship 001 693 451 500 461 510 450

ship 003 1739 1558 1427 1371 1565 1544

shipsec1 2629 2494 1895 1444 1524 1686

shipsec5 1803 1499 1345 1317 1425 1370

shipsec8 2080 2302 1746 1644 1818 1701

srb1 321 318 334 326 338 327

thread 2215 1962 1442 1122 1948 1701

trdheim 172 146 147 155 135 161

troll 4334∗ 4229∗ 3912 3593 2669 2377

tsyl201 511 504 512 512 510 513

tubu 408 451 414 403 452 454

x104 1064 1268 1007 1061 989 1106

Table 4.4: The times (in seconds) for reordering the elements using the Sloan and multilevel

algorithms.

Identifier Sloan Hybrid Multilevel

(MC63) spectral-Sloan Sloan

direct indirect direct indirect direct indirect

cham 0.01 0.01 0.15 0.20 0.15 0.15

fcondp2 0.09 0.09 0.31 0.33 0.29 0.23

halfb 0.20 0.13 0.79 0.44 0.73 0.35

mt1 0.02 0.05 0.06 0.22 0.05 0.15

ship 003 0.17 0.09 0.49 0.27 0.64 0.22

shipsec1 0.13 0.09 0.64 0.27 0.45 0.22

shipsec8 0.13 0.08 0.44 0.25 0.44 0.19

thread 0.01 0.04 0.03 0.23 0.03 0.13

x104 0.02 0.05 0.05 0.20 0.05 0.10

algorithm.

9

4.3 Effect of Hager exchanges

The results reported so far did not use Hager exchanges. The results in Table 4.5 illustrate

the reductions in the root-mean-squared wavefront that are achieved by using Hager exchanges

within the call to HSL MC73. In these experiments, up to a maximum of 5 down/up exchanges were

allowed (the number of exchanges performed is fewer than 5 if the reductions in the profile are less

than a prescribed amount; see Reid and Scott, 2002 for details). Results are given for both the

Table 4.5: The root-mean-square wavefronts computed using the indirect spectral-Sloan and

multilevel Sloan algorithms with and without Hager exchanges. Numbers in bold indicate a

reduction of at least 5 per cent.

Identifier Hybrid Multilevel

spectral-Sloan Sloan

without with without with

cham 332 330 691 680

crplat2 244 232 257 239

fcondp2 1700 1621 1863 1805

fullb 1833 1804 3110 2832

halfb 1365 1362 1462 1371

ship 001 461 460 450 447

ship 003 1371 1322 1544 1544

shipsec1 1444 1418 1686 1495

shipsec5 1317 1276 1370 1300

shipsec8 1644 1545 1701 1562

srb1 326 326 327 324

troll 3593 3349 2377 2249

tubu 403 383 454 444

x104 1061 1052 1106 1104

indirect spectral-Sloan and multilevel Sloan algorithms. Problems for which the Hager exchanges

do not reduce the root-mean-square wavefront are omitted while those for which the reduction

exceeds 5 per cent are highlighted in bold. We see that there are only two problems for which the

Hager exchanges applied to the hybrid spectral-Sloan ordering leads to a significant reduction in

the wavefront. For the multilevel algorithm, Hager exchanges improve the ordering for a few more

test examples and for some, including halfb and shipsec8, the multilevel plus Hager ordering

is competitive with the hybrid spectral-Sloan ordering. However, using Hager exchanges can

add a large overhead to the cost of the element ordering. For example, for problem halfb, the

multilevel reordering time increases from 0.35 to 0.58 seconds and for shipsec8 from 0.19 to 0.33

seconds.

4.4 Element ordering with a frontal solver

As already discussed, the main motivation behind the work in this report is the need to compute

element orderings that are efficient when used with a frontal solver. In this section, we present

results for using the best element ordering method that we have, that is the indirect hybrid

spectral-Sloan algorithm, with the well-known HSL frontal solver MA42 of Duff and Scott (1996).

10

Comparisons are made with ordering the elements for MA42 using MC63 (both the direct and

indirect Sloan algorithms are run and for each problem the better of the two is selected).

Numerical values in the range (0, 1) are generated for the entries of the matrices using the HSL

pseudo random number generator routine FA14. Default settings are used for the MA42 control

Table 4.6: The results of using the hybrid spectral-Sloan ordering with the frontal solver MA42.

Identifier Time Number flops Factor entries

(seconds) (∗108) (∗105)

MC63 Hybrid MC63 Hybrid MC63 Hybrid

cham 3.1 3.2 29 29 85 85

crplat2 4.0 2.3 40 20 118 84

fcondp2 1657 785 27393 11560 9139 6100

fullb 1052 882 16117 13309 7735 7125

halfb 712 575 10463 8259 6477 5927

inv-ext-2 962 478 16387 7631 4877 3249

mt1 230 145 3462 2013 2397 1879

opt1 7.2 7.3 85 86 149 148

ship 001 13 13 140 146 312 318

ship 003 404 309 5663 4543 3557 3225

shipsec1 1075 388 17138 5683 6316 3778

shipsec5 544 431 7964 6139 5183 4563

shipsec8 641 413 9011 6217 4187 3640

srb1 12 12 114 120 342 394

thread 145 52 2271 727 1086 627

trdheim 1.1 1.1 6 6 60 62

troll 3468 3612 54610 55210 13428 13433

tsyl201 9.3 9.3 104 108 205 210

tubu 8.6 8.4 91 89 208 208

x104 149 145 2054 2036 1882 1861

parameters (with a minimum pivot block size of 16) and direct access files are used to store the

matrix factors. In Table 4.6 timings for factorizing and solving for a single right-hand side are

given, together with flop counts (the number of floating point operations required to factorize the

matrix) and the number of entries in the matrix factors. For each problem, the fastest time is

highlighted in bold (no distinction is made between the two times if the difference between them

is less than 5 per cent). We see that the reductions in the wavefronts reported on in Table 4.3

lead to sparser factors, smaller flop counts, and substantial savings in the time required by the

frontal solver MA42. For problems fcondp2 and shipsec1 the time is reduced by more than half.

It is clear that, in general, the faster factorization times more than compensate for the extra time

required to reorder the elements using the hybrid algorithm (see Table 4.4).

5 Concluding remarks

In this report, we have looked at using multilevel variants of Sloan’s algorithm to reorder finite-

elements for use with a frontal solver. Both direct and indirect versions of the reordering algorithm

have been considered and used in combination with spectral orderings and the Hager exchange

11

algorithm. Numerical experimentation showed that, in general, the best orderings are obtained

using the indirect hybrid spectral-Sloan algorithm. We are currently developing a new Fortran 95

frontal solver for inclusion in the software library HSL (2004). Previous frontal solvers within HSL

have required the user to preorder the elements but because using a good ordering is essential for

the efficiency of the method, the new package will automatically reorder the elements for the user.

Based on the results presented in this paper, the default setting will be to reorder the elements

using the indirect hybrid spectral-Sloan algorithm, with the multilevel Fiedler code HSL MC73

called internally to compute the necessary spectral ordering. Because the MC63 Sloan orderings

are fast and generally produce orderings of a similar quality for relatively small problems, the

new package will include an option to reorder using MC63.

6 Acknowledgements

I would like to thank Ron Fowler of the Rutherford Appleton Laboratory and Christian Damhaug

of Det Norske Veritas, Norway for supplying test problems.

References

S.T. Barnard and H.D. Simon. A fast multilevel implmentation of recursive spectral bisection

for partitioning unstructured problems. Concurrency: Practice and Experience, 6, 101–117,

1994.

S.T. Barnard, A. Pothen, and H.D. Simon. A spectral algorithm for envelope reduction of sparse

matrices. Numerical Linear Algebra with Applications, 2, 317–198, 1995.

I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric systems.

ACM Trans. Mathematical Software, 22(1), 30–45, 1996.

I.S. Duff, J.K. Reid, and J.A. Scott. The use of profile reduction algorithms with a frontal code.

Inter. Journal on Numerical Methods in Engineering, 28, 2555–2568, 1989.

M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to

graph theory. Czechoslovak Math. J., 25, 619–633, 1975.

W.W. Hager. Minimizing the profile of a matrix. SIAM J. Scientific Computing, 23(5), 1799–

1816, 2002.

HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See

http://hsl.rl.ac.uk/.

Y.F. Hu and J.A. Scott. A multilevel algorithm for wavefront reduction. SIAM J. Scientific

Computing, 23, 1352–1375, 2001.

Y.F. Hu and J.A. Scott. Ordering techniques for singly bordered block diagonal forms for

unsymmetric parallel sparse direct solvers. Technical Report RAL-TR-2003-020, Rutherford

Appleton Laboratory, 2003.

12

G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront reduction.

BIT, 37:3, 559–590, 1997.

J.K. Reid and J.A. Scott. Ordering symmetric sparse matrices for small profile and wavefront.

Inter. Journal on Numerical Methods in Engineering, 45, 1737–1755, 1999.

J.K. Reid and J.A. Scott. Implementing Hager’s exchange methods for matrix profile reduction.

ACM Trans. Mathematical Software, 28, 1–15, 2002.

J.A. Scott. On ordering elements for a frontal solver. Communications in Numerical Methods in

Engineering, 15, 309–323, 1999.

S.W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. Inter. Journal

on Numerical Methods in Engineering, 23, 1315–1324, 1986.

13

