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Motivation

Have PDE with solution u, solved using some numerical method to obtain numerical solution uh.

Desired properties of uh

Preservation of maximum principle

Accuracy (violation often caused by spurious oscillation)

Physical relevance of numerical solution (i.e. dose, concentration etc)

Compatibility (i.e. if solution is input to another model)
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Illustrative Example: Advection-Reaction

b · ∇u+ cu = f in Ω

u = g on Γ−,

where Γ− is the inflow boundary defined by the flow field b. Suppose that we set a rotational flow field

b(x, y) :=
1√

x2 + y2
(−y, x),

and piecewise constant data g on the inflow boundary, with 0 ≤ g(x) ≤ 1 for almost every x ∈ ∂Ω.

Then u should also be bounded between 0 and 1.
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Illustrative Example

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure: Contour plot of piecewise constant
solution
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Illustrative Example
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Linear Advection-Reaction

b · ∇u+ cu = f in Ω

u = g on Γ−,
(1)

The variational formulation of the advection reaction equation is to find u ∈ H−(Ω) such that

a(u, v) = l(v) ∀v ∈ L2(Ω),

where

a(w, v) =

∫
Ω

(b · ∇w + cw) v,

and

l(v) =

∫
Ω

fv.

We will assume a coercivity condition: ∃µ > 0 such that c(x)− 1
2∇ · b(x) ≥ µ for almost every x.
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Discretisation with SUPG

A common approach is to use a stabilised, conforming finite element approximation, that is, we find
uh ∈ V such that

ah(uh, vh) = lh(vh) ∀vh ∈ V,

where

ah(wh, vh) =

∫
Ω

(b · ∇wh + cvh) vh +
∑
K∈T

δK

∫
K

(b · ∇wh + cwh) b · ∇vh.

lh(vh) :=

∫
Ω

fvh +
∑
K∈T

δK

∫
K

f (b · ∇vh) ,

and
V := {vh ∈ C0(Ω) : vh|K ∈ R(K) ∀K ∈ T , vh = 0 on Γ−}.
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Main Idea

The SUPG method is provably stable and convergent as h→ 0, however oscillations are still present and
a discrete maximum principle does not hold.

Solution
Seek uh in the convex subset Kh of V by restricting the nodal values of function in V, that is

Kh := {vh ∈ V : vh(xi) ∈ [0, 1], i = 1, . . . , N}. (2)

We find uh via projection onto this convex set, that is, uh is the element of Kh such that

a(uh, vh − uh) ≥ l(vh − uh) ∀vh ∈ Kh. (3)

Remark
We essentially solve a discrete ‘obstacle’ problem where we constrain the value of the discrete solution
at degrees of freedom.

The choice of Kh is consistent in the sense that the bounds are the same as those satisfied by the PDE
solution.
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Nodally Bound-Preserving FEM

Use of discrete variational inequalities suggested by Chang & Nakshatrala 2017 and Kirby &
Shapero 2024.

Bound-preserving stabilised FEM introduced by Barrenechea et al 2024 for elliptic problems.
Solution shown to satisfy a variational inequality.

Desired Properties

Satisfies bounds (nodally at least, see below)

Satisfies the same optimal approximation properties as the regular FE solution

Remark
For polynomial degree 1, Kh consists of precisely the finite element functions which satisfy upper and
lower bounds pointwise due to the bound-preserving properties of linear interpolation. For polynomial
degree 2 or higher, this is NOT the case, and functions are nodally bound-preserving only.
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Error Analysis

It remains to show that it satisfies optimal error estimates.

Lemma (consistency)

For any vh ∈ V,
lh(vh)− ah(u, vh) = 0. (4)

We note that, in general, this is not true in the finite element approximation of variational inequalities.
The natural norm for this problem is∣∣∣∣∣∣w2

∣∣∣∣∣∣ := µ ∥w∥2L2(Ω) +
∑
K∈T

∥∥∥δ 1
2

Kb · ∇w
∥∥∥2
L2(K)

+ |w|2Γ+ (5)

Lemma (continuity & coercivity)

ah(w, v) ≤ C|||w|||∗|||v|||, ah(w,w) ≥
1

2
|||w|||2. (6)
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Error Analysis

Theorem (Best Approximation)

There exists a constant C > 0 independent of h such that

|||u− uh||| ≤ C inf
vh∈Kh

|||u− vh|||∗. (7)

Instead of the usual Galerkin orthogonality, we use consistency to show

ah(u− uh, uh − vh) ≥ 0. (8)

Combining the above with continuity and coercivity in the usual way gives the result.

The result is somewhere between Céa’s lemma and the best approximation result in Falk 1974,
where extra terms appear relating to the approximability of the Ritz projection in the convex set.
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Error Analysis

Since the Lagrange interpolant of u is in the set Kh, we can invoke interpolation estimates and obtain
convergence rates.

Theorem (Convergence Rates)

Let b ∈ W1,∞(Ω), c ∈ L∞(Ω), and let u be the unique solution of (1), with uh ∈ Kh the finite element
solution. Let k ≥ 1, and assume that u ∈ Hr(Ω), where r > d

2 is sufficiently large so that u is regular
enough to belong to the domain of the Lagrange interpolation operator. Suppose that Cδ > 0 is
sufficiently small so that

δK := CδhK ≤ µ

∥c∥2L∞(K)

.

Then there exists a constant C > 0 independent of h such that

|||u− uh||| ≤ Chmin{k+1,r}− 1
2 |u|Hr(Ω). (9)

So we get the usual SUPG rate of k + 1
2 .
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Linear Examples

Let Ω = (0, 1)× (0, 1), and let b1 = (1,
√
2), so that the inflow boundary is

Γ+ = {(x, y) ∈ ∂Ω : x = 0} ∪ {(x, y) ∈ ∂Ω : y = 0}.

Smooth inflow boundary data is prescribed:

g1(x, y) :=

{
exp

(
1− 1

1−5(x− 1
2 )

2

)
if |x− 1

2 | <
1√
5
,

0 otherwise.

And non-smooth:

g2(x, y) :=

{
1 if |x− 1

2 | <
1√
5
,

0 otherwise.
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Convergence to Smooth and Non-Smooth solutions
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Figure: Optimal rates for k = 1, 2.

10−3 10−2
10−2

10−1

h

|||u
−
u
h
|||

k = 1
k = 2

O(h1/2)

Figure: Suboptimal Convergence

Ben Ashby (IMI) Bound-Preserving FEM April 2025 15 / 28



Pure Advection Problem

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure: Contour plot of piecewise constant solution
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A Nonlinear Example

b · ∇u+ |u|p−2u = f in Ω

u = 0 on Γ−,
(10)

where 1 < p ≤ 2.

The weak form is to find u ∈ H−, p(Ω) such that

a(u, v) + b(u;u, v) = l(v) ∀v ∈ L2(Ω), (11)

where

b(u; v, w) =

∫
Ω

|u|p−2vw dx. (12)
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Finite Element Discretisation

The bound-preserving finite element method is to find uh ∈ Kh such that

ah(uh, vh − uh) + b(uh;uh, vh − uh) ≥ lh(vh − uh) ∀vh ∈ Kh. (13)

Note that we treat the advection term only with SUPG stabilisation, giving an inconsistent method.
This time we have:

Lemma (lack of consistency)

lh(wh)− ah(u,wh)− b(u;u,wh) =
∑
K∈T

δK

∫
K

|u|p−2u (b · ∇wh) . (14)
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Quasi-Norm

Problems such as this are often analysed using quasi-norms to achieve optimal convergence rates.
Introduce the notation, for fixed w ∈ Lp(Ω),

∥v∥2(w,p) :=

∫
Ω

|v|2 (|v|+ |w|)p−2
dx, (15)

for all v ∈ Lp(Ω).
In this quasi-norm, the form b(·; ·, ·) satisfies monotonicity and boundedness properties that take the
place of the usual continuity and coercivity in the error analysis.
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Main Result

Theorem
Assume that div b = 0, that u is the exact solution, and that uh is the finite element solution. Then

|||u− uh|||2 + ∥u− uh∥2(u,p) ≤ C inf
vh∈Kh

(
∥u− vh∥2(u,p) + |||u− vh|||2∗

)
+ sup

0̸=wh∈V

∑
K∈T δK

∫
K
|u|p−2u (b · ∇wh)

|||wh|||
. (16)

The extra term results from the inconsistency of the finite element method.

The achievable convergence rate now requires specific choices of the SUPG weights δK due to the
inconsistency.

Nonlinearity poses challenges for the analysis if the consistent analogue is used.

Note that the norm |||·||| is now weaker (it no longer has the L2 component), resulting in slightly
weaker error control.
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Nonlinear Reaction

We set p = 3
2

Smooth boundary data is prescribed

An exact solution can be found using the method of characteristics, which is piecewise smooth, and
can be shown to be in H2(Ω) (in general the maximum regularity one can expect from this
problem, even for smooth boundary data).

In the numerical solver, the Jacobian (which is singular around u = 0) had a small amount of
regularisation added to improve numerical performance.
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Nonlinear Reaction
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Problem with Nonlinear Reaction Term
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Figure: Approximation error, solution in H2(Ω)
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Application: Simple Model of Proton Transport

A simplified model of proton transport is given by

ω · ∇xψ(x, E)− ∂

∂E
(S(E)ψ(x, E))− ϵ∆ωψ(x, E) = f (17)

This is solved with the nodally bound-preserving method presented here.

ψ is the proton fluence

Physical dose (the quantity of interest for practitioners) is calculated from fluence by integrating
over energy.

Efficient proton transport and dose computations are an integral part of treatment planning in
Proton Beam Therapy (PBT).

It is crucial that the physics of the problem are appropriately represented in numerical models (e.g.
can’t have negative absorbed dose).

The angular Laplacian approximates Coulomb scattering, while the stopping power term
approximates energy loss from ionisation.
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Application: Proton Transport Computations
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Application: Proton Transport Computations
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Figure: Aim to produce conforming dose profiles using combinations of Bragg peaks. Method must be efficient
enough to evaluate many different solutions as part of an optimisation routine.
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Application: Proton Transport Computations
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Figure: Comparison of dose curves solved with conventional SUPG and the bound-preserving version.
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Conclusions

The framework presented here is flexible, and applicable to a broad range of problems satisfying a
variational formulation.

For Piecewise (bi)linear finite element methods, bounds on the solution are satisfied. For higher
order methods, bounds are preserved at the degrees of freedom.

In the linear case, the same convergence rates are achieved as the standard SUPG method.

Similar rates are achievable in the nonlinear case as long as the SUPG weights are chosen correctly.

Efficient iterative algorithms are available in many computational packages (e.g. the simulations
here used firedrake with PETSc). The cost of solving the variational inequality (i.e. replacing a
linear problem with a nonlinear one) is smaller than one might expect
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