
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2010; 82:64–98
Published online 23 October 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2758

HSL MI20: An efficient AMG preconditioner for finite element
problems in 3D

Jonathan Boyle1, Milan Mihajlović2 and Jennifer Scott3,∗,†

1School of Mathematics, University of Manchester, Alan Turing Building, Manchester M13 9PL, England, U.K.
2School of Computer Science, University of Manchester, Kilburn Building, Manchester M13 9PL, England, U.K.

3Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, OX11 0QX, England, U.K.

SUMMARY

Algebraic multigrid (AMG) is one of the most effective iterative methods for the solution of large, sparse
linear systems obtained from the discretization of second-order scalar elliptic self-adjoint partial differential
equations. It can also be used as a preconditioner for Krylov subspace methods. In this communication,
we report on the design and development of a robust, effective and portable Fortran 95 implementation of
the classical Ruge–Stüben AMG, which is available as package HSL MI20 within the HSL mathematical
software library. The routine can be used as a ‘black-box’ preconditioner, but it also offers the user a range
of options and parameters. Proper tuning of these parameters for a particular application can significantly
enhance the performance of an AMG-preconditioned Krylov solver. This is illustrated using a number of
examples arising in the unstructured finite element discretization of the diffusion, the convection–diffusion,
and the Stokes equations, as well as transient thermal convection problems associated with the Boussinesq
approximation of the Navier–Stokes equations in 3D. Copyright q 2009 John Wiley & Sons, Ltd.

Received 1 October 2008; Revised 7 July 2009; Accepted 24 August 2009

KEY WORDS: large sparse linear systems; Krylov subspace methods; preconditioning; algebraic
multigrid; Fortran 95

1. INTRODUCTION

Mathematical models of important physical systems and phenomena are often expressed in terms
of differential equations (DEs). Numerical algorithms for the solution of DEs generally assume
some form of discretization of a continuous problem, resulting in a system of linear or non-linear

∗Correspondence to: Jennifer Scott, Computational Science and Engineering Department, Rutherford Appleton
Laboratory, Chilton, Oxfordshire, OX11 0QX, England, U.K.

†E-mail: jennifer.scott@stfc.ac.uk

Contract/grant sponsor: EPSRC; contract/grant number: EP/C000528/1
Contract/grant sponsor: EPSRC; contract/grant number: GR/S42170

Copyright q 2009 John Wiley & Sons, Ltd.

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 65

equations. In most cases, the coefficient matrices are large, sparse and ill-conditioned (see, for
example [1, p. 57, 148]). Research into the development of efficient algorithms for both the direct
and iterative solution of such systems has resulted in a host of robust and effective methods (an
introduction is provided by the standard texts [2, 3]). One of the desirable properties of a linear
solver is optimal scaling of the execution time and requested computational resources with the
discrete problem size, irrespective of other problem parameters. Modern sparse direct solvers are
not capable of achieving optimal scaling; in particular, the memory and operation count for a direct
solver generally increase much more rapidly than the system size. This limits the suitability of
direct solvers for solving the linear systems obtained from the discretization of partial differential
equations (PDEs) in three spatial dimensions.

Iterative solution techniques, such as Krylov subspace methods [3, Chapter 7], have the optimal
storage requirements and the computational cost per iteration, thus offering the potential to be
optimal solvers. Unfortunately, the total number of iterations for convergence is normally not
known in advance and can potentially be very large (it is determined by the spectral properties of
the system coefficient matrix and is bounded by the size of the linear system). In such cases, the
optimal property of the solver is lost, although it may be achieved (at least, approximately) if the
system is appropriately preconditioned. A good preconditioner [1, Section 2.2], [3, Chapter 10],
[4, Section 9.2] is a matrix (or linear operator) that is spectrally close to the system coefficient
matrix, but is computationally cheap to assemble and to apply the action of its inverse to a vector.
Development of optimal preconditioners is inevitably problem-specific; they have been developed
for a wide range of important problems in structural mechanics [5, 6], fluid mechanics [1, 7] and
electromagnetism [8, 9].

An important class of optimal iterative solvers for the linear systems that are obtained from
common discretizations of scalar, elliptic, self-adjoint PDEs is based on multigrid (MG) methods
[10, 11]. In the sequel, we assume that a PDE is discretized by a suitable method, such as the finite
element method (FEM) or finite volume method, on a given partitioning of the continuous domain
(referred to as the grid), resulting in a system of linear equations. The dimension of this system is
proportional to the number of points (nodes) in the grid, with each discrete unknown associated
with a grid point. MG exploits the observation that simple iterative solvers, such as Gauss–Seidel
(GS) or damped Jacobi (DJ) [3, Chapter 4] (which are also referred to as relaxation methods
or smoothers) are capable of reducing only certain components of the solution error, namely the
high-frequency (oscillatory) components [10, Chapter 2]. Such behaviour is a consequence of
their local nature—the update of each unknown is influenced by only a very few neighbouring
unknowns. On the other hand, the effective reduction of slowly-changing (low-frequency or smooth)
components of the solution error requires global communication between all the unknowns in the
system. Smooth error components will become progressively more oscillatory if represented on
grids that are coarser than the grid on which the problem is discretized. Thus, the basic concept of
geometric multigrid (GMG) is to reduce, by the application of a relaxation method, the solution
error components that are regarded as high-frequency on the current grid, and then to project the
remaining error to a coarser grid. On this grid, some of the error components will be further reduced
by relaxation, before another projection to an even coarser grid. The implementation of GMG
requires knowledge of the geometric information for a nested hierarchy of progressively coarser
grids, the discrete representation of the problem on these grids, and the means of communicating
the information between the grids. These requirements are frequently difficult to meet. For example,
finite element modelling of realistic problems in industrial applications involves complex domain
geometries, often with internal boundaries. In such cases, non-structured grids, or composite

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

66 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

adaptively refined grids, are used for which it is not possible or convenient to generate a nested
sequence of coarser grids [10, p. 172]. In an attempt to overcome these difficulties while retaining
the benefits of the mulitgrid concept, algebraic multigrid (AMG) was introduced [12]. In AMG,
a sequence of successively coarser (smaller) problems is generated by an automatic coarsening
procedure. The heuristics of this procedure are based on the properties of discrete scalar, elliptic,
self-adjoint operators and no grid information is needed. This extends considerably the application
of the multigrid approach and even allows its use on the problems that are not directly associated
with a grid. There are a number of different coarsening strategies used in this context including the
classical Ruge–Stüben coarsening and its variants [13], the smoothed aggregation (SA) AMG [14],
and the agglomeration AMG [15, 16]. There are generalizations of the Ruge–Stüben coarsening
procedure aimed at the solution of systems of PDEs (see Section 2.4 for more details). The classical
Ruge–Stüben coarsening procedure can be parallelized using domain decomposition [17].

The purpose of this communication is twofold: to introduce to a wider engineering community
the new code HSL MI20 in the mathematical software library HSL [18] and to demonstrate
how a proper selection of the parameters within HSL MI20 leads to highly effective and robust
AMG-preconditioned Krylov solvers for scalar elliptic problems in 3D and AMG-based block
preconditioners for systems of PDEs that arise in fluid mechanics (the Stokes problem and the
simulations of the transient thermal convection problem—the Boussinesq problem). HSL MI20
computes an AMG preconditioner using the classical Ruge–Stüben coarsening procedure.

The paper is organized as follows. In Section 2, we introduce the basics of the classical AMG
method. Section 3 describes the main features of the code HSL MI20. Section 4 reports numerical
results for Krylov solvers preconditioned by AMG (using HSL MI20) when applied to discrete
diffusion and convection–diffusion problems in 3D and, within a block preconditioning framework,
to the Stokes problem in 3D and the transient Boussinesq equations in 3D. The problems are
discretized by the FEM using unstructured tetrahedral grids. For a standard model problem, we
present a brief performance comparison between HSL MI20 and the well-established AMG codes
BoomerAMG [19] (a part of the hypre library [20]) and ML (a part of Trilinos library [21]).
Finally, in Section 5, we summarize our findings.

2. ALGEBRAIC MULTIGRID (AMG)

In this section, we present a brief review of the principles and techniques deployed in the classical
Ruge–Stüben AMG method [22]; this approach is implemented in our new code HSL MI20. An
essential ingredient of any GMG algorithm is the existence of a hierarchy of nested grids [23]. Such
a hierarchy can be obtained by starting from an initial coarse grid, and by adding successively finer
discretization levels (for example, by using nested or non-nested global and local mesh refinement).
However, many practical problems are defined on domains with complex geometries and internal
boundaries, or have solutions that exhibit small-scale phenomena, such as shocks, singularities,
and boundary layers. In such cases, an unstructured mesh or a set of composite block-structured
meshes [10, p. 172] are required to resolve all features of the domain and the problem solution.
Thus, creating a nested sequence of progressively coarser grids is difficult (if, indeed, it is possible
at all). Moreover, the book-keeping of the geometric information associated with such a grid
hierarchy requires sophisticated data structures and is memory consuming. This may adversely
impact the performance of the software that implements them. In addition, some practical problems
result in large sparse linear systems that are not associated with mesh discretizations. To apply

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 67

MG principles, a suitable ‘grid’ coarsening technique is needed that does not explicitly use any
geometric information. At the heart of AMG is a sequence of progressively smaller (coarser)
representations of the linear system coefficient matrix. Such a technique is based on heuristics,
developed from purely algebraic relations between the unknowns in the system matrix. The AMG
algorithm requires certain components, namely, given the discrete operator A= A1 on the finest
level, a sequence of coarse level operators A�, �=2, . . . , L is required (L−1 is the number of
coarse levels), together with a relaxation method, a sequence of intergrid transfer operators P�+1

�

and P�
�+1, and a solver for the linear problem at the coarsest level L . Construction of these

components is based on two fundamental heuristics: algebraically smooth errors and strength of
dependence principle.

2.1. Two fundamental AMG principles

Consider the linear system

Ax=b (1)

where A={aij}∈Rn×n is the coefficient matrix, x={xi }∈Rn is the vector of unknowns, and
b={bi }∈Rn is the given right-hand side vector. If the computed solution is denoted by x̃, we can
define the solution error to be e=x− x̃ and the residual to be r=b−Ax̃. The solution error and
the residual are connected by the residual equation

Ae=r (2)

The effectiveness of MG in reducing the solution error is based on two complementary numerical
procedures: fixed-point iteration (also called the smoothing or relaxation method), and the coarse
grid correction. If the solution error is decomposed into discrete Fourier components [10, Chapter 2],
it can be shown that a fixed-point iteration is effective in reducing its high-frequency (oscillatory)
components, while the coarse grid correction reduces the low-frequency components. In GMG, the
solution error obtained after the application of a few steps of a fixed-point iteration (smoothing)
algorithm looks geometrically smooth, and coarse grids are selected with the aim of representing
this error with sufficient accuracy. In AMG, the underlying grid is not explicitly known, and thus
Fourier analysis cannot be used to define smoothness of the solution error. Instead, we first select
a relaxation procedure and then define the algebraically smooth error to be the error that cannot
be reduced efficiently by relaxation. Note that the algebraically smooth error may not be a smooth
function in a geometric sense (see [10, p. 140]). The algebraically smooth error is characterized
by small residuals, that is,

Ae�0 (3)

Another important property of the algebraically smooth error is that its value at any point can
be interpolated accurately by a weighted average of its neighbours (the neighbouring unknowns
of a given unknown xi are defined by the non-zero entries aij, j �= i of the i th row in the matrix
A). This property is relevant in defining the interpolation procedure. To reduce smooth errors
further, they need to be represented by a smaller (coarse level) defect equation of the form (2),
that is cheaper to solve than the original problem (1). The coarse level correction is the process
of transferring the residual r from a fine to a coarse level, solving the defect equation (exactly
or approximately) and projecting (interpolating) the correction e back to a fine level. The whole

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

68 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

process can be applied recursively by introducing a hierarchy of coarse levels and by solving the
defect equation approximately on each level (on the coarsest one, it may be solved exactly).

In the linear system (1), each equation i represents a constraint for uniquely determining the
unknown xi . Although all the equations are needed to compute the xi exactly, it is possible to
determine from the i th equation a set of the neighbouring unknowns x j (j �= i) that most influence
the unknown xi . Heuristically, these are the unknowns x j for which the absolute value of the
corresponding entries aij are large compared with the other off-diagonal entries in the i th equation.
Such unknowns x j are good candidates for determining the value xi by interpolation, that is, they
are the candidates for coarse level points. This heuristical argument can be formalized by defining
the unknown xi to be strongly connected to all unknowns x j for which

−aij��max
k �=i

{−aik} (0<��1) (4)

i.e. xi is strongly connected to all unknowns whose entries aij are of comparable magnitude
with the largest off-diagonal entry in the i-th equation. Otherwise, xi is considered to be weakly
connected to x j . Note that in the expression (4) it is assumed that all the off-diagonal entries in
A are negative, i.e. A is an M-matrix [3, p. 28]. If xi is strongly (respectively, weakly) connected
to x j , then x j is said to strongly (respectively, weakly) influence xi . The parameter � in (4) is
referred to as the strength of dependence threshold, and (4) is a formal expression of the strength
of dependence principle. An important property of the smooth error is that it varies slowly along
the strong connections.

2.2. The interpolation operator

Let us assume that the unknowns xi have been partitioned into nC coarse (C) and nF fine (F)

level unknowns. With this partition it is assumed that the C unknowns will form the next coarse
level, and the F unknowns will have their values interpolated from the C unknowns. We define a
neighbourhood of each fine level unknown xi ∈F as the set of unknowns Ni ={x j | j �= i, aij �=0}.
Each unknown belonging to Ni is either a coarse level unknown that strongly influences xi (Ci),
a fine level unknown that strongly influences xi (Ds

i), or either a C or F unknown that weakly
influences xi (Dw

i). Thus

Ni =Ci ∪Ds
i ∪Dw

i (5)

The interpolation operator P ∈RnF×nC is then componentwise defined as follows:

(Pe)i =
⎧⎨
⎩
ei if xi ∈C∑
j∈Ci

wije j if xi ∈F (6)

where wij are the unknown interpolation weights. These weights are obtained from Equation (3),
which can be expressed componentwise as

aiiei �− ∑
j∈Ni

aije j (7)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 69

Using (5), and adding the contributions from Dw
i to the diagonal terms (see [10, p. 143] for more

details), yields

wij=−
aij+∑

m∈Ds
i
(aimamj/

∑
k∈Ci

amk)

aii+∑
n∈Dw

i
ain

(8)

The choice (8) of interpolation weights wij ensures that constant functions are interpolated exactly
(the matrix P has its row sums equal to 1). The approximations involved in the derivation of the
formula (8) assume that if xi and x j are strongly connected F unknowns, there must be at least
one common point in their respective coarse sets Ci and C j (see [10, pp. 143–144] for details).

The restriction operator R in AMG is commonly selected to be the transpose of the interpolation
operator, that is, R= PT.

2.3. Coarse level operators

Once the interpolation operators P�
�−1 between each pair of levels �−1 and � have been assembled,

the coarse level operators (matrices) A�, �=2, . . . , L (A1= A), are constructed recursively using
the Galerkin projection

A� =(P�
�−1)

TA�−1P
�
�−1 (9)

As the interpolation matrix P�
�−1 is of full rank, any properties of the matrix A�−1 (such as

symmetry, positive definiteness) will be inherited by its coarse representation A� [3, p. 423]. Note,
however, that this feature applies only when the coefficient matrix A arises in discretizations of
scalar PDEs and does not extend to PDE systems.

2.4. The coarsening procedure

The process of assembling the interpolation operators assumes the partitioning of the {xi } into
coarse and fine level unknowns. The criteria for this partitioning are based on the AMG principles
of smooth error and strength of dependence. In GMG, the choice of coarse grids is influenced
by the following (mutually exclusive) requirements: (i) smooth errors should be approximated
accurately, (ii) smooth functions should be interpolated from coarse to fine grids accurately, and
(iii) the size of each coarse grid should be considerably smaller than that of the preceding grid to
ensure computational efficiency.

We denote by Si the set of unknowns that strongly influence xi , and by STi the set of unknowns
that are strongly connected to xi , based on the heuristics (4). The AMG coarsening procedure for
determining the sets C and F (introduced in Section 2) is based on two heuristic criteria:

H1. For each xi ∈Fi , each unknown x j ∈ Si should either be in Ci or be strongly connected to
at least one unknown in Ci .

H2. The set C should be a maximal subset of all unknowns with the property that no two
unknowns from it are strongly connected to each other.

To make the approximations that lead to the interpolation formula (8), each unknown x j ∈Ds
i

must be strongly connected to at least one unknown in Ci ; heuristic H1 ensures this. In this way,
the unknowns x j ∈Ds

i that are not chosen to be C unknowns, are represented in the interpolation
formula (8) through their values that are distributed to the points in Ci . Heuristic H2 ensures the
balance in sizes of coarse levels. If the number of C unknowns is not much smaller than the number

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

70 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

of unknowns on the fine level, the interpolation is likely to be accurate and AMG will be more
effective, but at the expense of increased computational cost. Heuristic H2 controls the size of the
coarse levels by requiring that there is no strong dependence between C unknowns, thus keeping
the C unknowns at sufficient ‘distance’ from each other. On the other hand, the requirement that
the set C must be a maximal subset ensures the quality of the interpolation.

The requirementsH1 andH2 are usually mutually exclusive. In practice,H1 is normally enforced
strictly, while H2 is satisfied approximately (the usual tradeoff between accuracy and efficiency).
This approach, however, leads to coarse levels that are often larger than necessary. For 2D problems
this is usually beneficial, but for 3D problems discretized by a finite element or finite difference
method, a weak enforcement of H2 may lead to a considerable increase in the size of coarse levels
and, consequently, the execution time. A recent study [24] reveals that coarse levels with lower
complexities (i.e. with a smaller number of unknowns than that obtained by strictly enforcing H1)
may still produce good convergence rates when AMG is used as a preconditioner, rather than as
a solver. We found the same trend in our numerical studies for scalar elliptic problems in 3D (see
results given in Section 4). This trend extends to case studies of PDE systems.

The standard coarsening algorithm uses two passes of the data. In the first pass, a preliminary
partitioning into C and F unknowns is done with the aim of enforcing H2, while retaining the
interpolation quality. In the second, some of the initial F unknowns are reassigned as C unknowns
to strictly enforce H1 (and thus violate H2). If the second pass is not performed, the coarsening
strategy is referred to as one pass coarsening (RS1); otherwise, we have two pass coarsening (RS2).
The effectiveness of both strategies is evaluated in Section 4.

Recently, generalizations of the standard Ruge–Stüben coarsening techniques have been intro-
duced for applying AMG to PDE systems. The classical AMG coarsening procedure is based
on the variable approach, in which all the unknowns are treated equally. Unless there is a very
weak coupling between unknowns, this does not work effectively for PDE systems and some
modifications and extensions are needed to achieve good convergence and robustness (see [25]).
There exists several generalizations of the variable-based approach. The unknown-based approach,
where different types of unknowns are treated separately, is the simplest way of generalizing
AMG for PDE systems. This works effectively if diagonal blocks are close to M-matrices (e.g. for
systems of non-scalar PDEs, such as linear elasticity [26]). Further generalizations (the point-based
approach) were introduced in the code SAMG [27]. Here all the unknowns share the same grid
hierarchy, and the coarsening process is based on an auxiliary matrix, referred to as the primary
matrix. This matrix should be representative of the connectivity patterns of all the unknowns in
the system. Although substantial progress has been made in developing AMG for systems of
PDEs, there is still no single technique that works universally well for a wide class of problems.
Some concrete implementations, however, perform well for certain important applications, such as
fluid mechanics, multiphase flow in porous media [28], structural mechanics, and semiconductor
processes and device simulation [29, 30].

2.5. The algorithm complexity

Multigrid methods are attractive as preconditioners because, when used in conjunction with Krylov
solvers, they aim to solve large sparse linear systems of order n in O(n) time, thus exhibiting a
(near-optimal) scaling. This optimality is achieved through a (nearly) constant number of iterations
being needed to obtain the prescribed accuracy, regardless of the problem size or any other
problem parameters, and by the optimal computational cost of each iteration. Larger than necessary

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 71

coarse level operators increase the computational cost of AMG iterations and, in extreme cases,
can undermine the algorithm optimal scaling property.

To enable us to monitor how the choice of the coarsening strategy (RS1 or RS2) and the strength
of dependence threshold � from (4) affect the quality of coarsening and the size of the coarse
level operators, we introduce standard quantitative measures: the grid complexity cG , the operator
complexity cA, and the average stencil size cS .

The grid complexity cG is defined as

cG = 1

n1

L∑
�=1

n� (10)

where n� is the size of the matrix A� (�=1, . . . , L), and A1 is the fine grid matrix.‡ If a 3D
problem is discretized on a sequence of nested, uniformly refined grids, and a full coarsening is
used (the usual case in GMG), then cG = 8

7 (see [10, pp. 45–48]). Full coarsening of a uniform
grid assumes the reduction of the number of grid points in each spatial direction by a factor of 2.
A large discrepancy from this value indicates a strong violation of heuristic H2.

The operator complexity cA is defined as

cA= 1

nnz(A1)

L∑
�=1

nnz(A�) (11)

where nnz(A�) is the number of non-zero entries in A� (�=1, . . . , L). cA provides an indication
of the AMG storage requirements (the storage of the interpolation matrices is not included). In the
case of full coarsening of a problem defined on a sequence of nested, uniformly refined grids, and
direct discretization of a PDE on each level (the approach usually adopted in GMG), cA�cG . In
AMG, a difference in these two parameters may occur (especially for 3D problems), indicating the
coarse level matrices have, on average, much larger stencil sizes (numbers of non-zero elements
per row) than the fine grid matrix A1. It also implies that the interpolation matrices are fairly
dense, making the restriction and the interpolation operations more expensive to apply. In addition,
the application of GS smoothing becomes more expensive. The value of cA can be reduced (at
the expense of reducing the preconditioner effectiveness) by increasing the strength of dependence
threshold � (see Section 4).

The average stencil size cS is defined as

cS = 1

L

L∑
�=1

nnz(A�)

n�

(12)

This quantity should be compared with the average stencil size of the original problem c(1)
S =

nnz(A1)/n1. Large differences between cS and c(1)
S indicate that the coarse level matrices have

larger stencils than the original matrix. Note that, because of the small contributions from the
coarsest levels, cS may represent an optimistic estimate (see the examples in Section 4).

‡Note that here and elsewhere, A1= A and n1=n is the number of unknowns.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

72 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

2.6. AMG solver and preconditioner

When all the components of the AMG algorithm are assembled, the solution phase consists of
repeating the V-cycles until a prescribed level of accuracy is achieved. A V-cycle is essentially the
same in both GMG and AMG and is described in detail in [10, p. 40–41]. In brief, a V-cycle consists
of an approximate solution of the system (1) by a small number (nit1) of fixed-point iterations,
and a projection of the residual to a coarse level � using the restriction operator. At each of these
levels �=2, . . . , L , the residual Equation (2) is solved (by a fixed point iteration for �=2, . . . , L−1
and exactly or approximately for �= L). The process of approximately solving (1) and (2) by
a fixed-point iteration is referred to as pre-smoothing. The resulting correction to the solution
needs to be projected (interpolated) for �= L , . . . ,1 using the interpolation operator. This process
introduces high-frequency error components. To eliminate them, at each level we need to perform
a small number (nit2) of fixed-point iterations. This process is referred to as post-smoothing.
A V-cycle with nit1 pre-smoothing steps and nit2 post-smoothing steps is symbolically denoted
as V(nit1,nit2).

Although our new package HSL MI20 can be used as a standalone AMG solver for scalar,
elliptic, self-adjoint problems,§ our primary goal was to develop an efficient ‘black-box’ precon-
ditioner for scalar elliptic problems, and to allow the use of the package within the block precon-
ditioning framework for more complex systems of PDEs, that can be applied in conjunction with,
for example, the Krylov solvers [3, Chapter 6] available within the HSL library. The design of
HSL MI20 is discussed in the next section.

If using a standard V-cycle, it is usually the case that the AMG-preconditioned Krylov solver
performs more robustly than the standalone AMG solver, especially when applied to some
non-trivial scalar elliptic problems (such as anisotropic diffusion, diffusion with jumping coef-
ficients [23], convection problems with recirculating convective field, etc.). Note that recently a
K-cycle was introduced [31] that aims to improve the robustness of the AMG solver by using
Krylov acceleration (usually consisting of a small number of iterations of a Krylov solver) at each
coarse level.

3. DESIGN OF HSL MI20

Given a sparse matrix A∈Rn×n and a vector z∈Rn , HSL MI20 computes the vector y=
AMG(A,z), where AMG(A,z) denotes the approximate solution of a linear system Ay=z by
a number of AMG V-cycles. The matrix A (which may be symmetric or unsymmetric) should
ideally be ‘close’ to an M-matrix, that is, it must have positive diagonal entries and ideally
(most of) the off-diagonal entries should be negative. Moreover, the diagonal should not be small
compared with the sum of the modulii of the off-diagonals [10, p. 138]. Strong violation of these
requirements may lead to poor convergence characteristics of the AMG solver/preconditioner.
In order to quantify the term ‘close to M-matrix’, in Section 4 we report the number of positive
off-diagonal entries as a percentage of the total number of off-diagonal entries and the magnitude
of the largest off-diagonal entry in A.

§One needs to perform a simple Richardson iteration of the form x[k+1] =x[k]+AMG(A,r[k]), k=0,1, . . . , where
AMG(A,r[k]) assumes the approximate solution of the residual Equation (2) by one V-cycle of AMG.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 73

3.1. The user interface and derived data types

HSL is a Fortran library and HSL MI20 is written in Fortran 95. One of the main reasons for this
choice was because it allows a much simpler user interface than if Fortran 77 was used. A reverse
communication interface is used with the following procedures available to the user:

MI20 setup takes the matrix A, optionally checks it for errors (duplicates and out-of-range
entries are not allowed), and then generates all the data required by the AMG preconditioner.
That is, it selects the coarse levels, builds the interpolation operators, and constructs the coarse
level matrices. The matrix A must be supplied in compressed sparse row format (CSR), that is,
the non-zero entries in A must be stored row by row.

MI20 precondition performs the preconditioning operation y=AMG(A,z), where z is a
user-supplied vector (typically a residual vector if AMG is being used as a preconditioner for a
Krylov solver). More than one call to MI20 precondition may be made after a single call
to MI20 setup.

MI20 finalize should be called after all other calls to MI20 setup and
MI20 precondition are complete for a given problem. It deallocates all array components
of the derived data types set up by HSL MI20.

HSL MI20 offers the user a large number of options. These are controlled using a derived-type
MI20 control. The components of MI20 control are automatically given default values in
the definition of the type but may be reset by the user to control certain aspects of the algorithm.
In MI20 setup, controls allow the user to choose the maximum number of coarse levels Lmax
and the maximum size of the coarsest level (nL)max, and to control the construction of the coarse
levels. In MI20 precondition, there are controls to select the method for the solution of the
residual equation at the coarsest level, as well as the type of pre- and post-smoother, the numbers
of pre- and post-smoothing steps, and the number of V-cycles performed. In addition, the user
can specify the amount of diagnostic printing that is required. The default settings for the control
parameters have been chosen to make the code robust and, in general, efficient. They are also the
values commonly recommended in the literature. If these settings are used, HSL MI20 provides the
user with a ‘black-box’ preconditioner but, for some practical applications, it may be worthwhile
for the user to experiment with different choices of the control parameters (this is illustrated by
our results in Section 4). Full details of all the controls used by HSL MI20 are given in the user
documentation.

3.2. MI20 setup

During the setup phase, the coarsening procedure is applied recursively with the aim of producing
a sequence of coarse level problems of progressively smaller size. Constructing each level �,
�=2, . . . , L of the AMG hierarchy comprises the following steps:

• Splitting the vertices into fine level (F) vertices and coarse level (C) vertices. The heuristics
of this procedure were described in Section 2.4.

• Constructing the interpolation matrix P�
�−1 to transfer information between the fine level �−1

and the coarse level �. This was described in Section 2.2.
• Constructing the coarse level matrix A�. This was described in Section 2.3.

The quality of coarsening is controlled by two parameters. The real parameter control%
st parameter corresponds to the strength of dependence threshold � from (4) and has default

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

74 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

value 0.25. Increasing this parameter produces coarse levels with progressively smaller cA, cG
and cS , thus reducing the computational cost of assembling and applying the preconditioner.
However, it also affects the quality of the preconditioner and generally leads to an increase in
the iteration count. The Boolean parameter control%one pass coarsen controls the type of
the coarsening algorithm. If set to .TRUE., one pass coarsening (RS1) is performed. Otherwise, the
standard RS2 coarsening is performed (this is the default). For a given �, RS2 coarsening typically
produces more coarse levels and larger values of cA, cG , and cS and leads to a better quality
preconditioner. However, in some cases (especially for 3D problems), RS1 coarsening produces
a preconditioner that is computationally cheaper than the one obtained by RS2 coarsening; thus
there is a tradeoff between the quality and the computational cost of the preconditioner.

The parameter control%c fail controls the coarsening failure criteria. A value of 1 (the
default) indicates that coarsening terminates if any row in a coarse level matrix has at least one
strictly positive entry but no negative off-diagonal entries. A value of 2 indicates that coarsening
terminates if all the rows in a coarse level matrix have at least one strictly positive entry and no
negative off-diagonal entries or if the lack of negative off-diagonals causes coarsening to fail.

3.3. MI20 precondition

After a successful call to MI20 setup, MI20 precondition may be called repeatedly by the
user to perform the preconditioning operations. Options available to the user include the choice of
smoother and the coarse level solver.

3.3.1. Choice of smoother. Two different smoothers: DJ and GS are available (the choice
is controlled by the parameter control%smoother). By default, the damping factor
(control%damping) for DJ is 0.8. This is the optimal value for the Laplacian in 2D discretized
by the FEM using uniform triangular grids (see [11, p. 31]). The optimal choice for the damping
parameter for certain regular discretizations of the Laplace operator can be obtained from the
analysis of the smoothing and the approximation property of the two-grid scheme introduced
by Hackbusch [32] (see also [1, pp. 95–100]).¶ The default smoother within HSL MI20 is
GS (control%smoother=2) with two pre-smoothing and two post-smoothing iterations
(control%pre smoothing=2 and control%post smoothing=2). The GS sweep direc-
tion is reversed for the post smoothing. If A is symmetric, this choice guarantees symmetry of the
preconditioner, and thus the conjugate gradient (CG) method can be used as the Krylov solver.
The user may wish to experiment with different settings for the parameters that control smoothing
to try and optimize the performance for his or her applications.

3.3.2. Coarse level solver. On the coarsest level, HSL MI20 offers the following choice of solvers
(controlled by control%coarse solver):

• damped Jacobi;
• Gauss–Seidel;
• sparse direct solver HSL MA48; and
• LAPACK dense direct solver GETRF.

¶The optimal value for the discrete Laplace operator in 3D (the standard 7 point approximation) is �= 6
7

[11, p. 73], and for 1D model problem, discretized by the central finite differences, �= 2
3 [10, p. 21].

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 75

For robustness, the default is HSL MA48 [33, 34]. HSL MA48 is a sophisticated, general-purpose
sparse direct solver that is included within the HSL library, but it may be faster to use an iterative
solver or, if the coarse level matrix is almost dense, to use the dense solver GETRF from the
LAPACK library [35]. For the Jacobi and Gauss–Seidel solvers, the number of iterations may be
selected by the user (control parameter control%coarse solver its). Further details of the
use of HSL MA48 within HSL MI20 are given in [36].

Typically, MI20 precondition will be called a number of times after the call to
MI20 setup. We have designed the code to be flexible so that the user does not have to use the
same coarse level solver on each call. For example, using the information returned by HSL MA48,
the user may wish to switch to another solver. This is possible without recalling MI20 setup
and allows the user to easily experiment with the different options.

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results obtained using the HSL MI20 AMG preconditioner
with Krylov solvers for several classes of problems: the scalar diffusion problem [1, Chapter 1,2],
the scalar convection–diffusion problem [1, Chapter 3,4], the Stokes problem [1, Chapter 5,6],
and the transient thermal convection problem modelled by the Boussinesq approximation of the
Navier–Stokes equations. For the Boussinesq problem, we consider two widely studied practical
configurations: a laterally heated cavity (see, for example, [37]), and the Rayleigh–Benard convec-
tion (see [38, Chapter 2]). Our test examples are from unstructured FEM discretizations of these
problems on non-trivial domains in 3D, which lead to coefficient matrices with highly irregular
sparsity patterns. AMG-preconditioned Krylov methods or AMG-based optimal block precondi-
tioners are often used in these situations in preference to both direct sparse solvers and Krylov
methods with general algebraic preconditioners (such as the ILU(0) method [3, p. 287]).

The definition of domain geometries and the finite element mesh generation is performed in
FEMLAB [39]. The finite element discretizations, performed by the code femFluidMechanics,
use linear or quadratic tetrahedral elements, with the standard Galerkin FEM for the diffusion
problem [1, p. 17], and the streamline upwinding Petrov–Galerkin (SUPG) FEM with linear
elements and an optimal choice of the stabilization parameter (as suggested in [1, p. 126]) deployed
in the convection–diffusion examples. For the finite element discretization of the Stokes problem,
we deploy both the stabilized equal-order velocity–pressure approximation P1−P1 [1, p. 243],
with pressure projection stabilization [40], and the uniformly stable P2−P1 velocity–pressure
approximation [1, p. 229]. The Boussinesq problem is discretized using the stable P2−P1−P2
velocity-pressure-temperature approximation. The resulting system of differential algebraic equa-
tions (DAEs) is solved by the stabilized trapezoidal rule (sTR) algorithm from [41].

All experiments are performed on a PC with a Pentium Core Duo processor with a 2.66GHz
clock and 4GB of RAM. The g95 Fortran compiler (see g95.sourceforge.net) with
optimization flag -O3 is used throughout. The reported times are elapsed times (in seconds)
for the setup phase and for the total execution (that is, the time for the setup followed by
the solution phase) measured using the Fortran intrinsic function dtime. We use the control
parameters control%v iterations=1, and control%pre smoothing=control%
post smoothing=1, corresponding to one V(1,1) cycle; otherwise, unless explicitly stated,
default values are used for the remaining HSL MI20 control parameters. We use the default
setting of 1 for the parameter control%c fail for the diffusion problems and use 2 for the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

76 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

convection–diffusion problems. The latter choice is because, in the convection–diffusion case, the
coarsening can give coarse level matrices that have some rows with negative off-diagonal entries
connected to the rows with no negative off-diagonal entries. This causes premature termination of
the coarsening.

4.1. The Poisson equation in 3D

We first consider the solution of the linear systems that arise in a Galerkin FEM approximation
of the Poisson equation

−∇2u= f in �⊂R3 (13)

subject to the boundary conditions

u=uD on ��D and
�u
�n̂

=uN on ��N (14)

where ��=��D∪��N is the boundary of � and ��D∩��N =∅ (��D �=∅). Following the
discretization procedure described in [1, Chapter 1], we obtain a linear system

Ax=b (15)

where A is symmetric and positive definite [1, p. 18]. In this case, the Krylov method of choice is
the CG method. In our experiments, we use the HSL implementation of CG (routine MI21) and
terminate the computation when

‖r(k)‖2<ε∗‖r(0)‖2 (16)

where x(k) is the computed solution and r(k) =b−Ax(k) is the residual vector at the kth iteration,
and r(0) =b is the initial residual (in all cases we set x(0) =0). We adopt ε=10−6 as this is the
standard value used in this context [1, p. 77] and we check the forward error ‖x(k)− x̃‖2, where
x̃ is the exact solution (if known) or the solution obtained by a direct sparse solver. It should be
mentioned that when the Poisson equation is discretized by linear elements, the resulting coefficient
matrix is an M-matrix, provided that certain restrictions on the underlying FE grid are met.
However, this property does not extend to matrices obtained from higher-order approximations.
To establish some quantitative measure of the distance of a coefficient matrix from an M-matrix,
we define the quantity � to be

�=100∗k po /ko (17)

where ko and k po are, respectively, the number of non-zero off-diagonal entries and the number of
strictly positive off-diagonal entries in A. If �=0, A is an M-matrix and if �=100, A is a positive
matrix.

Example 4.1.1
We start by solving (13) on a cylindrical domain �={x2+ y2�1}×[0,5]⊂R3. We construct the
problem with a known analytical solution u= x2+ y2+z2 and set the forcing term f in (13) and
the non-homogeneous Dirichlet boundary conditions in (14) accordingly. The FE discretization of
this problem is performed by linear elements.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 77

Table I. The iteration counts and, in brackets, the setup (top) and total (bottom) execution times (in
seconds) for the CG method preconditioned using either AMG or ILU(0), applied to the linear system

obtained from the linear FEM discretization of the Poisson problem.

n 22 764 69 285 208 965

� RS2 RS1 RS2 RS1 RS2 RS1

DJ 0.25 8 (0.270.40) 12 (0.090.21) 8(1.081.57) 13 (0.300.75) 8 (4.165.96) 15 (1.032.93)

0.50 8 (0.190.33) 13 (0.080.22) 9 (0.751.29) 15 (0.290.84) 9 (2.674.62) 17 (1.033.31)

0.67 10 (0.140.29) 16 (0.080.25) 11 (0.541.13) 20 (0.271.03) 11 (1.853.96) 25 (0.974.38)

GS 0.25 8 (0.270.47) 11 (0.090.23) 8 (1.081.82) 12 (0.300.82) 8 (4.166.87) 13 (1.033.06)

0.50 8 (0.190.40) 11 (0.080.23) 8 (0.751.47) 14 (0.290.94) 8 (2.675.18) 15 (1.033.56)

0.67 9 (0.140.33) 14 (0.080.26) 10 (0.541.29) 18 (0.271.13) 10 (1.854.50) 23 (0.974.91)

ILU(0) 49 (4.835.02) 71 (45.746.8) 99 (445450)

For each smoother (DJ or GS), the smallest total times are in bold.

In Table I we present the iteration counts and execution times for the RS1 and RS2 coarsening
strategies. For each, we test three values of the strength of dependence threshold �, and use both the
DJ (with control%damping =0.8) and GS smoothers. Our experiments with different values
of � and the comparison of the coarsening strategies are motivated by recent results [24], where the
authors suggest that, if AMG is used as a preconditioner for 3D problems, it is advantageous to use
coarsening strategies that produce relatively sparse coarse level operators. One way of achieving
this is to increase � from its default of 0.25. For comparison, we include the iteration counts and
the times for CG using an ILU(0) preconditioner. The ILU(0) factorization is performed using the
HSL package MI11.

We see that the fastest times are obtained for RS1 coarsening with �=0.25 and DJ smoothing.
Furthermore, the times using AMG increase by a factor of 4 when the problem size n is increased
by a factor 3. Ideally, the time and problem size should scale at the same rate but this does not
happen because of the non-optimality of the AMG coarsening procedure for 3D problems on non-
structured grids, which results from the coarse level matrices being much denser than the original
matrix A (see Table II). Note that, because the Galerkin projection (9) is used to generate the
coarse level matrices, this also implies that the interpolation matrices are fairly dense. Furthermore,
if GS smoothing is used, its application becomes more expensive at the coarser levels. Denser
coarse level matrices adversely affect data caching, slowing the algorithm performance.

It is clear that the ILU(0) preconditioner is far from optimal, with the iteration counts and
times growing significantly with n (the asymptotic execution time behaves like O(n2)). It should
be noted, however, that most of the time is spent on computing the incomplete factorization (the
setup time) and the average time of each CG iteration with the ILU(0) preconditioner is smaller
than with the AMG preconditioner.

In Table II, we summarize the AMG coarsening statistics in terms of the complexity measures
cG , cA, and cS for the same combinations of the coarsening parameters used in Table I. Considering
the results from Tables I and II in conjunction it can be concluded that, if the coarse level matrices

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

78 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

Table II. Coarsening statistics for the linear case as a function of the coarsening strategy, and the threshold �.

n 22 764 69 285 208 965

� RS2 RS1 RS2 RS1 RS2 RS1

0.25 L 10 6 13 7 13 7
cG 1.67 1.23 1.68 1.23 1.71 1.24
cA 4.64 1.59 5.21 1.58 5.82 1.59
cS 68.3 20.2 96.8 21.3 161.8 26.2

0.50 L 13 7 14 8 15 9
cG 1.93 1.34 1.98 1.35 2.02 1.36
cA 4.36 1.78 4.67 1.79 4.85 1.79
cS 44.3 18.5 58.1 20.5 71.9 23.2

0.67 L 12 9 14 9 17 10
cG 1.91 1.42 1.99 1.44 2.01 1.45
cA 3.35 1.82 3.60 1.85 3.61 1.85
cS 28.2 14.0 34.1 17.0 37.6 19.6

c(1)S 11.2 12.0 12.8
� 0 0 0

L is the number of coarse levels (including the finest level), cG is the grid complexity, cA is the operator

complexity, cS is the average matrix stencil size across all coarse levels, c(1)S is the average stencil size of A,
and � is defined by (17).

are too sparse, this can adversely affect the preconditioner quality (see, for example, the case
�=0.67 and RS1 coarsening).

Note that, because of small contributions from the coarsest levels, the value of cS is usually an
optimistic estimate. For example, for RS2 coarsening with �=0.25 and n=208965, the average
stencil size was cS =161.8 (see Table II) while the largest value of nnz(Ai)/ni was 435 (this was
at level 7, with n7=1976).

Finally, we comment on the total memory use, as measured by the Linux program top. The
total memory required is modest in all cases. For example, for n=208 965 with �=0.25 and
RS2 coarsening, the memory use was 250MB, while for RS1 coarsening it was 175MB. For the
ILU(0) preconditioner, the total memory required was 125MB.

Example 4.1.2
In this example we consider the diffusion problem with the same forcing term and boundary
conditions as in Example 4.1.1. We discretize Equations (13)–(14) using quadratic approximation
over the same tetrahedral grids introduced in Example 4.1.1. The matrix A= A1 is again symmetric
positive definite, but is not an M-matrix. The values of � in Table V indicate that A1 has a
considerable number of positive off-diagonal entries. In the coarsening algorithm such connections
are regarded as weak, and assigned to the set Dw

i in (5). When constructing an interpolation
operator (Equation (8)), the sum of the positive off-diagonal entries is added (lumped) to the main
diagonal (the denominator in (8)). If the proportion of positive off-diagonal entries is considerable
and/or the magnitude of such elements is large, the resulting intergrid transfer operators fail to
preserve the properties of the original matrix, and the coarse grid problems can be considered as
discretizations of a perturbed PDE. As a result, the computed preconditioner may be ineffective.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 79

Table III. The iteration counts for the AMG-preconditioned CG solver with DJ smoothing, applied
to the linear system obtained from the quadratic FEM discretization of the Poisson problem, as a

function of the damping parameter (�).

n 53 968 165 911 508 289

� RS2 RS1 RS2 RS1 RS2 RS1

1.00 >100 >100 >100 >100 >100 >100
0.80 >100 >100 >100 >100 >100 >100
0.67 12 17 12 18 12 18
0.50 13 19 13 20 13 21

Although quadratic approximation of the Poisson equation has its own merits, the real signif-
icance of this problem is to assess the effectiveness of the AMG preconditioner in the context
of more complex problems. For example, the inf–sup stable mixed FEM approximation of fluid
mechanics problems [1, p. 229] requires a higher-order approximation of the velocity components
than is used for pressure (e.g. the P2−P1 approximation), see Example 4.3.1, and Example 4.4.1
and Example 4.4.2.

We first investigate the impact that the change in the properties of A has on the optimal value
of the damping parameter (control%damping) in the DJ smoother. The convergence results
are summarized in Table III (�=0.25). Here (and throughout the remainder of the paper) � is
used to denote the damping parameter. Using �>0.75, we observed a significant increase in the
iteration count for the convergence of the CG solver (and for some values, convergence was not
achieved). The smallest number of iterations are obtained for �=0.67 and we use this value in
all remaining experiments for this example (and later in Example 4.3.1 for the P2−P1 case).

The results from Table III, together with the previous discussion about the coarse level matrices
in a non M-matrix case, suggest that a form of a variable DJ smoother might be appropriate in
this context (with a different value of the damping parameter ��, �=1, . . . , L used at each level to
achieve good error reduction).‖ For this, one needs to develop a heuristic strategy to determine ��

as a function of the number of positive off-diagonal entries and their magnitudes. We remark that
some preliminary experiments with a version of a variable smoother, based on truncated ILU(0)
factorization, show considerable potential in the context of the convection–diffusion problem, when
compared with the standard smoothers but this is outside the scope of the current paper.

In Table IV, we summarize the convergence results for the RS1 and RS2 coarsening strategies
with both DJ and GS smoothing, as a function of the problem size n and the threshold �. The
best results (in terms of time) are observed for RS1 coarsening with �=0.25 or 0.5 (although
the results obtained with RS2 and �=0.67 are only slightly worse). Again, in most cases, we
observe the near optimal performance (as n increases, the iterations increase only slowly, with a
mild superlinear increase in the execution time). The main exceptions are for RS1 coarsening with
�=0.67. Comparing the results in Tables I and IV, we see that the iteration counts in the quadratic
case are only slightly higher than those in the linear case.

Table V summarizes the coarsening statistics. Comparing these with those in Table II, we
conclude that the average stencil sizes of the original matrix c(1)

S are much larger in the quadratic

‖In practice, divergence of the AMG-preconditioned solver reported in Table III for �=1 and �=0.8 might be the
consequence of the smoother failing only at a few levels, rather than globally.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

80 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

Table IV. The iteration counts and, in brackets, the setup (top) and total (bottom) execution
times (in seconds) for the AMG-preconditioned CG method applied to the linear system
obtained from the quadratic FEM discretization of the Poisson problem, as a function of the

coarsening strategy, the smoother, and the threshold �.

n 53 968 165 911 508 289

� RS2 RS1 RS2 RS1 RS2 RS1

DJ 0.25 12 (1.943.04) 17 (0.401.05) 12 (7.6011.8) 18 (1.444.07) 12 (30.248.6) 18 (5.3816.7)

0.50 11 (0.761.41) 16 (0.310.91) 11 (2.965.48) 19 (1.183.97) 12 (10.922.5) 22 (4.3918.1)

0.67 12 (0.501.12) 22 (0.291.13) 12(1.964.32) 29 (1.105.39) 13 (7.38
18.30) 39 (4.13

28.80)

GS 0.25 9 (1.943.31) 15 (0.401.17) 10 (7.60
13.40) 15 (1.444.33) 9 (30.251.8) 16 (5.3818.2)

0.50 9 (0.761.56) 14 (0.311.00) 9 (2.966.01) 16 (1.184.19) 10 (10.924.6) 19 (4.3919.3)

0.67 10 (0.501.24) 19 (0.291.24) 11 (1.964.99) 25 (1.105.85) 12 (7.3821.1) 33 (4.1330.3)

For each smoother (DJ or GS), the smallest total times are in bold.

case. For smaller values of the parameter � and RS2 coarsening this leads to a significant increase
in the coarsening complexity parameters and results in longer execution times. Note, however, that
for larger values of � with both RS2 and RS1 coarsenings the complexity parameters values from
Tables II and V are comparable. As before, the values of cS are optimistic estimates of the average
stencil size across all coarse levels. For example, for n=508 289 and �=0.25, the largest stencil
size for RS2 coarsening is c(9)

S =851.8 with n9=2746, while for RS1 coarsening the maximum

is c(3)
S =77.5 with n3=222 258. The memory use for RS2 and RS1 coarsening is 1.6GB and

520MB, respectively.

4.2. The convection–diffusion equation in 3D

In this section, we examine the effectiveness of an AMG-preconditioned Krylov method for solving
the linear systems that arise in the FEM discretization of the 3D convection–diffusion equation. The
convection–diffusion equation is a scalar elliptic PDE that models a host of important processes
and phenomena in different areas, including fluid mechanics and electronics. It can occur either
as a standalone problem or as part of more complex systems of PDEs (such as the Navier–Stokes
equation, the Boussinesq equation or the drift-diffusion equation).

We consider the linear systems that arise in the SUPG FEM discretization of the convection–
diffusion equation

−�∇2u+ �w ·∇u= f in �⊂R3 (18)

subject to the boundary conditions (14).
Details of the FEM discretization can be found in [1, p. 126]. Here �>0 is the diffusivity

parameter∗∗ measuring the relative contributions of the convection and the diffusion (in most

∗∗When the convection–diffusion equation occurs as a part of the momentum equation in the Navier–Stokes system,
the quantity 1/� is known as the Reynolds number Re. In the case of the Boussinesq problem, the diffusivity
parameters in the momentum and the temperature diffusion equation are expressed as functions of the Rayleigh
number Ra and the Prandtl number Pr (see Section 4.4).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 81

Table V. Coarsening statistics for the quadratic case as a function of the coarsening
type (RS2/RS1), and the threshold �.

n 53 968 165 911 508 289

� RS2 RS1 RS2 RS1 RS2 RS1

0.25 L 13 7 14 7 16 7
cG 2.08 1.27 2.15 1.28 2.19 1.29
cA 7.10 1.61 7.78 1.59 8.63 1.63
cS 144.2 29.7 219.0 35.3 302.0 42.1

0.50 L 14 8 15 9 16 9
cG 1.96 1.35 2.03 1.37 2.06 1.38
cA 3.40 1.50 3.68 1.52 3.78 1.53
cS 59.0 22.9 79.6 25.5 96.3 30.5

0.67 L 14 9 15 10 18 11
cG 1.93 1.43 2.00 1.44 2.03 1.46
cA 2.55 1.53 2.65 1.54 2.71 1.55
cS 36.0 20.3 41.6 21.7 45.9 23.5

c(1)S 22.7 24.6 25.7
� 47.5 47.6 48.1

L is the number of coarse levels (including the finest level), cG is the grid complexity, cA is the operator

complexity, cS is the average matrix stencil size across all coarse levels, c(1)S is the average stencil size of A,
and � is defined by (17).

practical cases, �1), �w :R3 �→R3 is the vector-valued function referred to as the convective field
(or wind) that determines the direction of the convection, and f is the forcing term.

The SUPG discretization of (18) and the boundary conditions (14) leads to a linear system

�x=b (19)

where the system matrix �∈Rn×n can be expressed in the form

�=�A+C+S (20)

Here A is the diffusion matrix defined in (15), C is the convection matrix, and S is the stabi-
lization matrix. A is symmetric positive-definite; provided the convective field is incompressible
(∇ · �w=0), C is skew-symmetric (that is, cij=−cji, cii=0, i, j =1, . . . ,n); S is symmetric,
but possibly indefinite. In particular, if the Galerkin FEM is used, S=0. If GMG is used to
precondition (19), it is essential that the SUPG discretization is applied at all the coarse levels
(see [1, p. 194]). In the case of an AMG preconditioner, the coarse level matrices are created
automatically. However, experience has shown that the performance of the AMG preconditioner
is more robust if the original problem is discretized using the SUPG method, rather than the
standard Galerkin FEM.

Although the original design of the classical AMG coarsening procedure is based on the proper-
ties of A, in practice, it adapts well to the system matrix � given by (20). This makes AMG a robust
preconditioner for convection-dominated problems, even though it uses simple point smoothers. By
the contrast, the robust performance of GMG (which uses full coarsening) requires not only SUPG
discretization at all coarse levels, but also fairly sophisticated smoothing techniques, based on the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

82 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

directional ordering of vertices [1, p. 195]. A particularly difficult problem to solve in this context
is the case of a highly convective flow with the wind function containing global recirculations (or
multiple local recirculations).

The system matrix � is unsymmetric and this influences the choice of Krylov solver. Moreover,
in cases �1, considerable amount of the off-diagonal elements are positive, and, depending on
the choice of the wind �w, some of these elements can be quite large in magnitude. In order to
provide some insight, we present in Table VIII the ratio � defined by (17), the largest positive off-
diagonal entry �ij, and the largest diagonal entry �ii in the matrix �. We use right-preconditioned
GMRES to solve (19). The HSL package MI24 implements a restarted variant of the algorithm
GMRES(m) [3, p. 172] but GMRES with no restarting can be obtained by setting the parameter
m equal to the maximal allowed number of iterations; we use this setting in our tests. As in the
diffusion experiments, the stopping criterion is given by (16) with �=10−6.

Example 4.2.1
We solve (18) on a cylinder domain �={x2+ y2�1}×[0,5]⊂R3. We set the convective field
to be circular �w=(2y(1−x2),−2x(1− y2),

√
x2+ y2 sin x/

√
x2+ y2). To avoid singularity of the

wind function at the points (0,0, z), we set wz =0. The forcing term is chosen to be f =0 and we
use Dirichlet boundary conditions uD =0 for z=0 and z=5 (the bottom and the top lids of the
cylinder), and uD =0 for x2+ y2=1 and x�0, uD =1 for x2+ y2=1 and x>0.

Table VI presents iteration counts and timings for different values of � for RS1 and RS2
coarsening. Here we use the threshold parameter �=0.25 and GS smoothing. Results for precondi-
tioning with ILU(0) are also presented. For ILU(0), the iteration counts deteriorate when either n is
increased and/or � is decreased. However, comparing the AMG results with those for Example 4.1.1
(Table I, GS smoothing, �=0.25), we see that, for small to moderate values of �, the effectiveness
of the AMG preconditioner is almost the same as for the diffusion problem. A modest increase
in the iteration count is observed for highly convective flows (�=0.001) and RS1 coarsening. We
also tested highly convective cases up to �∼10−5 and the performance of the AMG preconditioner
remains robust. We examined the norm of the forward error ‖x(k)− x̃‖2 for each computed solution
and found that they are slightly larger than for Example 4.1.1 but, in all cases, were less than
10−3. The ‘exact’ solution x̃ is computed by a sparse direct solver.

In Table VII, we report on the influence of the damping parameter on the convergence char-
acteristics of the AMG-preconditioned GMRES method when DJ smoothing is used instead of
GS. The results confirm our choice of control%damping=0.8 as the default setting for the
damping parameter, although for RS2 and �=0.001, using 0.5 gave similar results. This suggests
that for even smaller values of �, using a smaller value of control%damping than the default
might be preferable. However, the number of iterations required when using DJ was larger than
for GS so that, even though each GS smoothing operation is more expensive, in terms of the total
execution time, using DJ was not advantageous.

In Table VIII, we report the coarsening statistics for �=0.001 and �=0.25. Comparing these
with the diffusion case (Table II), we see that the number of coarse levels L , the grid complexities
cG , and the operator complexities cA are larger in the convection–diffusion case. This suggests, as
expected, that AMG performs a version of semi-coarsening. By checking the geometric positions
of the nodes at coarse levels, we conclude that the semi-coarsening is performed in characteristic
directions, determined by the strength and the direction of the wind (unlike to the semi-coarsening
performed in the GMG case, which is usually aligned with the Cartesian coordinate directions).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 83

Table VI. Iteration counts and, in brackets, the setup (top) and total (bottom) execution times (in seconds)
for the AMG- and ILU(0)-preconditioned GMRES method applied to the linear system obtained from the

linear SUPG FEM discretization of the convection–diffusion equation.

n 22 764 69 285 208 965

� RS2 RS1 RS2 RS1 RS2 RS1

AMG 0.02 7 (0.280.52) 11 (0.090.25) 7 (1.101.97) 12 (0.310.90) 7 (4.247.36) 13 (1.043.32)

0.004 9 (0.250.55) 15 (0.090.33) 8 (0.982.00) 15 (0.321.12) 7 (3.736.97) 15 (1.093.91)

0.001 12 (0.230.64) 24 (0.090.49) 11 (0.942.30) 24 (0.331.69) 10 (3.467.94) 24 (1.166.00)

ILU(0) 0.02 81 (4.835.41) 131 (45.449.3) 202 (445472)

0.004 118 (4.835.83) 174 (45.451.4) 253 (445483)

0.001 187 (4.836.90) 282 (45.458.6) 553 (445592)

GS smoothing is used and threshold �=0.25.

Table VII. Iteration counts for the AMG-preconditioned GMRES method, with a range of values of the
damping parameter (�) and of the diffusivity parameter �.

n 22 764 69 285 208 965

� � RS2 RS1 RS2 RS1 RS2 RS1

1 37 50 74 52 83 62
0.001 0.8 16 33 14 35 12 34

0.5 17 40 14 43 13 41

DJ smoothing is used and threshold �=0.25.

Table VIII. Coarsening statistics for �=0.25 and �=0.001.

n 22 764 69 285 208 965

RS2 RS1 RS2 RS1 RS2 RS1

L 16 9 17 10 20 11
cG 2.24 1.45 2.32 1.47 2.37 1.48
cA 5.62 2.09 6.36 2.13 6.82 2.12
cS 53.7 20.8 76.9 24.3 96.0 30.7

c(1)S 11.2 12.0 12.8
� 44.1 43.6 42.7
max�i j 0.004 0.002 0.001
max�i i 0.026 0.015 0.009

L is the number of coarse levels (including the finest level), cG is the grid complexity, cA is the operator

complexity, cS is the average matrix stencil size across all coarse levels, c(1)S is the average stencil size of A,
� is defined by (17), max�i j is the largest positive off-diagonal entry, and max�i i is the largest diagonal
entry in the matrix �.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

84 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

4.3. The Stokes problem in 3D

The Stokes equations have their main application in modelling viscous fluids moving at low speed
(e.g. blood flow in the peripheral vascular system) or are tightly contained. We are interested in
the efficient iterative solution of linear systems that arise in mixed FE approximation of the Stokes
system:

−∇2�u+∇ p = �0 (21)

∇ · �u = 0 (22)

in �⊂R3. Here �u :R3 �→R3 is a vector-valued function representing velocity and p :R3 �→R is
pressure. Equation (21) is referred to as the momentum equation (conservation of the momentum),
while (22) is the incompressibility constraint (conservation of mass). The typical boundary condi-
tions associated with the system (21)–(22) are of the form

�u= �uD on ��D and
��u
�n̂

− n̂ p= �uN on ��N (23)

In order to ensure a unique velocity solution, we assume ��D �=∅. If ��D =��, then the pressure
solution of (21)–(22) is unique up to a constant [1, p. 215]. This case corresponds to an enclosed
flow. Otherwise, we have an inflow/outflow problem. In order to ensure global incompressibility
constraint in this case, a natural outflow condition (�uN =�0) is specified.

The finite element discretization of (21)–(22) is based on mixed methods, that is, the approx-
imation spaces for the velocity components and pressure can be the same or different. However,
the absence of pressure from (22) makes the choice of velocity and pressure approximation spaces
dependent of each other. In order to make FE approximation effective, the approximation spaces
need to satisfy the uniform inf–sup stability condition [1, p. 228]. A number of the approximation
spaces combinations satisfy the stability condition (see [1, Section 5.3.1]). On the other hand, some
well-known (and, because of their simplicity and the desirable properties of the resulting linear
system, frequently used in engineering practice) discretization methods do not satisfy the stability
criterion. The best-known example involves the use of equal-order velocity–pressure approxima-
tions. The consequence of applying a unstable mixed FEM is the presence of spurious pressure
modes in the discrete pressure solution (see [1, Section 5.3.2]). To alleviate this problem, a concept
of stabilization of the discrete equations is introduced. The idea behind the stabilization is to
relax the discrete incompressibility condition. The procedures for this are inevitably discretization
specific and usually depend on certain parameters (the exception is a recent stabilization method
for linear/bilinear velocity–pressure approximation, which is parameter-free [40]).

When a stable/stabilized mixed FE discretization is applied to (21)–(22), the resulting linear
system can be represented in the form:[

A Bt

B −C

][
ū

p̄

]
=

[
f̄

ḡ

]
(24)

Here A represents a discrete vector Laplacian (A∈R3nu×3nu , where nu is the number of velocity
nodes). The matrix A is a block diagonal matrix, with diagonal blocks A∈Rnu×nu being scalar
discrete Laplacians defined in (15). The matrix B∈Rn p×3nu is a discrete divergence matrix, and
the matrix C ∈Rn p×n p is a symmetric positive semi-definite stabilization matrix (note that if a

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 85

stable discretization method is deployed C=0). The right-hand side vector components f̄∈R3nu

and ḡ∈Rn p (with
∑n p

i=1 gi =0) come from the non-zero velocity boundary conditions. The vectors
ū=[ūx ū y ūz]T∈R3nu contain the three unknown velocity components for each of the velocity
nodes i=1, . . . ,nu and p̄∈Rn p are the pressure unknowns.

The linear system (24) has a coefficient matrix that is symmetric but indefinite. This influences
the choice of Krylov solver. One of the earliest methods for the solution of the system (24) is
based on the Uzawa algorithm [42]. The Uzawa algorithm, which is widely used in engineering
practice, is effectively a fixed-parameter, first-order Richardson iteration applied to the Schur
complement system

(BA−1Bt +C) p̄= BA−1f̄+ ḡ (25)

To make the method computationally more effective, inexact and preconditioned variants of the
classical algorithm were introduced (see, for example [43]). In general, convergence of an inexact
Uzawa algorithm is slow and depends on several parameters.

Here we study an efficient block preconditioning of the system (24) proposed in [44]. In
particular, the optimal block preconditioner for the system (24) is of the form

P=
[
A 0

0 Mp

]
(26)

where Mp ∈Rn p×n p is the mass matrix defined on the pressure approximation space. The Stokes
matrix preconditioned by (26) has its spectral bounds constant (independent of the problem size),
thus offering the potential of developing an optimal solver for discrete Stokes systems (24). To
achieve this, the efficient implementation of the preconditioner is needed, which requires the
approximate (but spectrally equivalent) inversion of the matrix blocks A and Mp at the optimal
cost. For the block A this can be accomplished by applying AMG to each of the diagonal blocks.
Note also that, if each of the velocity components has the same type of boundary conditions at
each boundary node (e.g. there is no stress-free boundary), then all the block diagonal matrices in
A are the same and the AMG coarsening procedure needs to be applied only once. A spectrally
equivalent inverse of Mp can be constructed by finding an inverse of its diagonal [45].
Example 4.3.1
We solve the Stokes flow problem (24) for a flow through a pipe with a sudden expansion
�={x2+ y2�r21 }×[0,�1]∪{x2+ y2�r22 }×[0,−�2] (see Figure 1). The parameters used in our
calculations are r1=0.5, r2=1, �1=5, �2=7.5. We set a Pouiselle parabolic velocity profile on the
top lid z=�1 as ux =uy =0, uz =−1+(x2+ y2)/r21 (see [1, p. 219]), natural outflow condition for
z=�2 and no-slip velocity boundary condition (�u=�0) elsewhere on ��. We test the effectiveness of
the GMRES iterative method preconditioned by (26) for two different discretizations of the Stokes
problem: the uniformly stable P2−P1 (thetrahedral elements with quadratic velocities and linear
pressure) and the stabilized P1−P1 (equal order linear velocities and pressure, stabilized by the
method of Dohrmann and Bochev [40]). Again, the stopping criterion for GMRES is defined by (16).

In Table IX, we present the iteration counts and execution times for the P1−P1 discretization.
Results are for RS1 and RS2 coarsenings with �=0.25 and for both GS and DJ (�=0.8) smoothers.
Each of the scalar discrete Laplacians is preconditioned by one V(1,1) cycle of AMG and the mass
matrix is approximated by its diagonal.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

86 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

Figure 1. Domain geometry for a pipe with sudden expansion �={x2+ y2�r21 }×[0,�1]∪{x2+ y2�r22 }×
[0,−�2] with r1=0.5, r2=1, �1=5, �2=7.5.

We see that for RS2 coarsening the iteration counts are roughly constant when the problem size
is increased. As in the case of the diffusion problem, when the problem size is increased by a
factor 3, the total times increase roughly by a factor of 4, indicating that the asymptotic behaviour
of the iterative algorithm is dominated by the asymptotic behaviour of the AMG preconditioner.
For RS1 coarsening there is a moderate increase in the iteration counts with the problem size.
Despite this growth, for the problem sizes tested, the total times using RS1 coarsening are slightly
less than using RS2 coarsening (for larger problem sizes, however, we anticipate the roles being
reversed). In both cases (RS2 and RS1) using the DJ smoother resulted in faster total times than
using the GS smoother.

In Table X, we summarize the convergence results and the execution times for the stable P2−P1
discretization. Note that, in the light of the results from Table III, we adopt �=0.67 for the
DJ smoothing. All other experiment details are the same as for P1−P1 discretization.

We see the same asymptotic behaviour in the execution time as for the P1−P1 discretization.
Moreover, longer execution times in the P2−P1 case are a consequence of larger matrix stencils for
the P2 discretization of the Laplacian (cf. Example 4.1.2). In terms of convergence characteristics,
for GS smoothing we observe spectral equivalence of the preconditiner (26) for both RS2 and

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 87

Table IX. The iteration counts and, in brackets, the setup (top) and total (bottom)
execution times (in seconds) for the GMRES method preconditioned by the
block-diagonal preconditioner (26) applied to the linear system (24) obtained using

stabilized the P1−P1 mixed FEM.

Refinement level 1 2 3

n 26 476 83 080 254 216

RS2 with GS 87 (0.041.79) 90 (0.197.43) 92 (0.86
30.98)

RS2 with DJ 89 (0.041.51) 94 (0.196.08) 96 (0.86
25.02)

RS1 with GS 93 (0.021.43) 102 (0.075.70) 112 (0.26
25.10)

RS1 with DJ 99 (0.021.41) 108 (0.075.48) 119 (0.26
24.37)

For each problem size, the smallest total times are in bold.

Table X. The iteration counts and, in brackets, the setup (top) and total (bottom)
execution times (in seconds) for the GMRES method preconditioned by the
block-diagonal preconditioner (26) applied to the linear system (24) obtained

using stable P2−P1 mixed FEM.

Refinement level 0 1 2

n 42 367 145 384 463 747

RS2 with GS 111 (0.166.84) 127 (1.24
48.26) 123 (5.54

200.69)

RS2 with DJ 123 (0.165.43) 145 (1.24
37.36) 146 (5.54

170.28)

RS1 with GS 126 (0.054.10) 144 (0.30
24.84) 146 (1.19

111.18)

RS1 with DJ 134 (0.053.85) 157 (0.30
23.07) 163 (1.19

109.21)

For each problem size, the smallest total times are in bold.

RS1 coarsening, and a very small increase in iteration counts in RS1/DJ case. Unlike the P1−P1
discretization, the total times using RS1 coarsening are much less (by approximately 40–50%)
than using RS2 coarsening.

As a conclusion, we give some comparisons of the convergence results obtained for a 3D
problem with the convergence results for a 2D model problem (driven lid cavity, see [1, p. 210]).
Convergence results for a 2D model problem are reported in [1, p. 301] and from them we can
see roughly the same asymptotic behaviour that we observed between the iteration counts for the
P1−P1 and the P2−P1 discretizations. The main difference between 2D and 3D is the total iteration
counts, which are considerably higher for a 3D problem. For the example tested here, relatively
high iteration counts can be attributed to a stretched domain. It is known that multigrid gradually
loses its effectiveness when the domain/grid dimension in one or more coordinate directions is
much larger than in the remaining directions (see [46]).†† One possible way of alleviating this
problem is to limit the number of coarse levels, so that on the coarsest level the size of the system

††To make a fair comparison with 2D results, we also tested the preconditioned GMRES method on a driven lid
cavity problem in 3D (the unit cube domain). In this case we observed ∼45 iterations for the P1−P1 discretization
and ∼80 iterations for the P2−P1 discretization—a 50% increase compared with a 2D analogue.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

88 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

is greater than 1 (in our experiments, we coarsen to a single point). Another potential reason for
the loss of preconditioner efficiency may be that in 3D the diagonal approximation of the mass
matrix Mp loses its effectiveness. Some better choices include lumping or performing ILU(0)
factorization of Mp.

4.4. The transient Boussinesq problem in 3D

The Boussinesq system of PDEs (sometimes referred to as the Boussinesq approximation of the
Navier–Stokes system) is a non-linear, transient system of PDEs. This system is a mathemat-
ical model for the motion of incompressible viscous fluids buoyed by thermal effects. There
are a number of very important physical and engineering applications that use the Boussinesq
model, including heat exchange systems [47] (e.g. nuclear reactor cooling), semiconductor crystal
growth [37], convection of the earth’s mantle and continental drift [48], cooling of electronic equip-
ment, weather prediction, modelling of katabaric winds, ocean convection modelling, solar granu-
lation, superconductivity and cryogenic flows [49]. We also mention that magneto-hydrodynamic
processes are modelled by essentially the same system of PDEs, whereby the magnetic force is
added to the external forcing term (see, for example [50]).

There are a number of different configurations for which relevant applications of thermally
driven flows are studied both experimentally and computationally. In each case, a fluid is driven
into convective motion by the existence of the temperature gradient that plays the role of the
buoyancy force. Here we restrict our attention to enclosed cavity thermally driven flows. We
study two physically relevant configurations: laterally heated cavities (Example 4.4.1), and the
Rayleigh–Benard convection (Example 4.4.2).

To normalize the Boussinesq equations we follow the approach introduced in [51]. Let g be the
gravitational acceleration, � the thermal expansion coefficient, �T the temperature gradient applied
to a fluid layer and 	 the fluid density. Given a characteristic domain scale l, buoyancy velocity
scale U =√

g�l�T , time scale
= l/U , and pressure p̃=	U 2, we can write the non-dimensional
governing equations for the transient thermal convection problem as the incompressible Navier–
Stokes equations (conservation of the momentum and the incompressibility condition), coupled
with the temperature diffusion equation (conservation of energy) as:

��u
�t

−
√

Pr

Ra
∇2�u+�u ·∇ �u+∇ p− k̂T = �0 (27)

∇ · �u = 0 (28)

�T
�t

− 1√
Pr ·Ra∇2T +�u ·∇T = 0 (29)

defined in �⊂R3×[0,�], where � is the length of the time interval. Here Ra and Pr are,
respectively, the Rayleigh number given by

Ra= g��T l3

��
(30)

and the Prandtl number given by

Pr = �

�
(31)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 89

where � is the kinematic viscosity, and � is the thermal diffusivity. In (27), k̂ denotes the unit
vector in the z direction (it is assumed that the gravity force acts in the negative z direction). We
seek the unknown velocity �u :R3→R3, pressure p :R3→R, and the temperature T :R3→R that
satisfy (27)–(29) subject to a suitable set of boundary conditions and initial conditions. We will
specify the exact set of these conditions for each of the two problems below.

Although numerical simulations of the transient problem are usually required in engineering prac-
tice, solution of the steady-state Boussinesq system (where ��u/�t=�0 and �T /�t=0) in (27)–(29) is
also an important problem.‡‡ The main applications include detection of the bifurcation phenomena
[52] (leading to multiple stable solutions, time-periodic solutions, transition to chaotic flows, etc.).
There is a wide body of the literature devoted to this problem (see, for example [53–56]). This is
the reason why we report results in our examples for sub-critical regimes. As the solution tends
to a steady state, the adaptive time-stepping algorithm will take increasingly large time steps, and
ultimately the solution of the transient problem will be as difficult as the solution of the steady-state
problem.

The finite element discretization of the system (27)–(29) subject to appropriate boundary and
initial conditions is based on the mixed method for the Navier–Stokes part (with the same stability
issues as in the case of the Stokes problem), while the temperature is usually discretized using a
quadratic approximation. This results in a system of non-linear DAEs⎡

⎢⎣
Mu

0

MT

⎤
⎥⎦

⎡
⎢⎢⎣

˙̄u
0

˙̄T

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
Fu(ū) Bt −Mu,T

B 0 0

0 0 FT (ū)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ū

p̄

T̄

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
f̄u

f̄ p

f̄T

⎤
⎥⎥⎦ (32)

Here Fu(ū) denotes a discrete momentum block, B is a discrete divergence operator, and FT (ū)

is a discrete temperature diffusion block. The matrix Mu,T is the coupling block arising from the
buoyancy term in the momentum equation. The right-hand side vector contains the non-zero terms
arising from Dirichlet boundary conditions. The standard ‘dot’ notation denotes differentiation with

respect to time (˙̄u=�ū/�t , ˙̄T =�T̄ /�t). Mu is the velocity mass matrix (with a block-diagonal
structure), and MT is the temperature mass matrix. The unknown quantities in (32) are the velocity
ū=[ūx ū y ūz]T, pressure p̄, and the temperature T̄ . The DAE system (32) is solved using the
sTR method [41]. A modified version is introduced to prevent the locking effect in the step size
selection. The method also minimizes any numerical damping in the solution. The DAE system (32)
is reformulated in terms of accelerations, and the non-linear convective terms Fu(ū) and FT (ū) are
linearized using a second-order scheme described in [41]. This leaves us with the task of solving
a linear system of the form ⎡

⎢⎢⎣
F̃u Bt −M̃u,T

B 0 0

0 0 F̃T

⎤
⎥⎥⎦

⎡
⎢⎣
v̄u

p̄

v̄T

⎤
⎥⎦=

⎡
⎢⎢⎣
f̃u

f̃ p

f̃T

⎤
⎥⎥⎦ (33)

at each time step. This system is of order n=3nu+n p+nT , where nu , n p, and nT are, respectively,
the number of velocity nodes, pressure nodes, and temperature nodes. Further details are given

‡‡The problem of iterative solution of steady-state equations is usually more difficult than the solution of systems
arising in discretizations of transient equations.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

90 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

in [57, p. 71]. To precondition the system (33), we apply a recently introduced block preconditioner
(Elman et al., 2009; in preparation), which represents the extension of the block preconditioning
framework for the Navier–Stokes equations [1, p. 353] referred to as the least-square commutator
(LSC) preconditioner. The preconditiner has the block form

P=

⎡
⎢⎢⎣
F̃u Bt −M̃u,T

0 −S̃ 0

0 0 F̃T

⎤
⎥⎥⎦ (34)

In (34), S̃ represents an LSC approximation of the pressure Schur complement S= BF̃−1
u Bt

given by

S̃=(BM−1
u Bt)(BM−1

u F̃uM−1
u Bt)−1(BM−1

u Bt) (35)

(see [1, p.354]).
Efficient application of the action of S̃−1 to a vector involves two approximate inversions of the

scaled discrete Laplacian BM−1
u Bt , which can be achieved by a small number of AMG V-cycles,

and a number of sparse matrix–vector multiplications. The operator F̃u is block diagonal,§§ with the
main diagonal blocks being the convection-diffusion matrices, whose inverses are also approximated
by a small number of AMG V-cycles (for the optimal choice of coarsening/smoothers for this
subproblem, see Section 4.2). If the velocity components all have the same type of boundary
conditions on the whole boundary ��, the diagonal blocks in F̃u are identical, and the coarsening
needs only to be applied to one of them and then reused in the solution phase for each of the
three blocks. Note that this is not the case if Newton’s linearization is used. Then F̃u is either
approximated by its block-diagonal part F̃u ≈blockdiag(F̃ x

u , F̃ y
u , F̃ z

u)T and the coarsening process
is applied separately to each of the sub-blocks, or the coarsening is applied in a black box fashion
to the entire block F̃u . The temperature block F̃T is also a convection–diffusion matrix. It has a
different value of the diffusivity parameter �T =1/

√
Pr ·Ra from F̃u (given by �M =√

Pr/Ra). In
practice, the strength of convection in these two blocks can be very different, and usually they have
different types of boundary conditions (see the examples below). Thus, the coarsening generated
for one of the diagonal blocks in F̃u does not apply to F̃T . In all our experiments in this subsection
the block inverses are approximated by one V (1,1) cycle. In the case of convection blocks, we
use GS smoothing, while for the diffusion block we use DJ (�=0.8). We use the GMRES method
and set the maximum number of iterations to 70.

Example 4.4.1
We first solve the Boussinesq system (27)–(29) for the molten gallium problem (see [37]). The
laterally heated cavity problem in liquid metals is an important problem arising in the semiconductor
crystal growing process—the Bridgman technique. This involves a slab of molten material being
drawn slowly from a furnace and gradually solidified. During the complex solidification process,
a temperature gradient between the opposing vertical walls induces a convective flow. To create
high-quality materials for optoelectronic applications, it is necessary to ensure that the induced flow
is laminar, that is, the cooling process does not induce an unstable flow pattern (if the temperature

§§Note that this is only the case when linearized equations or Picard linearization are used [1, p. 327].

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 91

gradient is too large, the system will undergo a transition from a stable to an oscillatory flow via
a Hopf bifurcation—see [54]).

We take �=[0,4]×[0,1]×[0,1] as the problem domain. The velocity is set to be zero on the
whole boundary (�u=�0 on ��), and we set the temperature difference on the two opposing vertical
walls (T (x=0, t→∞)=0.5,T (x=4, t→∞)=−0.5). The remaining boundary is assumed to be
adiabatic (the Neumann boundary conditions �T /�n̂=0 for the temperature is applied). To achieve
a gradual emergence of the flow, we start the system from the rest (the initial condition for both
the velocity and the temperature is 0 everywhere in �̄=�∪��). Then the opposing vertical walls
are gradually heated/cooled following the exponential law

T (x=0, t)=0.5(1−e−t), T (x=4, t)=−0.5(1−e−t) (36)

where ∈R. In practice, we found that =10 gives temperature boundary and initial conditions
close to a realistic physical scenario. An alternative approach of having a sudden jump in the
temperature profile at the vertical boundaries (the Heaviside function) may trigger temporal oscil-
lations in the computed solution. As the sTR algorithm is almost damping-neutral, such oscillations
would persist in time and affect the nature and the accuracy of the computed solution.

We study the problem in the laminar regime for Ra=1250 and Ra=2500 and Pr =0.025 (the
value for molten gallium used in the literature). According to [37], the transition to time-periodic
flow for this configuration occurs at Ra�5100. The domain is discretized by a non-structured
tetrahedral grid. In Table XI, we present the summary of the transient simulation. The time interval is
[0,104]. For this type of flow, the momentum equation is strongly convection-dominated (�M ∼ 1

225
and �M ∼ 1

316 for Ra=1250 and Ra=2500, respectively), while the temperature equation is only
mildly convective (�T ∼ 1

5.6 and �T ∼ 1
8 , respectively). We report the number of time steps nsteps

(in our simulations we did not observe any step rejections), together with the average number of
GMRES iterations

N̄it=
nsteps∑
t=1

Nit(t)/nsteps (37)

where Nit(t) is the number of iterations at the t th step, and the maximal number of GMRES
iterations Nmax

it . We also report the average time per GMRES iteration for each problem size.
Note that for Ra=2500, the coarsest grid was too coarse to achieve the solution convergence

(no SUPG stabilization of the momentum and the temperature blocks has been applied). In this
case, the computed steady solution is not convergent and this, in turn, causes problems with the
convergence of the iterative solver. We observe that the iteration counts exhibit only mild growth
with problem size and with increasing Ra. Moreover, the asymptotic behaviour of the execution
time matches that of the AMG preconditioner reported in previous sections, indicating that the
block preconditioning framework within which AMG is deployed does not cause any deterioration
in the overall asymptotic performance.

Example 4.4.2
We solve the Boussinesq problem for the Rayleigh–Benard (R-B) configuration that models convec-
tion in liquid helium [49]. This has a number of applications in heat exchanging systems and in
understanding some aspects of superconductivity. In the case of R-B convection, the buoyancy
force caused by a temperature gradient is balanced by the gravity and the fluid flow does not
emerge for any value of Ra. Let (Ra)c denote the critical value of Ra (the critical magnitude of

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

92 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

Table XI. The average N̄it and maximal Nmax
it iteration counts and average

time (in seconds) per Krylov iteration for GMRES preconditioned by (34)
applied to the system (33) for the molten gallium simulation.

n 71 814 211 263 623 273

Ra=1250 nsteps 121 122 124

N̄it 20.4 23.8 24.9

Nmax
it 39 46 53

Ra=2500 nsteps * 137 144

N̄it * 26.3 28.1

Nmax
it * 54 59

Average time 0.08 0.29 1.20

n is the problem size and nsteps is the total number of time steps in the
simulation. * denotes no convergence.

the temperature gradient—see (30)) for which the convective flow emerges. If Ra<(Ra)c, heat
is transferred through the fluid by conduction only. For Ra=(Ra)c, the fluid loses its stability
as the cold, heavier fluid towards the top of the layer becomes unstable to the hot, lighter fluid
at the bottom. The system moves to a new stable configuration (via a pitchfork bifurcation, see
[53, Chapter 6]) of convective flow with a well-known straight roll pattern [49]. Further increase
in Ra introduces more instabilities into the flow, such as skewed varicose instability, spiral and
focal instabilities, etc. For two rigid horizontal boundaries and an infinite fluid layer, the onset of
convection occurs at (Ra)c�1708. In our experiments, we consider stable flow with Ra=2000
and Pr =0.5.

We consider the R-B problem on a thin cylinder�={x2+ y2�r2}×[0,1]with r=10. The velocity
boundary conditions are no slip on the whole boundary (�u=�0 on ��), and we set the temperature
gradient in the fluid by imposing T (z=0, t→∞)=0.5, T (z=1, t→∞)=−0.5. The cylinder
envelope is assumed to be adiabatic (�T /�n̂=0) and we apply a similar gradual heating of the
system as described by (36). All the parameters in the solver are as in the previous example.

In Table XII, we present a summary of the transient simulation. The time interval
=[0,105] is
selected to be long enough for the flow to settle. For the chosen Ra and Pr , both the momentum
and the temperature equation are mildly convective (�M ∼ 1

63 and �T ∼ 1
32). However, a substantial

challenge for the linear solver is the stretch of the domain in the x and y directions and the
fact that the velocity field contains multiple recirculating flows. We report the same data as in
Table XI but in this case the number of rejected time steps was 10, because the local truncation
error produced by the predictor–corrector scheme in the sTR method at these steps exceeded the
prescribed tolerance.

In Figure 2, we present the time step size evolution (left) and the iteration counts needed to
solve (33) at each time step (right).

4.5. Comparison with existing codes

Finally, for completeness, we present a brief comparison of the performance of HSL MI20 with
two well-known AMG codes: BoomerAMG [19], which is a part of hypre [20], a software library

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 93

Table XII. The average N̄it and maximal Nmax
it iteration counts and average

time (in seconds) per Krylov iteration for GMRES preconditioned by (34)
applied to the system (33) for the liquid helium problem.

n 67 401 203 379 574 631

Ra=2000 nsteps 215 200 196

N̄it 19.1 22.5 23.4

Nmax
it 25 28 29

Average time 0.07 0.26 1.07

n is the problem size and nsteps is the total number of time steps in the
simulation.

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4 Time step size history

time

Δ
t

0 50 100 150 200
0

5

10

15

20

25

30

Krylov iteration counts history

time step

N
it

Figure 2. Time step size history (left) and the convergence history of the preconditioned GMRES at each
time step (right) for the liquid helium problem (Example 4.4.2).

developed at the Lawrence Livermore National Laboratory for the parallel solution of large, sparse
linear systems, and ML, which is a part of the Trilinos project [21], developed at Sandia National
Laboratory as an object-oriented framework for the solution of large-scale complex multiphysics
applications.

The parallel code BoomerAMG offers a number of different coarsening strategies of which
we consider Ruge–Stüben coarsening and CLJP coarsening [58]. CLJP coarsening is based on a
parallel graph partitioning procedure, introduced with the aim of generating in parallel the same
coarse grid hierarchy, regardless of the domain partitioning. This is not the case with parallel

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

94 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

Table XIII. The iteration counts and, brackets in, the setup (top) and total (bottom)
execution times (in seconds) for three AMG codes used with the CG method to solve
the system obtained from the bilinear FEM discretization of the Poisson problem.

Grid 24×24×24 36×36×36 48×48×48

n 103 823 357 911 857 375

BoomerAMG with RS2 4 (2.813.95) 4 (10.6214.69) 4 (26.6936.79)

BoomerAMG with CLJP 4 (3.044.26) 4 (11.2615.63) 4 (28.0638.86)

ML with SA 17 (1.173.80) 17 (4.12
14.77) 19 (11.4939.56)

HSL MI20 with RS2 5 (2.373.50) 5 (8.56
12.60) 5 (21.1731.00)

HSL MI20 with RS1 5 (1.472.58) 5 (5.239.20) 5 (12.7822.47)

The smallest total times are in bold.

Ruge–Stüben coarsening [17], where different strategies are deployed to coarsen the nodes in
subdomain interiors and at the subdomain boundaries (so-called third pass coarsening). A drawback
of CLJP coarsening is that it selects the coarse grids with more points than necessary.

ML is a parallel multi-level preconditioner package for sparse linear systems. It is based on an
SA approach [14], where a sparse matrix-associated graph is coloured to create groups of nodes
(aggregates). The preliminary projection operator is defined from this splitting. The final projection
operator is defined by applying a smoother to the preliminary operator.

Example 4.5.1
We select a simple model problem for the purpose of this comparison. We solve (13) on a unit cube
domain �=[0,1]3. The right-hand side f in (15) is selected to be constant, and we assume the case
of homogeneous Dirichlet boundary conditions. The problem is discretized using oomph-lib [59]
with Q1 bilinear finite elements on a uniform, tensor product grid. This implies coefficient matrices
with a regular sparsity pattern, reflecting a standard 27-point stencil (c(1)

S =27 in this case). We
use CG preconditioned by AMG. For BoomerAMG and ML we use the implementation of the CG
method from hypre and Trilinos, respectively. In this way we avoid any incompatibility between
different packages and programming languages. We use one V(2,2) cycle of AMG (this is a default
in all three packages) with DJ smoother (�=0.8). The strength of dependence parameter is �=0.25
for the Ruge-Stüben coarsening. All other parameters in BoomerAMG, ML, and HSL MI20 are
given their default values. The results are summarized in Table XIII for three problem sizes.

We see that HSL MI20 is competitive with the well-established codes when they run in serial.
Moreover, if the execution time asymptotics are examined, the HSL MI20 times are closer to the
ideal scaling for the case of structured grid problems than for non-structured grids that we reported
on in Sections 4.1–4.4.

We remark that recently a new code AGMG [60] has appeared. It uses an aggregation approach,
where two passes of a pairwise matching algorithm are applied to the matrix graph. The matching
algorithm generates a problem-dependent coarsening. A piecewise constant prolongation ensures
low algorithm cost. The scalability is improved using a K-cycle MG scheme. Although we have
not explicitly compared our code with AGMG (mainly because of the different nature of the MG

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 95

cycles used by the two codes), an inspection of the results reported in [60] suggests that the
operator complexities generated by AGMG for model problems obtained by 7-point stencils in 3D
are comparable with those obtained by the RS1 coarsening within HSL MI20.

5. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, a new and efficient Fortran implementation of the classical AMG algorithm has
been described. We have demonstrated the successful use of the code as a preconditioner for
discrete scalar elliptic problems in 3D and as a building block for efficient block preconditioner
for the Stokes and transient Boussinesq problem. Our initial study of the effectiveness of AMG
within the block preconditioner suggests such solvers can be obtained for other important problems
in 3D (see [3, p. 337]). Block preconditioning is suitable for the discrete problems obtained
from approximations of systems of PDEs and/or PDEs in which the unknown functions are
vector fields. Such problems arise in modelling multi-physics problems, that is, problems with
their constitutive parts coming from different areas (for instance, fluid–solid interaction problems,
magnetohydrodynamics, etc.). In such cases, each node in the mesh is associated with several
degrees of freedom corresponding to different physical quantities. Given that a suitable enumeration
scheme for the unknowns is adopted (whereby the unknowns of the same kind are enumerated
consecutively), we obtain a natural blocking of the underlying coefficient matrix. Then an effective
preconditioner is usually associated with a block algorithm for finding an approximate inverse
of the coefficient matrix. In this context, AMG is frequently used for (approximately) inverting
the principal diagonal blocks or the associated Schur complements (which, in some cases, are
close to scalar elliptic discrete operators, for which AMG is ideally suited). Such solvers are the
essential part of large-scale scientific computations, such as the simulation of transient phenomena
in 3D (if modern implicit adaptive time-stepping methods are used for solving the systems of
DAEs [61, Section 3.16]), or in linear stability analysis (where the continuation methods are used
for bifurcation tracking [52]). Some examples of effective block preconditioners based on AMG
include [7] in reservoir simulation, [5] in linear elasticity, and [1] in fluid mechanics. However,
most of the studies in this context are carried out for problems in 2D. A case study using our
AMG code HSL MI20 for 3D problems in fluid mechanics is currently being carried out (Boyle
et al., 2009; in preparation).
HSL MI20 is available as part of the 2007 release of the mathematical software library HSL.

All use of HSL requires a licence. Individual HSL packages (together with their dependencies
and accompanying documentation) are available without charge to individual academic users for
their personal (non-commercial) research and for teaching; licences for other uses involve a fee.
Details of the packages and how to obtain a licence plus conditions of use are available at
www.cse.clrc.ac.uk/nag/hsl/. A Matlab interface to HSL MI20 has been developed
and made available via the above web site, making it very straightforward for Matlab users to
experiment with AMG.

ACKNOWLEDGEMENTS

We acknowledge the financial support of EPSRC under grant EP/C000528/1 (PI David Silvester). The
unstructured finite element discretization of problems considered in Section 4 was performed by the
parallel Fortran code femFluidMechanics, which is designed for 3D simulations of problems in

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

96 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

fluid mechanics. The code was developed by Christopher Smethurst in the School of Computer Science
at the University of Manchester. We also acknowledge the use of the oomph-lib for discretizing the
structured problem in Section 4.5. oomph-lib is a parallel, object-oriented multi-physics finite element
library, developed by Matthias Heil and Andrew Hazel in the School of Mathematics of the University of
Manchester. We are also grateful to the anonymous referees for their helpful and constructive comments.

REFERENCES

1. Elman H, Silvester D, Wathen A. Finite Elements and Fast Iterative Solvers. Oxford University Press: Oxford,
2005.

2. Duff IS, Erisman AM, Reid JK. Direct Methods for Sparse Matrices. Oxford University Press: Oxford, 1986.
3. Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn). SIAM: Philadelphia, PA, 2003.
4. Dongarra JJ, Duff IS, Sorensen DC, van der Vorst HA. Numerical Linear Algebra for High-Performance

Computers. SIAM: Philadelphia, PA, 1998.
5. Mijalković S, Mihajlović M. A component decomposition preconditioning for 3D stress analysis problems.

Numerical Linear Algebra and its Applications 2002; 9:567–583.
6. Silvester DJ, Mihajlović MD. A black-box multigrid preconditioner for the biharmonic equation. BIT 2004;

44:151–163.
7. Powell C, Silvester D. Optimal preconditioning for Raviart–Thomas mixed formulation of second-order elliptic

problems. SIAM Journal on Matrix Analysis and Applications 2004; 25:718–738.
8. Haase G, Kuhn M, Langer U. Parallel multigrid 3D Maxwell solvers. Parallel Computing 2001; 27:761–775.
9. Hu J, Tuminaro R, Bochev P, Garassi C, Robinson A. Toward an h-independent algebraic multigrid for Maxwell’s

equations. SIAM Journal on Scientific Computing 2006; 27:1669–1688.
10. Briggs WL, Emden Henson V, McCormick SF. A Multigrid Tutorial (2nd edn). SIAM: Philadelphia, PA, 2000.
11. Trottenberg U, Oosterlee C, Schüller A. Multigrid. Academic Press: New York, 2001.
12. Brandt A. Algebraic multigrid theory: the symmetric case. Applied Mathematics Computation 1986; 19:23–56.
13. Ruge JW, Stüben K. Algebraic multigrid. In Multigrid Methods, McCormick SF (ed.). Frontiers in Applied

Mathematics, vol. 3. SIAM: Philadelphia, PA, 1987; 73–130.
14. Vanek P, Mandel J, Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic

problems. Computing 1996; 56:179–196.
15. Brezina M, Cleary AJ, Falgout RD, Henson VE, Jones JE, Manteuffel TA, McCormick SF, Ruge JW. Algebraic

multigrid based on element interpolation. SIAM Journal on Scientific Computing 2000; 22(5):1570–1592.
16. Jones JE, Vassilevski PM. AMGe based on element agglomeration. SIAM Journal on Scientific Computing 2001;

23(1):109–133.
17. Krechel A, Stüben K. Parallel algebraic multigrid based on subdomain blocking. Parallel Computing 2001;

27:1009–1031.
18. HSL. A collection of Fortran codes for large-scale scientific computation, 2007. Available from:

http://www.cse.clrc.ac.uk/nag/hsl/.
19. Henson VE, Yang UM. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Applied Numerical

Mathematics 2002; 41:155–177.
20. Falgout RD, Yang UM. /hypre/: a library of high performance preconditioners. Proceedings of the ICCS 2002.

Lecture Notes in Computer Science, vol. 2331. Springer: Berlin, 2002; 632–641.
21. Heroux M, Hu J, Lehoucq R, Thornquist H, Tuminaro R, Willenbring J, Bartlett R, Howle V, Kolda T,

Long K, Hoekstra R, Pawlowski R, Phipps E, Salinger A, Williams A. An Overview of Trilinos. Sandia Report,
SAND2003-2927, 2003.

22. Stüben K. An introduction to algebraic multigrid. In Multigrid, Trottenberg U, Oosterlee C, Schüller A (eds).
Academic Press: New York, 2001; 413–532.

23. Brandt A. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 1977; 31:
333–390.

24. De Sterck H, Meier Yang U, Heys JJ. Reducing complexity in parallel algebraic multigrid preconditioners. SIAM
Journal on Matrix Analysis and Applications 2006; 27:1019–1039.

25. Stüben K. A review of algebraic multigrid. Journal of Computational and Applied Mathematics 2001; 128:
281–309.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

HSL MI20: AN EFFICIENT AMG PRECONDITIONER 97

26. Füllenbach T, Stüben K, Mijalković S. Application of algebraic multigrid solver to process simulation problems.
Proceedings of the International Conference on Simulattion of Semiconductor Processes and Devices, Seattle,
WA, U.S.A., 2000; 225–228.

27. Stüben K, Clees T. SAMG User’s Manual. Available from: http://www.scai.fhg.de/samg/.
28. Stüben K, Delaney P, Chmakov S. Algebraic multigrid (AMG) for ground water flow and oil reservoir simulation,

2003.
29. Clees T, Stüben K. Algebraic multigrid for industrial semiconductor device simulation. Proceedings of the 1st

International Conference on Challenges, in Scientific Computing. Lecture Notes in Computer Science. Springer:
Berlin, 2003.

30. Füllenbach T, Stüben K. Algebraic multigrid for selected PDE systems. Proceedings of the 4th European
Conference on Elliptic and Parabolic Problems. World Scientific: London, 2002; 399–410.

31. Notay Y, Vassilevski PS. Recursive Krylov-based multigrid cycles. Numerical Linear Algebra with Applications
2008; 15:473–487.

32. Hackbusch W. Multi-grid Methods and Applications. Springer: Berlin, 1985.
33. Duff IS, Reid JK. MA48 a Fortran code for direct solution of sparse unsymmetric linear systems of equations.

Report RAL-93-072, Rutherford Appleton Laboratory, 1993.
34. Duff IS, Reid JK. The design of MA48, a code for the direct solution of sparse unsymmetric linear systems of

equations. ACM Transactions on Mathematical Software 1996; 22:187–226.
35. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S,

McKenney A, Sorensen D. LAPACK User’s Guide (3rd edn). SIAM: Philadelphia, PA, 1999.
36. Boyle JW, Mihajlović MD, Scott JA. HSL MI20: an efficient AMG preconditioner. Technical Report RAL-TR-

2007-021, RAL, 2007.
37. Juel A, Mullin T, BenHadid H, Henry D. Three-dimensional free convection in molten gallium. Journal of Fluid

Mechanics 2001; 436:267–281.
38. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability, Chapter 2. Dover: New York, 1981.
39. COMSOL, FEMLAB Version 2.3 Reference Manual. COMSOL, 2003.
40. Dohrmann C, Bochev P. A stabilized finite element method for the Stokes problem based on polynomial pressure

projections. International Journal for Numerical Methods in Fluids 2004; 46:183–201.
41. Kay DA, Gresho PM, Griffiths DF, Silvester DJ. Adaptive time-stepping for incompressible flow Part II:

Navier–Stokes equations. Available from: http://eprints.ma.man.ac.uk/1110/.Manchester Institute for Mathematical
Sciences (MIMS), Preprint 2008.61, Manchester, U.K.

42. Arrow K, Hurwicz L, Uzawa H. Studies in Nonlinear Programming. Stanford University Press: Stanford, 1958.
43. Elman HC, Golub GH. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM Journal

on Numerical Analysis 1994; 31:1645–1661.
44. Silvester D, Wathen A. Fast iterative solution of stabilized Stokes systems. Part II: using general block

preconditioners. SIAM Journal on Numerical Analysis 1994; 31:1352–1367.
45. Wathen A. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA Journal of Numerical Analysis 1987;

7:449–457.
46. Mihajlović M, Mijalković S. Efficiency Study of the ‘Black-box’ Component Decomposition Preconditioning

for Discrete Stress Analysis Problems. Lecture Notes in Computer Science, vol. 3037. Springer: Berlin, 2004;
97–104.

47. Flynn MR, Caulfield CP. Natural ventialtion in interconnected chambers. Jounal of Fluid Mechanics 2006;
564:139–158.

48. King SD. A numerical journey to the Earth’s interior. IEEE Transactions on Computing in Science and Engineering
1995; 2:12–23.

49. Lees MJ, Thurlow MS, Seddon JRT, Lucas PG. Convective roll dynamics in liquid 4He near the onset of
convection. Physical Review Letters 2004; 93:144502.

50. Kaddeche S, Henry D, BenHadid H. Magnetic stabilization of the buoyant convection between infinite horizontal
walls with a horizontal temperature gradient. Journal of Fluid Mechanics 2003; 480:185–216.

51. Christon MA, Gresho PM, Sani RL. Computational predictability of time-dependent natural convection flows
in enclosures (including a benchmark solution). International Journal for Numerical Methods in Fluids 2002;
40:953–980.

52. Govaerts W. Numerical Methods for Bifurcations of Dynamic Equilibria. SIAM: Philadelphia, PA, 2000.
53. Drazin PG. Introduction to Hydrodynamic Stability. Cambridge University Press: Cambridge, 2002.
54. Gelfgat AY, Bar-Jozeph PZ, Yarin AL. Stability of multiple steady states of convection in laterally heated cavities.

Journal of Fluid Mechanics 1999; 388:315–334.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

98 J. BOYLE, M. MIHAJLOVIĆ AND J. SCOTT

55. Le Quere P, Behnia M. From onset of unsteadiness to chaos in a differentially heated square cavity. Journal of
Fluid Mechanics 1998; 359:81–107.

56. Winters KH. Oscillatory convection in liquid metals in a horizontal temperature gradient. International Journal
for Numerical Methods in Engineering 1988; 25:401–414.

57. Smethurst CA. A finite element solution of the natural convection problem in 3D. Ph.D. Thesis, University of
Manchester, 2008.

58. Cleary AJ, Falgout RD, Henson VE, Jones JE. Coarse grid selection for parallel algebraic multigrid. Proceedings
of the 5th International Symposium on Solving Irregularly Structured Problems in Parallel. Lecture Notes in
Computer Science, vol. 1457, 1998.

59. Heil M, Hazel A. oomph-lib—the object-oriented multi-physics finite element library. Available from:
http://www.oomph-lib.org.

60. Notay Y. An aggregation-based algebraic multigrid method. Report GANMN 08-02, 2009.
61. Gresho P, Sani R. Incompressible Flow and the Finite Element Method. Wiley: New York, 1998.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:64–98
DOI: 10.1002/nme

