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What is Cryo-EM?

* Biological macromolecules imaged in electron
microscope

» Molecules rapidly frozen in a thin layer of vitreous
iIce — captures molecules in their native state.

» Randomly oriented and positioned In ice layer.

Science and

Faciltties Council Figure: Doerr, A. Single-particle cryo-electron microscopy. Nat Methods
Scientific Computing 13, 23 (2016). https://doi.org/10.1038/nmeth.3700
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Cryo-EM Image Processing
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Project Motivation

* Images are noisy!
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Image Formation Model

Usually, all movie frames are summed together to calculate a 3D
reconstruction. Instead, consider a “single-frame reconstruction”.

In reciprocal space, each structure factor F; can be written as
Fi — FS + Ni

for (randomly-chosen) frame with index i

E, is “true” signal shared by all frames, and N; is the noise
contribution from that particular frame
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Work, Free, and Test Sets
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Work, Free, and Test Sets

Work
Frames

Test Frames

E, =n,F, + N, Fy
nw
= nyfs + N;
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Science and Ft = nf F“g + Nt
% Technology ng
Facilities Council =n £ FS‘ + Ni
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Fourier Shell Correlation

» Widely used method to assess
agreement between 3D volumes
Real space Fourier space in Cl‘yO-EM

Three dimensional

S——— = Defined as the Pearson
> Correlation Coefficient between
two complex variables:

Inverse three dimensional FSC (T‘) COT'T' (FA’ FB)
Fourier transform COU (FA, FB)

sl e VVar(E;)Var (F)
Facilities Council
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Fourier Shell Correlation

Final resolution = 3.9 Angstroms
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Estimating FSC curves

» There are several FSC curves that can be directly calculated
between structure factors from an atomic model (F.) and the
work, free, and test maps.

= Can use these to estimate what we want to know:

= How closely does the fitted model match the real structure observed in
the data, i.e. FSC_

* How much has the model been over-fitted to noise, i.e. FSC,,
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Assumptions

= All frames are equally well fitted to the final reconstruction, so
all common shared signal is included in E;, and noise N,, IS
uncorrelated with the signal.

» Assume that the power of the noise in each single frame
reconstruction is the same and noise variables N; are
uncorrelated to each other
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Estimating FSC curves

Starting from Fisher Z-transform, z = %ln(g)

B 1, JFSCr+FSCy
FSCcs = tanh(; 1n(m—l~*sccf))

JI-FSCes+ /TT;—V;(FSCCt—FSCCf)

JI-FSCf— %(FSCCt—FSCCf)

FSC,., = tanh(% In(
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Uncertainty Quantification

» Bootstrapping used estimate 95% confidence intervals

» Repeatedly sample Fourier components for each Fourier shell with
replacement

* Need many bootstrap iterations (~1000) for a good estimate of
underlying distribution

= Slow to compute but embarrassingly parallel
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Beta-Galactosidase Dataset

FSCs for Refmac5 35, 4f 1 w weight 0.1 FSCs for Refmac5 37, 4f 1 w weight 10.0
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The Cross-Validation Workflow
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Jack Bean Urease Dataset
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Validating 2D Class
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What’s Next?

» More testing!
* |nvolvement of electron Bio-Imaging Centre (eBIC) scientists
= How to effectively summarise 2D class average FRCs?
= Can we account for electron damage across movie frames?

» Method Refinements
» Properly accounting for degrees of freedom for bootstrapping
= How to account for variability of free set sampling?
* How to handle noisy data points?
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