

Scientific Computing

Cross-Validation for Measuring and Preventing Overfitting in Cryo-EM

Jess Huntley

Mathematical Research Software Engineer, Science and Technology Facilities Council jessica.huntley@stfc.ac.uk

Science and Technology Facilities Council

Ada Lovelace Centre

Agenda

- Introduction to Cryo-EM
- Project Motivation
- Measuring Overfitting
- The Cross-Validation Workflow
- Project Extensions

What is Cryo-EM?

- Biological macromolecules imaged in electron microscope
- Molecules rapidly frozen in a thin layer of vitreous ice – captures molecules in their native state.
- Randomly oriented and positioned in ice layer.

Scientific Computing

Figure: Doerr, A. Single-particle cryo-electron microscopy. Nat Methods 13, 23 (2016). https://doi.org/10.1038/nmeth.3700

Movie Frames

Movie Frames

Particle picking and extraction

Movie Frames

Particle alignment and classification

Particle picking and extraction

Agenda

- Introduction to Cryo-EM
- Project Motivation
- Measuring Overfitting
- The Cross-Validation Workflow
- Project Extensions

Project Motivation

Images are noisy!

Image Formation Model

Usually, all movie frames are summed together to calculate a 3D reconstruction. Instead, consider a "single-frame reconstruction".

In reciprocal space, each structure factor F_i can be written as $F_i = F_S + N_i$

for (randomly-chosen) frame with index *i*

 F_s is "true" signal shared by all frames, and N_i is the noise contribution from that particular frame

Work, Free, and Test Sets

Work, Free, and Test Sets

13

Fourier Shell Correlation

- Widely used method to assess agreement between 3D volumes in cryo-EM
- Defined as the Pearson Correlation Coefficient between two complex variables:

$$FSC(r) = Corr(F_A, F_B)$$
$$= \frac{Cov(F_A, F_B)}{\sqrt{Var(F_A)Var(F_B)}}$$

Figure: https://myscope.training/CRYO_Why_do_Fourier_transforms

Fourier Shell Correlation

Agenda

- Introduction to Cryo-EM
- Project Motivation
- Measuring Overfitting
- The Cross-Validation Workflow
- Project Extensions

Estimating FSC curves

- There are several FSC curves that can be directly calculated between structure factors from an atomic model (F_c) and the work, free, and test maps.
- Can use these to estimate what we want to know:
 - How closely does the fitted model match the real structure observed in the data, i.e. FSC_{cs}
 - How much has the model been over-fitted to noise, i.e. FSC_{cn}

Assumptions

- All frames are equally well fitted to the final reconstruction, so all common shared signal is included in F_s and noise N_w is uncorrelated with the signal.
- Assume that the power of the noise in each single frame reconstruction is the same and noise variables N_i are uncorrelated to each other

Estimating FSC curves

Starting from Fisher Z-transform, $z = \frac{1}{2} \ln(\frac{1+r}{1-r})$

$$FSC_{cs} = \tanh(\frac{1}{2}\ln(\frac{\sqrt{FSC_{tf}} + FSC_{cf}}{\sqrt{FSC_{tf}} - FSC_{cf}}))$$

$$FSC_{cn} = \tanh(\frac{1}{2}\ln(\frac{\sqrt{1-FSC_{tf}} + \sqrt{\frac{n_W}{n_f}}(FSC_{ct} - FSC_{cf})}{\sqrt{1-FSC_{tf}} - \sqrt{\frac{n_W}{n_f}}(FSC_{ct} - FSC_{cf})}))$$

Uncertainty Quantification

- Bootstrapping used estimate 95% confidence intervals
 - Repeatedly sample Fourier components for each Fourier shell with replacement
- Need many bootstrap iterations (~1000) for a good estimate of underlying distribution
 - Slow to compute but embarrassingly parallel

Beta-Galactosidase Dataset

FSCs for Refmac5 37, 4f 1 w weight 10.0

Scientific Computing

Agenda

- Introduction to Cryo-EM
- Project Motivation
- Measuring Overfitting
- Software Implementation
- Project Extensions

The Cross-Validation Workflow

Validating 2D Class Averages

FRCs - good class

FRCs - bad class

Facilities Council

What's Next?

- More testing!
 - Involvement of electron Bio-Imaging Centre (eBIC) scientists
 - How to effectively summarise 2D class average FRCs?
 - Can we account for electron damage across movie frames?
- Method Refinements
 - Properly accounting for degrees of freedom for bootstrapping
 - How to account for variability of free set sampling?
 - How to handle noisy data points?

Scientific Computing

Thank yo

jessica.huntley@stfc.ac.uk

scd.stfc.ac.uk

