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1. Introduction 

Consider the second kind Volterra integral 

y(t) = g(t) + /bccl, 3, y(s)) ds, 

and the Volterra integro-differential equation 

equation 

O<t<T, (1.U 

y’(t) = F( t, y(t), jo’c(t, s, y(s)) ds), 0 < t < T, 0 4 

with y(0) given. 
In the subsequent discussion it will be assumed that the functions g, G, F are sufficiently 

smooth to guarantee the existence of a (unique) smooth solution y. 
An essential part in the discretization of (1.1) and (1.2) at t = tj is the approximation of the 

Volterra integral 

z(t;> = l”G(t;, s, Y(S)) ds 

by numerical quadrature 

Z, = h C W,jG(ti, ‘1, Yj). 
j=o 
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Here, h denotes the stepsize, t, = ih, 0 < i < n, nh = T, and y,, Z, denote numerical approxima- 
tions to y( t,), z( t,), respectively. The w,, are the weights of the quadrature rule. 

Suppose that in the case G( t, s, y) = G(s, y), zi can be written as a linear combination of 

z,-1, z,-2,--*, z,-k, G(t,, y;), G(t;-,, y;-I),..., G( ti_k, Y,_~), with coefficients independent of 

h. The resulting relation can then be written as 

; Q;z;_i= h,&,G(t;-j, y;_;), 
/=o 

and the quadrature formula is said to be reducible to the linear multistep method for ordinary 
differential equations characterised by ( p, a), where 

p(l) := i ajck-j, a(S’) := i b,.p’. (1.3) 
j=O j=o 

Matthys [4] first introduced a class of reducible quadrature rules with the aim of proving 
A-stability results for numerical methods for (1.2). Reducible quadrature rules were discussed 
further by Wolkenfelt [lO,ll], who explicitly constructed such rules for (1.1) and (1.2), and 
presented convergence and stability results. 

In his thesis, Wolkenfelt [lo, p. 971 remarks “The question whether generalizations of our 
results are possible if we employ cyclic linear multistep methods, multistep Runge-Kutta 
methods or other methods for solving ordinary differential equations is still open.. . . If such 
generalizations are possible, it is evident that we have a powerful tool for constructing and 
analysing, in a unified way, numerical methods for solving Volterra type equations.” 

In this paper a class of multistage multistep methods for the numerical solution of ordinary 
differential equations will be employed to construct generalized reducible quadrature methods 
for solving (1.1) and (1.2). To unify the analysis a general convergence theorem for discretization 
methods will be employed to present convergence results. 

2. Preliminaries 

The solution y E X of a differential or integral equation is to be approximated on a (finite) 
interval [0, T] using a discretization method by yh E Xh. The set of values of h and the discrete 
space Xh to be used in the following analysis must first be introduced. 

Let T, h, be given with 0 c h, < T and T/h, = no, a positive integer. Define J := { h : h = 

T/n, n E N, n 2 no }, and given a positive integer m, independent of h, set N = n - 6 + 1 where 
6 = min(2, m). 

Then define the approximating space Xh as follows: 

Xh:= (xh: xh=(xg, Xi,...,XN) T, xi = (x;,~) E [w”, 0 < i < N) 

with norm 

II xh II m = oma& I xi I rnr . . I x, I m = 1 yf& I xi,7 1. . . 
In the subsequent discussion, for xh E X’, I xh I m will denote 

IXhIm=(IXolm~ IXllm?*-*~ I%Jlm~T. 
It is clear that jxhlrn~ [WN+l and ( )x~I,,,)~= /x,I,,O<ibN. 

the vector of norms 
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Definition 2.1. An operator Hh: Xh -+ Xh will be said to be a discrete Volterra operator if for 
each i, 0 G i G N, (ih(yh)), is independent of (vh), for all j > i. 

Definition 2.2. A discretization method will be said to have a discrete fundamental 
expressible in the form 

_yh = gh + Hh( y”) 

where gh is known, and will depend upon the starting values of the method, and Hh: 
a nonlinear discrete Volterra operator satisfying 

(l~h~?i:)-~h~~~~Im~;~~~hI~:-L,:hIm~,r 

form if it is 

(2.1) 

Xh + Xh is 

(2.2) 

for all y:, yt E Xh and each i, 0 < i < N, where Kh: RN+l -+ RN+’ is a discrete Volterra 

operator given by 

(Kh /yhIm)i=hMk ( b’hl,)j~ 0 <i<N, (2.3) 
J=o 

for some M, independent of h. 

When m = 1 this is a particular case of the discrete fundamental form introduced by Dixon 
and McKee [l]; see also Scott [8]. 

Using the Banach Fixed Point Theorem it may be shown that for all h E J satisfying hM < 1 
the discrete fundamental form has a unique solution yh E Xh. 

In the following rh: X + Xh will denote a linear operator and will be defined by 

((r”v)(t));,,=Y(t;,,), I<rGm, O<iGN, 

where {t,,,} E [0, T], 1 6 T G m, 0 G i G N, is a given set of points associated with the discretiza- 

tion. 

Definition 2.3. Let y E X be the solution of the differential or integral equation which is to be 
solved by a discretization method expressible in discrete fundamental form. For h E J the 
consistency error of the discrete fundamental form is defined to be 

Bh = rhy - gh - Hh( rhy). (2.4) 

The discrete fundamental form is said to be consistent of order s if for some positive constant C, 
independent of h, 

II Bh II m < Ch” + 0( hS+‘). (2.5) 

This allows the following convergence result to be presented. 

Theorem 2.1. Let y E X be the solution of the equation which is to be soloed numerically. Let 
yh E Xh be the solution of a discretization which is expressible in discrete fundamental form. If the 
discrete fundamental form is consistent of order s, then for all h E J sufficiently small 

11 rhy - yh 11~ < Ch” + 0( hS+l), 

where C is a positive constant independent of h. 

(2.6) 
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Proof. The solution Y E X of the underlying equation satisfies the 

rhy=gh+Hh(Py)+Bh, 

where Oh is the consistency error. 
Subtracting (2.1) and using (2.2), (2.3) 

perturbed fundamental form 

Setting xi = ( I rhy - yh I ,); and +, = ( 1 Oh I ,,,)/( 1 - hM) for hM < 1, and invoking the stan- 
dard discrete Gronwall inequality yields 

max(x,) < max(&) exp(M’T), 0 < i< N, 
i 

where M’ = M/(1 - h&). 
The bound (2.6) is immediate (using (2.5)). 0 

3. Multistage multistep methods 

The class of methods for the ordinary differential equation 

v’(t) =f(t, YW? Y(O) ‘Yo, O<t<T, (3.1) 

which is to be employed to derive generalized reducible quadrature methods is now introduced. 
The class of simple m-stage k-step methods for solving (3.1) is defined to be those methods 

expressible in the form 
k m k m 

h-l C C (Aj)TyYi-j,v= C C (Bj)Tf(ri-,.vT Yi-j.v)y 
j=O v=l j=O v=l 

l<r<rn, k<i,<N, (3.2) 

where { Aj, B,}ikzo are m x m matrices with entries denoted by (Aj),v, (Bj)TYI 1 < 7, v G m; & 

is assumed nonsingular and 

k 

c A,e=O, where e= (1, l,..., l)T. (3.3) 
j=O 

Here y,,, denotes an approximation to y( t;,,) where ti,7 E [0, T], 1 < r < m, 0 < i < N, are given 
(if m = 1, t,., = ti = ih, 0 G i < N, Nh = T). It is assumed that starting values j;,,, 1 < 7 < m, 
0 G i G k - 1, have been precomputed. 

Associated with the m-stage k-step ODE method (3.2) will be the characteristic polynomials p, 
u defined by 

I k p ([) := det c Ajlk-j 
\ j=O 

(3.4) 

The class of m-stage k-step methods is wide and includes linear multistep methods, cyclic 
linear multistep methods, predictor corrector methods and Runge-Kutta methods (see Stetter 

[91)* 
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Example 1. As an example to illustrate the notation consider the following 2-cyclic linear 
multistep method for (3.1) based on the Simpson scheme and the 2-step Adams-Moulton 

method. 

Yz, -Yzr-2 = fWt2,9 Y2;) + 4m2,-17 y2,-1) +f(h-2. h-2)L (3Sa) 

Y2,+1 -,I-‘2, = i%(V(~ 2,+13 YZ,+I> + 8f(t2,3 ~2,) -f(t2;-13 ~2:71-1)), (3Sb) 

l<i<N, 
with given starting values j&, ji. Here I’, denotes an approximation to y( t,), t, = ih, 0 < i Q 

2N + 1, (2 N + l)h = T. (See, for example, Donelson and Hansen [2].) 
Let m = 2, k = 1 and set 

t 1.1 = 2ih, 

t ,,2=(2i+l)h, OGiGN’ 

The scheme (3.5) may then be expressed as a 2-stage l-step method of the form (3.2) with 

(34 

It is clear that A, is nonsingular and condition (3.3) is satisfied. 

This simple example will be employed throughout this paper to illustrate the ideas and results 

presented. 
In matrix notation (3.2) may be expressed in the form 

h-‘AhYh = Bhf( y”) + gh, 

where 

(3.7) 

_Vh=(yo, Y ,,...> Y,Y)TEXh, y;=(y;.,)~R”‘, O<i<N, 

f(Y”) = MYOL f(Y1L f(Y?dTEXh7 

f(u,) = (f(t;,,. y;.r)) E R”‘, 0 < i < N, 

and 

~“=h-‘(jo, jJ ,..., jk_l,O ,..., O)T~Xh, 

j,=(j&)ERrn, O<i<k-1. 

Here Ah, Bh are ( N + 1)m X ( N + 1) m matrices given by 

I km 

A, . . . 

A, __. 

A0 

A, A0 

BO 

\ 

0 

7 

4’ Ao/ 
\ 

0 

4’ Bo I 

Bh = 

0, 

0 km 

B, . . . 

B, . . . 

Ak . . . 

4 Bo 
B, 

Bk . . . 

(3.8) 
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where Ikm, O,, denote the km X km identity and null matrices respectively. 
To express the multistage multistep method in discrete fundamental form 

/z(Ah)-’ to obtain 

yh = gh + Hh(yh) 

premultiply (3.7) by 

(3.9) 

where gh = h( Ah)-‘gh and Hh(yh) = h( Ah)-‘Bhf( yh). A ssuming Lipschitz continuity of f( t, y) 

with respect to y, Hh: Xh + Xh is a discrete Volterra operator satisfying (2.2), (2.3) provided 

m~][(Ah)-lBh);j]mCM, (3.10) 

for some M, independent of h. (Here I(( Ah)-lBh)ij 1 m denotes the infinity norm of the (i, j)th 
m X m matrix element of (Ah)-‘Bh.) 

Since Bh is banded, with bandwidth independent of h, (3.10) holds if there exists M’, 
independent of h, such that 

myx I((Ah)-ljijl WI G M’n (3.11) 

Definition 3.1. The m-stage k-step ODE method (3.2) is zero stable if condition (3.11) holds. 
Define 

S’ := { p: p is a simple Von Neumann polynomial}. 

It can be shown (see, for example, McKee [5]) that if m = 1 (3.11) is satisfied if and only if 
characteristic polynomial p given at (3.4) satisfies p E S’. In this case (3.11) is equivalent to 
usual condition for Dahlquist stability. 

If m > 1 (3.11) is satisfied if p E S’ but in this case p E S’ is not a necessary condition 
zero stability (see Stetter [9] for further details). 

For Example 1 

the 
the 

for 

p(l) =det(AJ+A,) =det (“-: J=W-1). 

Hence p E S’ and the method (3.5) is zero stable. 
From Definition 3.1 it follows that any zero stable m-stage k-step method has a discrete 

fundamental form given by (3.9). 
The consistency error of the fundamental form (3.9) for (3.2) is related to the truncation error 

of the m-stage k-step method. 

Definition 3.2. Let 

Th = Ahrhy - hBhf ( rhy) - hgh. (3.12) 

For 1 G T G m, 0 < i G k - 1, (Th)i,, is the starting error at t = ti,T. 
The starting errors are of order s > 1 if there exist constants C,,, 1 < 7 < m, 0 G i < k - 1, 

independent of h, some of which (but not all) may be zero such that 

(Th)i.,= C;,h”+ O(hsil). 

For l<r<m, k<i<N, (Th),., is the truncation error of the the stage of the m-stage 

method at t = t,.,. 
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The discretization (3.2) is said to be of order s > 1 if there exist constants C,,, 1 < r G m, 
k G i < N, independent of h, some of which (but not all) may be zero such that 

( Th)_ = C;Jzs+‘y(s+i)( t,.,) + O( hs+2). 

From (3.12) and Definition 2.3, the consistency error of the discrete fundamental form (3.9) 
for (3.2) is given by 

eh = (Ah)_?. (3.13) 

Consequently, if the discretization (3.2) is zero stable, 

i 

k-l 

( Iehl,);w’ c ( IThI,,)jf i (IThIm), . 
i 

(3.14) 
j=o j=k 

It follows that for a zero stable scheme if the starting values are of order s and the 
discretization is of order s then the consistency error of the discrete fundamental form is of order 
(at least) S. This permits the following convergence result to be deduced from Theorem 2.1. 

Theorem 3.1. Let f(t, y) be Lipschitz continuous in y. Let y be the solution of (3.1) and let yh be 
defined by (3.2). If the m-stage k-step method (3.2) is zero stable and of order s, with starting values 
of order s, then for all h E J sufficiently small 

11 rhy - yh 11 o. < Ch” + 0( hS+‘), 

for some positive C, independent of h. 

(3.15) 

The above result was obtained using (3.14). However, it may be possible to prove higher order 
convergence if the consistency error (3.13) is considered directly without employing the upper 
bound (3.14). 

From (3.13) tYh is the solution of the equations 

AhBh = Th. (3.15) 

In the past severa! authors including, for example, Pitcher [7], and McKee and Pitcher [6], have 
attempted to improve on the bound (3.14) by considering the form of the inverse matrix (Ah)-‘. 
This however is difficult and results have only been presented for subclasses of matrices of the 
form (3.8). The inversion of Ah may clearly be avoided since, because Ah is block lower 
triangular, with at most k nonzero m X m matrices in each row, (3.15) may be used to determine 

(eh),, (eh),, (@7),, . . . successively as follows: 

(@),=(Th);, i=O,l,..., k-l, 

Ak(eh)O +A&@$ $- . . . +&(oh)k = (Th)k, 

Aoh), +Ak-l(@% + . .. +Ao(eh)k+l = (Th)k+l, 

and so on. 
In general (eh),, for n >, k, is determined from the nth set of m equations at (3.15) that is, 

A,(Bh),_, + A,_,(Bh),_,+, + * *. +A,(eh), = (Th).. 

Note that it was assumed that A,, is nonsingular. 
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By using (3.15) it can be shown that for certain m-stage k-step methods the order of 
convergence will exceed the order of the discretization (3.2) (provided the starting values are 
sufficiently accurate). 

Corollary 3.1. Under the hypothesis of Theorem 3.1, if the discretization (3.2) is zero stable and if 
the consistency error tth determined by (3.15) satisfies 

(8”),., = C,:hP + 0( hp+‘), l<r<m, k<i<N, 

for some constants C,: (not all zero), bounded independently of h, and some p 2 s, then provided the 
starting values are of order p, 

~~rhy-yh~~M~C’hP+O(hP+‘), (3.17) 

for some positive constant C’, independent of h. 

To illustrate Corollary 3.1 consider Example 1. 
Simpson’s rule (3.5a) is of order 4, and the Adams-Moulton scheme (3Sb) is of order 3. 

Provided y is smooth there exists C,, C,, 1 < i < N, such that 

qi.i = Clh5y@)(ti.,) + 0( h6), 1 < i < N, 

and 

i’;,z=C,h4y(4)(ti,2)+O(hS), l<i,<N, 

and assume 

T0,7 = C&h” + O(h’), 7 = 1, 2. 

Using (3.6) the nth set of 2 equations in (3.15) becomes 

(-A :)(:-::j+( -: Y)[:::)=(::j. 

Consequently, 

Also, 

&,I = T,,, + h,, = -. . = c ?,I + G,, 
j=l 

= C,,,h4 + O(h’). 

19,,, = Tn.2 + e,,,, = C,h4y(4)( t,,2) + C,,,h4 + 0( h5) 

= &h4 + 0( h’). 

It follows from Corollary 3.1 that convergence of (3.5) is order 4. Note Theorem 3.1 predicts 
convergence of order 3. 

4. Generalized reducible quadrature 

Consider the integral 

z(t)=/& s, y(s))ds, O<t<T. 
0 

(4.1) 
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Let 

x(t, x) = i’G(x, s, Y(S)) ds, O<x, td T. 

Differentiating, for each x E [0, T], 

g(& x) = G(x, t, r(t)>, x(0, x)=0, O<t< T. 

An application of an m-stage k-step ODE method to (4.3) yields 

h-‘A”x”(x) = BhG(x, y”) + g”(x) 

where, with x fixed, 

(4.4 

(4.3) 

(4.4) 

x”(x) = (X0(X>? Xl(X)?. . -3 X,(X))’ E X4 

with x,(x) = (x,,,(x)) E R”, 0 < i < N, where x,.,(x) denotes an approximation to ~(t,,,, x), 

G(x, _?) = (G(-y. x,), G(x, Y,),...,G(x, YN))~EX~ 

with G(x, y,) = (G(x, t,,,, yj7)) E R”, 0 <i < N, and gh = h-‘(k,(x), iii(x) ,..., jik-i(x), 
0 9 . . ., O)T E Xh with k,(x) = t&,(x)) E R”, 0 < i < k - 1. 

It is assumed that starting values jii,,(ti.,) (approximating .~(t~,~)), 1 < r < m, 0 < i < k - 1, 
are found using some starting quadrature rule, which will be denoted by S,,,,. 

Premultiplying (4.4) by h(Ah)-‘, putting x = fj,7 and noting that (~~(t~.~))~.~ denotes an 
approximation to x( rj,7, t,,,) = z( fi,7), suggests the following discretization of (4.1): 

where ( wi),, denotes the (7, v)th entry in the (i, j)th m x m matrix element of Wh where 

l/I/h = (Ah)-‘B”, (4.6) 

with ih given by (3.8) with O,,,, replaced by S,,. 
The quadrature rules (4.5) constructed by means of (4.6) will be called generalized reducible 

quadrature and will be denoted by [S,,; (p, a)]. If the discretization (3.2) is a linear multistep 
method then (4.5) is the reducible quadrature rule used by Wolkenfelt [lo]. 

The matrix of weights Wh is determined not by inverting Ah but by solving 

AhWh = gh 

for Wh. Partition Wh into the form 

s 0 
wh= km 

[ 1 *k r . (4.7) 

Only the weights in the matrix tik depend on the entries of Sk,, and it is straightforward to 
observe that r is an m-block isoclinal matrix, that is, 

r= (4.8) 
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where the sequence (r~}~=,, satisfies 

AiJa = B,, 

A& + A,T, = B,) 

AJ, + AIT,_, + . +. +A& = B,, (4.9) 

AJ, + A,T,_, + . . . +Fl,T,_, = 0, n 2 k + 1. 

Hence to find Wh it is sufficient to determine ok and then to generate the sequence { I” } 
using (4.9) to find r. 

As an illustration consider employing Example 1 to yield a reducible quadrature rule. Using 
(3.6) equations (4.9) give 

Now consider the order of the generalized reducible rule (4.5). 
The solution x( t, x) of (4.3) satisfies 

A%+(x) = hBhG( x, rhy) + hjy(X) + P(X), 

where, for 1 < r < m, k < i < N, ( Th( x)),,, = T,T(x) denotes the truncation error of the m-stage 
k-step ODE method at t = t,,,. Hence 

dt,.,) =h i f (Kj).,G(t,,,, t,.,, y(t,,u,) + ((~h)-‘~h(ti.r));,~~ 
j=O v=l 

l<r<m, k<i<N, (4.10) 

where, for 1 G r G m, 0 G i G k - 1, ( Th( ti,,));,, denotes the error in the starting rule at t = ti,T, 

and for 1 =G ~,r < m, k < i,l G N, (Th(ti,T))l,ll = T,,,(t,,,). 
If the consistency error of the discrete fundamental form (3.9) for the discretization (3.2) is of 

order s, the generalized reducible quadrature rule [Skm; (p, a)] will be of order s. 
For example, when the Simpson-Adams-Moulton scheme of Example 1 is employed to 

generate a reducible quadrature rule, it follows from Section 3 that the resulting quadrature rule 
is of order 4, provided the starting values are of order 4. 

5. Convergence results for generalized reducible quadrature 

5.1. Volterra integral equations of the second kind. 

Applying a generalized reducible quadrature rule to (1.1) yields 

yh = gh + hW”(/‘), 

where 

(5 4 
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with j,,, E R”, 0 G i < k - 1, vectors of precomputed starting values, 

g,=(g(t,.,))ER”‘, kdi<N, 

and 

(w,j)TvG(t~,~~ ‘j.v, Y,,Y), l<r<rn, kgigN. (5 4 

Equation (5.1) is of the form 

yh=gh+Hh(yh), 

where Hh: Xh + Xh is a discrete Volterra operator satisfying (2.2) with 

(5 03) 

where L is the Lipschitz constant for G(t, s, y) with respect to y. Recalling (4.6) it follows that 
(5.3) is the discrete fundamental form for the quadrature method (5.1) provided the underlying 
m-stage k-step ODE method is zero stable. The following convergence result is now immediate. 

Theorem 5.1. Let G( t, s, y) be Lipschitz continuous in y. Let y be the solution of (1.1) and let yh 
be defined by (5.1). If th e g eneralized reducible quadrature [S,,; (p, a)] is of order s and the 
starting values are of order s^, then for h E J sufficiently small 

II rhY -Yh II ra < Ch”* + 0( hs*+‘), 

for some positive constant C independent of h and s* = min( s, a). 

(54 

5.2. Volterra integro-differential equations 

Consider the Volterra integro-differential equation 

Y’(f) = Jo, Y(t>>z(t>), 

z(t) = k’G( t, s, Y(S)) ds, 

with y(0) given. 
Applying an m-stage k-step method 

rule [S,,; (p, a)] to (5.5b) yields 

(5.5a) 
O<ttT, 

(5.5b) 

(5, 5) to (5.5 ) a and a generalized reducible quadrature 

h-‘A-hyh = jjhF( yh, zh) + gh, (5.6a) 

i 

0, O<i<k-1, 

(z’)‘= h(Wh(yh));, k<i<N, 

where 

F(yh, z”> = (f’(y,, zo), F(Y,, z,), . . . , F(y,, z,))’ E Xh, 

F(Y,, z,> = (F(t,,., Y,,,, z;,,)) E R”, 0 < id N, 

gh=h-‘(j&, j+ ,..., jk,_k_l, 0 ,..., O)T~Xh, 

(5.6b) 
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where j, E R”, O<i<k+k-1, are given vectors of starting values. Here A-h, gh are of the 
form (3.8) with Ikm, O,, replaced by ICk+zjm, OCk+Zj,,2, respectively. 

No generality is lost by assuming that both the (p, a)- and (p, a)-multistage multistep 
methods are m-stage methods for, if not, the methods can be rewritten with m = lcm( m,, m,), 
where m,, m2 denote the number of stages of the (p, a) and (3, a)-multistage methods 
respectively. 

Premultiplying (5.6a) by h( A-h)-’ gives 

Y!=h(A-h)-lgh+Hh(Yh), 

where 

(5.7) 

Assuming Lipschitz continuity of F( t, Y, z) with respect to the second and third variables 

( IF(Y:9.z:)--(Y2h9 z2h) Im)jGL1( IYF-Y,hIm)j+&2( Iz~-z2hIm)j~ 

From (5.6b), for j 2 k, 

( lz~~zll~)j~~~~~l(wh),il,i: (IY!-Y,hIm)I. 
I=k 

Provided the (p, a)- and ( p, a)-multistage multistep methods are zero stable, interchanging the 

order of double summation gives 

( Iffh(Yiy -Hh(Y2h) I*)~ #MC (~,+L,Lh(i-j+l))(Iy:-y,hI,),, 
j=O 

where M is independent of h. Therefore, since L, + L,Lh( i -j + 1) d L’, where L’ is a constant 
independent of h, (5.7) is the discrete fundamental form for (5.6). 

Theorem 5.2. Let G( t, s, y) be Lipschitz continuous in y and let F( t, y, z) be Lipschitz continuous 
in y and z. Let y be the solution of (1.2) and let yh be defined by (5.6). Let the (p, a)-multistage 

multistep method be zero stable and let the consistency error of its associated fundamental form be of 
order S. Let the generalized reducible quadrature rule [Sk,: (p, a)] be of order s, and let the 

starting values be of order s^. Then for all h E J sufficiently small 

II rhY -Yh II m < Ch”* + O(hs*+‘), 

for some constant C independent of h and s* = min(s^, s, S). 

(5.7) 

Proof. Define $‘, $I~ as follows 

rhy = h( A-h)-‘( BhF( rhy, r”z) + g”) + sh;“, 

(rhz)i=h(Wh(rhy) +Gh);, k<i< N. 
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Setting ( rhZ), = ( rhz - #),, k ,< i < N, and defining ( rhZ), = 0, (h Wh( rhy)); = 0,O < i < k - 1, it 

follows that 

rhy = h(LP)-‘Z”F( rhy, HP (Py)) + h (A-h)_‘j” 

+!I(A-h)W{ F(rhy, rhz) - F(rhy, r?)} + 3. 

That is, 

rhy = /z(A7)-‘$ + Hh(rhy) + eh, 

where the consistency error Bh is given by 

eh=$+h(A-h)-?P(F(rhy, rhz)-+-hy, rhZ)}. 

Using the zero stability of the (5, a)-multistage multistep method 

and since (rhz - rhz), = (Go);, k < i <A’, it may be deduced that 

where c is independent of h. Thus 

(( Bh ((oo G Ch”* + O(h’*+‘), s* = min(s^, s, S), 

and the bound (5.7) follows using Theorem 2.1. 

6. Numerical results 

The expected rates of convergence of the generalized reducible quadrature method for 
Volterra integral equations of the second kind and Volterra integro-differential equations were 
tested by employing Example 1 to generate the quadrature weights. In the case of a Volterra 
integro-differential equation the (p, I?) multistage multistep method was taken to be the 
Simpson-Adams-Moulton cyclic scheme of Example 1. 

The generalized reducible quadrature rule generated using Example 1 is of order 4 (assuming 
order 4 starting values). Therefore, Theorems 5.1 and 5.2 predict that, provided the starting 
values are chosen to be of order at least 4, convergence will be of order 4. 

The following two test equations were used: 

Problem 6.1 (renewal equation from Feller [3]). 

y(t)=jt*exp(-t)+f/or(t-.s)*exp(s-t)y(s)ds, O<t<6, 

with exact solution y(t) = f - $exp(- tt){cos(ifit) + fisin(ifit)}. 
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Problem 6.2. 

y’(t) = 1 - t exp( -t*) +y(t) - 2ilfs exp( -y*(s)) ds, 0 G t < 2, 

Y (0) = 0, 

with exact solution y(t) = t. (See also Wolkenfelt [lo].) 

All necessary starting values were computed from the exact solutions. 
Tables 1 and 2 list the number of correct digits (defined by -log,, (absolute error)) at the end 

point of the range of the integration for a sequence of stepsizes. Note that for a method of order 
p and h sufficiently small it would be expected theoretically that halving the stepsize will yield 
an increase of 0.3 * p in the number of correct digits (0.3 = log,,2). The results for Problems 6.1 
and 6.2 employing the reducible quadrature generated by Example 1 will be denoted by Ml and 
[Ml; Ml], respectively. 

For comparison, for Problem 6.1, the results are also listed in Table 1 for the 4th-order 
backward differentiation reducible quadrature used by Wolkenfelt [lo]; these results will be 
denoted by BD4. In addition are listed the results for the pth order Adams-Moulton reducible 
quadrature with p = 3, 4; these results will be denoted by AM3, AM4. Note that AM3 
corresponds to employing (3Sb) on its own to generate a quadrature rule, without using (3.5a). 

For Problem 6.2. the results are given in Table 2 for the methods 
[BD4; BD4]: (5, 5) is the 4th order backward differentiation formula, Wh = [S,,; (p, a)] 

where (p, a) is also the 4th order backward differentiation formula. 
[BD4; AM4]: (p, 6) is the 4th order backward differentiation formula, Wh = [S,,; (p, a)] 

where (p, a) is the 4th order Adams-Moulton formula. 
The methods Ml and [Ml; Ml] are clearly convergent of order 4 for Problems 6.1 and 6.2 

respectively. By comparing Ml and AM3 it is clearly advantageous to use (3Sa) and (3Sb) 
together to generate a reducible quadrature rule rather than just employing the Adams-Moulton 
formula (3.5b). Note that the Ml method is more accurate than the BD4 and AM4 methods, and 
the [Ml; Ml] method is more accurate than the [BD4; BD4] and [BD4; AM41 methods. 

Table 1 

h-’ Ml BD4 AM3 AM4 

4 3.7 2.9 3.3 3.6 
8 4.9 3.9 4.1 4.7 

16 6.0 5.1 5.0 5.9 

32 7.2 6.2 5.9 7.1 

64 8.4 7.4 6.8 8.3 

Table 2 

h-’ [Ml; Ml] [BD4; BD4] [BD4; AM41 

10 4.1 2.8 3.6 
20 5.3 3.9 4.8 
40 6.6 5.1 6.0 
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7. Concluding remarks 

In this paper a general class of methods for ordinary differential equations has been employed 
to derive generalized reducible quadrature methods for Volterra integral equations of the second 
kind and Volterra integro-differential equations. It was previously observed by Wolkenfelt et al. 
[13] that, formally, any integration method for ordinary differential equations could be applied 
to Volterra integral equations of the second kind. However, it was thought that convergence of 
these methods would require special consideration and they state “in fact, it appears that 
convergence is not trivially implied by the convergence of methods for ordinary differential 
equations. However, in cases where the integration method can be identified with a direct 
solution method for Volterra integral equations, we may apply the convergence conditions 
holding for these direct methods. When such an identification is not possible then convergence 
must be established by other means”. 

In this paper it has been shown by using a general convergence theorem that the generalized 
[S,,; (p, a)] reducible quadrature applied to (1.1) will converge under the same conditions as 
those used in Section 3 to prove convergence of the underlying (p, a)-multistage multistep 
method for ordinary differential equations. Furthermore, the general convergence theorem allows 
convergence of the generalized reducible quadrature method for Volterra integro-differential 
equations to be proved in a straightforward manner. 

The class of multistage multistep methods may also be employed to generalize the class of 
multilag and modified multilag methods proposed by Wolkenfelt [10,12], and convergence may 
again be proved using the general convergence theorem. Details are given in Scott [8]. 
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