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Consider the optimization problem

min
x

f (x),

where f (x) is twice differentiable function of n variables.

Gradient
g(x) := ∇f (x)

Hessian matrix
H(x) := ∇2f (x)

Our interest is n large and H(x) sparse
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Summary

Large-scale optimization algorithms frequently require
large sparse Hessian matrices H(x)
For example, in a trust region method.

How can we obtain good approximations to H(x)?

We want fast and efficient approximation algorithm with
scope to exploit parallelism.

We propose a novel approach that seeks to satisfy as many
componentwise secant equations as is necessary to define
each row of the Hessian matrix.
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Why do we need an approximation?

In optimisation algorithms, there are both theoretical
and practical benefits of having H(x).

In practice, H(x) is generally not readily available.

Analytic expression unlikely.

Backward mode of automatic differentiation, g(x) costs small
multiple of evaluating f (x)

BUT H(x) costs O(n) times that of f (x).

Key issue: n is LARGE
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Challenge

Build approximations B(k) = {b(k)ij } of H(x) at a sequence

of iterates x (k).

Interest in approximating H(x) dates back to 1960s.

Focus was on n small and H(x) dense.

Extensions to sparse case unsuccessful because either the formulae
used generated dense matrices (impractical for large problems), or
imposing sparsity led to numerical instability in the approximation
algorithms.

In 1990s, limited-memory strategy proposed (Fletcher, Grothey and
Leyffer) that incorporated the curvature observed at a number of
previous iterates. But no attempt to impose sparsity.
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Secant equations

Let H(k) = H(x (k))

Properties: H(k) is n × n symmetric matrix with known sparsity pattern.

Aim: use previously accumulated information to estimate B(k) ≈ H(k).

Define s(l) := x (l) − x (l−1) and y (l) := g(x (l))− g(x (l−1))

Construct B(k) that best satisfies the multiple secant conditions

B(k)s(l) = y (l), l = k −m + 1, . . . , k

where m is the number of past (known) data pairs {s(l), y (l)}
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Secant equations

Construct B(k) that best satisfies the multiple secant conditions

B(k)s(l) = y (l), l = k −m + 1, . . . , k .

For each k , solve convex quadratic programming problem

min
B(k)

k∑
l=k−m+1

‖B(k)s(l) − y (l)‖2F

such that

B(k) = (B(k))T and S(B(k)) = S(H(k)).

Here S(B) := {(i , j) : bij 6= 0} denotes sparsity pattern of B.

Prohibitively expensive for large n within optimization code.
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New approach

Start with the case that all rows of H(k) are sparse.

Instead of imposing full secant conditions for each row i , we will
satisfy as many componentwise equations

eTi B(k)s(l) = eTi y (l), l = k, k − 1, . . . ,

as are necessary to define the row.

Set S(k)i := {j : h
(k)
ij 6= 0} and nzi := |S(k)i |

Then for l = k , k − 1, . . . , k − nzi + 1 we require∑
j∈S(k)i

b
(k)
ij s

(l)
j = y

(l)
i
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Let z
(k)
i denote the vector of entries in row i

Rewriting, z
(k)
i is the solution of nzi × nzi dense linear system

A
(k)
i z

(k)
i = c

(k)
i (1)

where (A
(k)
i )lj = s

(l)
j and (c

(k)
i )l = y

(l)
i .
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Example 1 Consider the 3× 3 approximate Hessian matrix

B(k) =

b
(k)
11 b

(k)
12 0

b
(k)
21 0 b

(k)
23

0 b
(k)
32 b

(k)
33

 , with b
(k)
12 = b

(k)
21 and b

(k)
23 = b

(k)
32 .

For row i = 2, S(k)2 = {1, 3}, nz2 = 2 and system (1) is(
s
(k)
1 s

(k)
3

s
(k−1)
1 s

(k−1)
3

)
︸ ︷︷ ︸

A
(k)
2

(
b
(k)
21

b
(k)
23

)
︸ ︷︷ ︸

z
(k)
2

=

(
y
(k)
2

y
(k−1)
2

)
︸ ︷︷ ︸

c
(k)
2

.
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Algorithm 1: Sparse Hessian approximation (row-wise independent)

1: for i = 1, . . . , n do
2: Compute row i by constructing and solving system (1).
3: end for
4: Symmetrise B(k) := (B(k) + (B(k))T )/2.

Important: the rows can be computed in parallel in any order.

But averaging the off-diagonal entries does not truly take symmetry into
account.

Also, only one triangle of B(k) may be available.
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Rewrite the system

A
(k)
i z

(k)
i = c

(k)
i (1)

U
(k)
i z̃

(k)
i = c

(k)
i − K

(k)
i w

(k)
i , (2)

where

w
(k)
i holds the entries in row i of B(k) that are already known.

z̃
(k)
i holds the nui unknown entries in row i .

U
(k)
i is a square matrix of order nui ≤ nzi .
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Example 2 Consider the 5× 5 approximate Hessian matrix

B(k) =


b
(k)
11 0 0 b

(k)
14 0

0 b
(k)
22 0 b

(k)
24 0

0 0 0 b
(k)
34 0

b
(k)
41 b

(k)
42 b

(k)
43 b

(k)
44 b

(k)
45

0 0 0 b
(k)
54 b

(k)
55

 .

Assume rows are computed in the natural order 1, 2, 3, 4, 5.

In row 4, b
(k)
41 , b

(k)
42 , b

(k)
43 are already known by symmetry. Hence nu4 = 2.

(
s
(k)
4 s

(k)
5

s
(k−1)
4 s

(k−1)
5

)
︸ ︷︷ ︸

U
(k)
4

(
b
(k)
44

b
(k)
45

)
︸ ︷︷ ︸

z̃
(k)
4

=

(
y
(k)
4

y
(k−1)
4

)
︸ ︷︷ ︸

c
(k)
4

−

(
s
(k)
1 s

(k)
2 s

(k)
3

s
(k−1)
1 s

(k−1)
2 s

(k−1)
3

)
︸ ︷︷ ︸

K
(k)
4

b
(k)
14

b
(k)
24

b
(k)
34


︸ ︷︷ ︸

w
(k)
4

.
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The order in which the rows are processed is now important.

Algorithm 2: Sparse Hessian approximation (row-wise dependent)

1: Compute adjacency graph G(B(k)) and degree∗ of each vertex.
2: for i = 1, . . . , n do
3: Select vertex v of minimum degree; let corresponding row be rowi .
4: Compute the nui unknown entries in rowi by solving a linear

system of order nui .
5: Remove v ; decrement degree of each remaining neighbour by 1.
6: end for

∗ initially the degree is the number of entries in the corresponding row
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Problems:

serial approach;

inaccurate estimates from earlier steps can be magnified when solving
for current row, leading to large error growth, particularly if some
rows have a large number of entries. This happens in practice!
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Numerical experiments to illustrate the issues

Examples from CUTEst test set

Results for fixed Hessian H(x (k)) = H for all k .

Randomly generate s(l) ∈ (−1, 1) and then compute y (l) = Hs(l) for
l = 1, . . . ,m.

If the linear system to be solved for the unknowns in a row is under or
over determined then compute the linear least squares solution (using
an SVD decomposition).

Check results using maximum and median relative componentwise error

max rel err = max
(i , j)∈S(H)

|bij − hij |/max(1, |hij |),

med rel err = median
(i , j)∈S(H)

|bij − hij |/max(1, |hij |),
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Results with m = 100

identifier nnz(row) Algorithm 1 Algorithm 2
max rel err med rel err max rel err med rel err

CURLY30 61 8.83E-10 9.69E-15 6.00E-06 9.29E-12
NCVXBQP1 9 1.41E-09 1.22E-15 ‡ 2.59E+01
SINQUAD 5000 9.77E-01 2.30E-16 3.66E-11 2.30E-16
SPARSQUR 56 3.24E-09 1.69E-14 ‡ ‡

LUKVLE12 2502 9.55E-01 6.33E-16 3.22E-09 1.63E-15
MSQRTA 64 3.69E-12 4.66E-15 ‡ ‡

YATP1SQ 352 2.10 9.44E-16 2.41E-09 9.44E-16

nnz(row) denotes max number of entries in a row of H
‡ indicates error exceeds 1015

Conclude:

Algorithm 1 has problems if rows are “dense”.

Algorithm 2 is unstable.
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How to overcome problems of simple approach?
Suppose B(k) has been permuted to form(

B
(k)
11 B

(k)
12

B
(k)
21 B

(k)
22

)
, with B

(k)
21 = (B

(k)
12 )T .

B
(k)
11 and B

(k)
22 are square symmetric matrices

the n1 < n rows of (B
(k)
11 B

(k)
12 ) are sparse

remaining n2 = n − n1 � n1 rows of (B
(k)
21 B

(k)
22 ) considered “dense”

Algorithm 3: Sparse-dense block parallel approach

Use Algorithm 1 to compute sparse rows (B
(k)
11 B

(k)
12 ) (parallel)

Set B
(k)
21 by symmetry

Use Algorithm 1 for small n2 × n2 block B
(k)
22 (parallel)
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Example 3

B(k) =


b
(k)
11 0 b

(k)
13 b

(k)
14

0 0 b
(k)
23 b

(k)
24

b
(k)
31 b

(k)
32 b

(k)
33 b

(k)
34

b
(k)
41 b

(k)
42 b

(k)
43 b

(k)
44


Rows 1 and 2 are sparse and rows 3 and 4 dense.
Linear system for dense row 3 is(

s
(k)
3 s

(k)
4

s
(k−1)
3 s

(k−1)
4

)(
b
(k)
33

b
(k)
34

)
=

(
y
(k)
3

y
(k−1)
3

)
−

(
s
(k)
1 s

(k)
2

s
(k−1)
1 s

(k−1)
2

)(
b
(k)
13

b
(k)
23

)

Similar expression for dense row 4.

Final value of entries (3,4) and (4,3) of B(k) is (b
(k)
34 + b

(k)
43 )/2

(symmetrisation).
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Does this work? (m = 100)

identifier max rel err med rel err serial parallel speedup

CURLY30 5.41E-11 5.56E-15 4.55 0.34 13.23
NCVXBQP1 3.15E-11 1.07E-15 0.53 0.05 10.06
SINQUAD 1.99E-11 2.17E-16 0.01 0.01 2.17
SPARSQUR 7.63E-10 1.28E-14 1.40 0.12 11.38

LUKVLE12 4.48E-13 6.66E-16 0.04 0.01 4.78
MSQRTA 9.47E-13 2.66E-15 0.51 0.06 8.10
YATP1SQ 1.36E-11 9.17E-16 0.49 0.07 7.17

Times in seconds are on single core and 28 cores of a dedicated machine
with 32 AMD Epyc 7502 CPUs clocked at 2.5GHz with 256 GB of RAM
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Now vary number m of past iterates. Plot is median relative error.

If insufficient past data (m too small) do not get accurate H

Once m sufficiently large, sharp transition to accurate H

e.g, CURLY30 has a banded Hessian (bandwidth 61)
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Can we do better?

Algorithm 4: Recursive block parallel approach

Apply block approach recursively.

B =

(
B11 B12

BT
12 B22

)
=⇒ B22 =

(
B

(1)
11 B

(1)
12

(B
(1)
12 )T B

(1)
22

)
=⇒ B

(1)
22 =

(
B

(2)
11 B

(2)
12

(B
(2)
12 )T B

(2)
22

)

Rows in (B11 B12) are sparse. Compute with Algorithm 1.

Then set BT
12. Repeat process on B22 (split it into sparse and dense rows).
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Problems for which recursion is beneficial.

Can get good improvment with smaller m

e.g, JIMACK (nnz(row) = 81)

Jennifer Scott (RAL and UoR) Approximating Hessians Bath RAL Day, 10 April 2025 23 / 25



Concluding remarks

We have addressed the problem of approximating large sparse Hessian
matrices.

We have proposed new algorithms and derived one that is efficient in
parallel and stable.

We obtain accurate approximate Hessians provided there is sufficient
past data.

The methods are available in the Fortran module sha, with a
C interface, as part of the open-source GALAHAD library.

Jennifer Scott (RAL and UoR) Approximating Hessians Bath RAL Day, 10 April 2025 24 / 25



Thank you for listening.
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