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SUMMARY

Recently, a number of variants of the approximate minimum degree algorithm have been proposed that
aim to efficiently order symmetric matrices containing some dense rows. We compare the performance of
these variants on a range of problems and highlight their potential limitations. This leads us to propose a
new variant that offers both speed and robustness. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The efficiency of sparse direct solvers for the solution of symmetric linear systems Ax=b, in
terms of both the storage needed and the work performed, is dependent upon the order in which the
variables are eliminated, that is, the order in which the pivots are selected. Many solvers include
a preordering step that aims to use information on the sparsity pattern of A to find a permutation
so that, if the pivots are chosen in order from the diagonal of the permuted matrix, the computed
factors are sparser than if the pivots were chosen in order from the diagonal of the original matrix.
If A is positive definite, the pivot sequence chosen from the sparsity pattern alone can be used
by the factorization phase without modification and a Cholesky factorization PAPT=LLT, where
P is a permutation matrix and L is lower triangular, can be computed. More generally, numerical
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pivoting must be incorporated during the factorization phase to maintain numerical stability and,
in this case, the pivot sequence computed by the preordering step may have to modified.

The problem of finding a permutation P that results in the smallest amount of fill-in for a
Cholesky factorization is NP-complete [1] and so heuristics are used to find a good ordering.
Two main classes of methods are widely used: those based on nested dissection [2] and those
based on the minimum degree algorithm [3]. In recent years, nested dissection has often been
found to be the method of choice for many very large problems (typically those of order greater
than 50 000) [4]. However, it can be more expensive than the most efficient implementations of
the minimum degree algorithm, which is preferred for more modest size problems and for very
sparse problems. Currently, the most successful variant of the minimum degree algorithm is the
approximate minimum degree (AMD) algorithm and, in particular, the AMD algorithm introduced
by Amestoy et al. [5, 6] is widely used. The AMD algorithm is more efficient since it uses
computationally cheap bounds on the minimum degree in place of the exact minimum degree and,
in practice, it produces orderings that are comparable in quality [5].

Although AMD is generally very successful, an important exception is when the matrix A has
some dense (or almost dense) rows and columns. In this case, the run time for AMD can be high.
AMD uses the undirected graph of the matrix and selects each node in turn to have a minimum
(approximate) degree. Once a node is selected, it is eliminated from the graph and replaced by
adding edges between its neighbours so that the neighbours become a clique. If a row is full, the
corresponding node will always be adjacent to the eliminated node so that its adjacency list has to
be scanned and updated, requiring O(n2) operations for a problem with n variables. This makes
the algorithm prohibitively expensive.

We will compare three variants of the AMD algorithm that aim to efficiently form a pivot order,
when the matrix A has some dense rows and columns. The first two were proposed by Carmen [7]
and Davis [8] (see also [6]): each performs a preprocessing stage during which the rows and
columns that it considers to be dense are removed, and then the AMD algorithm is applied to
the remaining matrix. The variant that was originally introduced by Amestoy for use within the
parallel direct solver MUMPS [9] and was recently discussed by Amestoy et al. [10] uses a more
sophisticated dynamic partition of the rows into dense and sparse rows to efficiently compute the
pivot order. Our experiments show that all three variants can perform poorly (either in terms of
the quality of the pivot order or the time taken to compute it) and this leads us to present a new
variant that combines the speed of the methods of Carmen and Davis with the robustness of the
Amestoy method.

This paper is organized as follows. We end this section by introducing our test environment
and then, in Section 2, we give a brief review of the minimum degree and AMD algorithms. In
Section 3, the methods of Carmen, Davis, and Amestoy et al. are described and numerical results
are used to illustrate their weaknesses. The new variant of the AMD algorithm that we propose
to overcome these problems is introduced in Section 4 and the numerical results are presented in
Section 4.1. We draw our conclusions in Section 5.

1.1. Test environment

Table I lists the test problems that we use to compare the variants of the minimum degree algorithm.
The problems are from the University of Florida Sparse Matrix Collection [11]. If A has an
unsymmetric sparsity pattern, we work with the sparsity pattern of Â= A+AT (in computing the
pattern of the symmetrized matrix Â, we ignore the exact numerical calculation and include any
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Table I. The test set: the order n, the number of off-diagonal entries nz in
Â= A+AT, the maximum dmax, the mean �, and the standard deviation � of

the number of entries in the rows of Â.

Problem n nz dmax � � �/�

1 crystk03 24696 1751178 81 70.9 14.2 0.20
2 nd12k 36000 14220946 519 395 83.2 0.21
3 dawson5 51537 1010777 33 19.6 5.32 0.27
4 ramage02 16830 2866352 270 170 52.9 0.31
5 heart1 3557 1384216 1119 389 124 0.32
6 cegb2919 2919 321543 267 110 41.6 0.38
7 Kuu 7102 340200 98 47.9 20.0 0.42
8 crankseg 1 52804 10614210 2703 201 88.7 0.44
9 gyro k 17361 1021159 360 58.8 32.1 0.54
10 3dtube 45330 3213618 2364 70.9 39.7 0.56
11 invextr1 new 30412 1844242 257 60.6 40.4 0.67
12 pattern1 19242 9323432 6028 485 380 0.78
13 lpl1 32460 328036 253 10.1 15.5 1.53
14 gupta3 16783 9323427 14672 556 1234 2.22
15 mip1 66463 10352819 66395 156 351 2.25
16 av41092 41092 3366164 2661 81.9 193 2.36
17 net4-1 88343 2441727 4791 27.6 85.3 3.09
18 ckt11752 dc 1 49702 337616 2921 6.79 24.7 3.63
19 rajat23 110355 454986 3401 4.12 19.4 4.71
20 rajat22 39899 162996 3401 4.09 25.0 6.12
21 gupta2 62064 4248286 8413 68.5 356 5.20
22 gupta1 31802 2164210 8413 68.1 360 5.30
23 Chebyshev4 80016 355034 5003 4.44 50.0 11.3
24 a0nsdsil 60012 640033 40011 10.7 305 28.6
25 case39 40216 1042160 20024 25.9 316 12.2
26 blockqp1 60012 640033 40011 10.7 305 28.6
27 trans5 116835 744236 114190 6.37 387 60.8
28 ins2 309412 2751484 309412 8.89 590 66.4
29 rajat29 643994 5562244 454745 8.64 785 90.8

explicit zeros). For each example, we give the order n of A and the number nz of off-diagonal
entries in the pattern of Â. Furthermore, defining di to be the number of off-diagonal entries in
the i th row of Â, Table I includes the maximum dmax, the mean �, and the standard deviation �
of the di . As in [10], the problems are presented in increasing order of �/�.

Our numerical experiments are performed on a 3.6GHz Intel Xeon dual processor Dell Precision
670 with 4Gbytes of RAM, running Red Hat Enterprise Linux Server release 5.1 (kernel 2.6.18-
53.1.13.el5). All codes used in this paper are written in Fortran and the g95 compiler with the -O4
option is used.

The statistics we use when comparing AMD variants are the CPU time (in seconds) required to
compute the pivot sequence and the forecast number nz(L) of reals in the matrix factor. The latter
provides a measure of the quality of the ordering and is generated by passing the pivot order to
the analyse phase of the HSL [12] sparse direct solver MA57 [13] (Version 3.2.0). The input order
in all tests is as supplied but note that tie breaking within each algorithm can have some (usually
minor) effect on the final ordering.
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2. THE MINIMUM DEGREE AND AMD ALGORITHMS

We start by briefly recalling the minimum degree and AMD algorithms for computing a pivot
ordering for a sparse symmetric matrix and introduce the notation and terminology we will use
throughout this paper.

The minimum degree and AMD algorithms may be presented using the graph model of
Rose [14, 15]. The nonzero pattern of a sparse symmetric matrix A={ai j } of order n can be
represented by an undirected graph G0=(V 0,E0) with nodes V 0={1, . . . ,n} and edges E0. An
edge (i, j) is present in E0 if and only if ai j �=0 and i �= j . Nodes i and j in V 0 are adjacent to
each other (neighbours) in graph G0 if the edge (i, j) is present in E0.

The elimination graph Gk=(V k,Ek) describes the nonzero pattern of the reduced matrix A(k)

of order n(k) still to be factored after k pivots have been chosen and eliminated. The degree of
node i is defined to be the number of nodes adjacent to node i in Gk . We denote the degree by dki .
At each stage, the minimum degree algorithm chooses the kth pivot to be a node p of minimum
degree in Gk−1. Algorithm 1 gives an outline of the minimum degree algorithm. We use the term
variable for a node that has not been removed from the elimination graph.

Algorithm 1 The minimum degree algorithm

Let G0=(V 0,E0) be the undirected graph associated with an n×n symmetric matrix.
Compute the degree d0i of each i ∈V 0.
Initialize k=1.
while k�n do

Select variable p∈V k−1 to minimize dk−1p .
Construct Gk=(V k,Ek) (see below).
Update dki for each variable i that is adjacent to p in Gk−1.
Set k←k+1.

end while

The graph Gk depends on Gk−1 and the choice of the kth pivot. Gk is constructed by selecting
the kth pivot from V k−1, adding edges to Ek−1 to make the nodes adjacent to p in Gk−1 a clique (a
fully connected subgraph), and then removing p (and its edges) from the graph. The edges added
to the graph correspond to fill-in. This addition of edges means that, if Gk is stored explicitly, we
cannot know the storage requirements in advance. To remedy this a quotient graph is used instead
of an elimination graph. However, the calculation of the degree of a variable may then be expensive.
To improve the efficiency, Amestoy et al. [5, 6] proposed the AMD algorithm, which calculates an
upper bound, d̄i , on the degree of a variable and uses this when choosing the next pivot. Numerical
results have shown that the AMD algorithm produces orderings that are comparable in quality to
the best classical minimum degree algorithms while being significantly faster [5].

When a pivot p is eliminated, the AMD algorithm of Amestoy et al. (which we will refer
to throughout the remainder of this paper as the classical AMD algorithm) updates the upper
bounds d̄i of all the nodes adjacent to p. If the row corresponding to node i is (almost) dense, it
is (almost) certainly adjacent to p and updating d̄i will involve a large number of comparisons.
Thus (almost) every step is expensive, making the classical AMD algorithm very inefficient when
the matrix A has some dense (or almost dense) rows and columns. This was demonstrated for
a range of practical problems in [10] and is also illustrated in Table II for a subset of our test
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Table II. Comparison of the times (in seconds) and the predicted number
of entries in L (×106) generated by orderings from the minimum degree

algorithm and the classical AMD algorithm.

Minimum degree Classical AMD

Problem Time nz(L) Time nz(L)

lpl1 1.21 0.97 0.27 0.97
mip1 41.2 38.9 11.4 39.0
gupta2 1931 5.86 92.3 5.89
gupta1 391 2.02 32.5 2.06
blockqp1 47.1 0.38 6.71 0.38
trans5 362 0.68 212 0.68
ins2 2436 1.53 791 1.53

problems. We use a Fortran 95 version of the minimum degree algorithm, which was originally
developed for the earlier solver MA27 [16]. For the classical AMD algorithm, we use the HSL
code MC47 with its control parameter ICNTL(4) set to −1. These results show that, as expected,
the AMD algorithm is significantly more efficient than the minimum degree algorithm, while the
quality of the orderings is comparable. For the gupta problems, the times differ by at least
an order of magnitude. However, for a number of our test problems with dense rows (including
gupta2, trans5, and ins2), the AMD times are still high, that is, they are significantly greater
when compared with problems of similar size and density but with no dense rows (see [10]). The
algorithms described in Section 3 aim to reduce these times while maintaining ordering quality.

3. AMD VARIANTS FOR DETECTING AND TREATING DENSE ROWS

The problem of forming variants of the AMD algorithm that efficiently detect and treat dense rows,
has recently been considered by Carmen [7], Davis [8], and Amestoy et al. [10]. Using the names
given by their authors, we refer to these variants as AMDpre, CS AMD, and QAMD, respectively.
The amd function of MATLAB� (Version 7.5) implements the CS AMD algorithm.

3.1. The AMDpre and CS AMD algorithms

The AMDpre [7] and CS AMD [8] algorithms (see also the C version of AMD in [6]) use a
preprocessing step to search the matrix A for rows that they consider to be dense. The matrix A
is reordered to take the form

A=
⎡
⎢⎣ A1 AT

r

Ar Ad

⎤
⎥⎦ (1)

where Ar and Ad are considered to be dense. The classical AMD algorithm is then applied to A1
and the dense rows are appended to the end of the resulting pivot order: the authors assume that
the dense rows all experience roughly the same amount of fill-in and order them in increasing
value of their degree within A.
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The CS AMD algorithm classifies a row in A as dense if its degree is greater than max(16,�
√
n),

where �>0 is a fixed constant (the default is �=10). We remark that Reid incorporated an option
that uses a similar idea into the implementation of the minimum degree algorithm within the
HSL [12] sparse solver MA27 [16].

The AMDpre algorithm uses a procedure that is equivalent to that given in Algorithm 2. The
threshold � takes the form �=�

√
n, where �>0 (the default value is �=1). The major difference

between this and the simpler CS AMD variant is that AMDpre updates the degrees when a row is
selected as dense and removed from A1. This results in a more complicated implementation but a
smaller threshold can be used to remove roughly the same number of dense rows.

Algorithm 2 The AMDpre method for choosing A1

Set A1= A
Calculate the degrees of the rows in A1
while maximum degree �� do

Remove from A1 the row (and corresponding column) of largest degree
Update the degrees of the rows in A1

end while

3.2. The QAMD algorithm

The QAMD algorithm was developed independently of the AMDpre and CS AMD algorithms.
It was originally used by Amestoy in the parallel direct solver MUMPS [9]. It uses a somewhat
different approach since the partitioning of the matrix is dynamic, allowing the matrix to be
partitioned more than once as the ordering proceeds. In [10], Amestoy et al. define a row to be
full if all of its entries are (symbolically) nonzero; a row is quasi-dense if it has a high proportion
of nonzero entries (so that its degree is large); a row is sparse if it is neither full nor quasi-dense.
Amestoy et al. begin by partitioning the matrix A into the form

A=

⎡
⎢⎢⎢⎢⎣

As AT
q1 AT

f1

Aq1 Aq AT
f2

Af1 Af2 Af

⎤
⎥⎥⎥⎥⎦

where the rows in As are sparse, the rows in Aq are quasi-dense, and the rows in Af are full.
QAMD starts by applying the AMD algorithm to the submatrix As but if as the eliminations are
performed, a row that was initially sparse becomes quasi-dense or full, its variable is removed
from As and placed into Aq or Af, respectively. When all the variables in As have been either
eliminated or reclassified, the exact degrees of the quasi-dense rows are calculated and these rows
are then reclassified as either sparse or full. If k pivots have already been chosen, the reduced
matrix A(k) of order n−k is of the form

A(k)=
⎡
⎢⎣ Ak

s (Ak
f1)

T

Ak
f1 Ak

f

⎤
⎥⎦
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where the rows in Ak
s are sparse and those in Ak

f are full. The QAMD algorithm restarts by applying
the AMD algorithm to Ak

s and, again, reclassifying rows as quasi-dense or full when appropriate.
The algorithm can restart a number of times until only full variables remain uneliminated. The
corresponding variables are appended to the end of the pivot order (the order in which they are
appended is arbitrary).

A threshold �>0 is used to select quasi-dense rows. In [10], a variable i is reclassified as
quasi-dense if it is not known to be full and d̄si +nq+nf��, where nq and nf are the numbers
of quasi-dense and dense rows, respectively, and d̄si is the approximate degree of variable i with
respect to the matrix As. The threshold is updated at the beginning of each restart using a definition
of the form �=�(�,�). A more detailed description of the QAMD algorithm and the choice of �
is given in [10].

We remark that, although the QAMD algorithm can be implemented using the same amount of
memory as the classical AMD algorithm, the implementation is complicated because the quotient
graph needs to be reformed during each restart.

3.3. A comparison of AMD variants

In this section, we present numerical results to demonstrate that, although the variants of AMD
introduced so far outperform the classical AMD algorithm, problems remain on which they perform
poorly. For our experiments with the classical AMD and QAMD algorithms, we use the HSL code
MC47 with its control parameter ICNTL(4) set to −1 and 1, respectively. We use the Fortran
implementation of AMDpre provided at http://www.netlib.org/linalg/amd/, but, for consistency,
have replaced the call to amdbar with a call to MC47 with its control parameter ICNTL(4)
set to −1. We use our own Fortran implementation of the CS AMD algorithm. We remark that
we have also run the Matlab implementation of CS AMD; in our tests our implementation gave
orderings of comparable quality.

In Table III, we report the results for our test problems. For most of our test problems, significant
time gains are achieved by using an AMD variant that allows for some of the rows being dense.
rajat29 is a notable example: the minimum degree algorithm fails to compute a pivot order
within 10 000 seconds, classical AMD requires 4115 seconds, whereas the dense row variants take
no more than 3.5 seconds. Other examples for which the dense row variants achieve significant
time savings include the gupta problems, trans5, and ins2.

For some problems, including the gupta problems, AMDpre is much faster than QAMD,
without compromising on quality. The gain in speed is because AMDpre only needs to store the
structure of the submatrix A1 (see (1)) but QAMD requires the whole structure to be stored and
occasionally searched to allow the method to restart correctly. AMDpre is also generally faster than
CS AMD. This is because CS AMD can fail to detect and remove some of the rows that should
be categorized as dense and these remaining dense rows lead to slow run times. In particular,
Algorithm 2 will fail to correctly detect all the dense rows in a matrix if the maximum degree is
smaller than �

√
n but still significantly larger than the average degree of the resulting matrix A1.

For example, for gupta2, CS AMD flags only 258 dense rows while AMDpre finds 1193, leading
to the CS AMD time being almost 40 times slower than that of AMDpre.

Of course, we not only want an algorithm that is fast, we also require an algorithm that produces
orderings that lead to sparse factors. In terms of ordering quality, CS AMD and QAMD generally
produce orderings of comparable quality to the classical AMD algorithm (although for a small
number of examples, including gupta3 and rajat29, the factor obtained using the QAMD is
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Table III. Comparison of the times (in seconds) and the predicted number of reals in L (×106)
generated by orderings from the minimum degree (MinDeg), classical AMD (Classical),

AMDpre, CS AMD, QAMD and AMDD algorithms.

Problem MinDeg Classical AMDpre CS AMD QAMD AMDD

crystk03 Time 0.13 0.09 0.09 0.10 0.09 0.11
nz(L) 13.6 11.9 11.9 11.9 11.9 11.9

nd12k Time 5.92 1.52 0.71 1.59 1.47 1.70
nz(L) 178 156 308 156 156 156

dawson5 Time 0.26 0.20 0.20 0.21 0.21 0.25
nz(L) 5.44 4.62 4.62 4.62 4.62 4.62

ramage02 Time 0.15 0.11 0.10 0.12 0.11 0.13
nz(L) 21.0 19.3 29.8 19.3 19.3 19.3

heart1 Time 0.05 0.04 0.04 0.04 0.04 0.05
nz(L) 1.59 1.61 3.36 1.51 1.61 1.51

cegb2919 Time 0.01 0.01 0.01 0.01 0.01 0.01
nz(L) 0.35 0.34 1.03 0.34 0.34 0.34

Kuu Time 0.02 0.01 0.01 0.01 0.01 0.02
nz(L) 0.39 0.38 0.54 0.38 0.38 0.38

crankseg 1 Time 0.55 0.43 0.42 0.47 0.42 0.50
nz(L) 49.8 38.9 75.4 38.3 38.9 45.6

gyro k Time 0.07 0.05 0.06 0.06 0.05 0.07
nz(L) 1.27 1.23 1.59 1.23 1.23 1.25

3dtube Time 0.25 0.18 0.19 0.19 0.18 0.22
nz(L) 32.4 27.3 28.2 28.2 27.3 28.2

invextr1 new Time 0.41 0.21 0.22 0.22 0.21 0.26
nz(L) 17.3 14.8 16.8 14.8 14.8 14.8

pattern1 Time 4.21 0.86 0.30 0.64 0.86 0.51
nz(L) 48.4 48.4 61.3 48.4 48.4 54.4

lpl1 Time 1.21 0.27 0.27 0.28 0.19 0.35
nz(L) 0.97 0.97 0.99 0.97 1.20 0.99

gupta3 Time 95.9 9.31 0.23 0.63 3.68 0.29
nz(L) 5.72 5.72 5.60 5.35 6.52 5.53

mip1 Time 41.2 11.4 0.48 1.08 0.85 0.68
nz(L) 38.9 39.0 44.8 39.3 39.7 44.1

av41092 Time 361 5.65 2.56 5.37 6.48 3.24
nz(L) 174 174 167 177 181 170

net4-1 Time 6.09 2.15 0.53 0.59 0.80 0.64
nz(L) 2.46 2.38 2.39 2.37 3.09 2.39

ckt11752 dc 1 Time 0.47 0.20 0.12 0.18 0.16 0.15
nz(L) 0.59 0.56 0.57 0.56 0.63 0.57

rajat23 Time 0.62 0.33 0.19 0.28 0.24 0.21
nz(L) 0.45 0.46 0.47 0.46 0.47 0.47

rajat22 Time 0.27 0.13 0.05 0.07 0.08 0.07
nz(L) 0.15 0.15 0.15 0.15 0.16 0.15

gupta2 Time 1931 92.3 0.41 13.0 5.43 0.45
nz(L) 5.86 5.89 6.30 5.77 5.98 6.41

gupta1 Time 391 32.5 0.11 3.05 2.66 0.15
nz(L) 2.02 2.06 2.08 2.00 2.06 2.07

Chebyshev4 Time 17.8 3.50 0.36 1.03 0.68 0.44
nz(L) 21.9 21.3 25.2 21.3 26.7 22.0

a0nsdsil Time 13.1 2.93 0.07 0.07 0.10 0.10
nz(L) 0.34 0.34 0.39 0.39 0.35 0.39
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Table III. Continued.

Problem MinDeg Classical AMDpre CS AMD QAMD AMDD

blockqp1 Time 47.1 6.71 0.04 0.04 0.05 0.05
nz(L) 0.38 0.38 0.38 0.38 0.38 0.38

trans5 Time 362 212 0.22 0.21 0.28 0.24
nz(L) 0.68 0.68 0.69 0.69 0.70 0.68

ins2 Time 2436 791 0.35 0.33 0.53 0.44
nz(L) 1.53 1.53 1.59 1.59 1.59 1.59

rajat29 Time >104 4115 2.30 2.61 3.25 2.58
nz(L) — 9.77 9.97 9.87 11.7 9.93

about 20% denser than that obtained using the classical AMD). However, a serious drawback with
AMDpre is that it can remove a large number of rows that the other variants classify as sparse
and this results in the quality of the ordering being lost. This is illustrated by the example nd12k
for which CS AMD and AMDpre remove 0 and 17 155 rows, respectively. In this case, nz(L) for
AMDpre is twice that of the other AMD variants.

The results of our numerical experiments suggest that we require a method that combines the
power of the QAMD method for detecting dense rows with the efficiency of the AMDpre method.

4. THE AMDD ALGORITHM

In this section, we introduce a new AMD variant that is designed to overcome the weaknesses of the
existing variants that were highlighted in the previous section. Let us assume that k rows/columns
have been classified as dense and that Ak is the matrix that remains after these k rows and columns
have been removed from A. Let �k be the mean of the degrees of the variables in Ak and i be
a dense row in Ak . If row and column i are removed from Ak , we expect the mean value of the
degrees of the remaining variables to be reduced significantly more than if i were a sparse row.
This suggests that, instead of comparing the degree of a variable against the threshold �=�

√
n

as used in the preprocessing stage of the AMDpre method, we should compare �k with the value
that �k+1 would take if row/column i are removed. We declare the row/column as dense if the
difference is greater than a threshold tn−k . Numerical experimentation on a wide range of problems
has shown that defining tn−k as

tn−k= � ln(n−k)
n−k + �k

n−k−1 (2)

with �=40 produces a variant of AMD that is both efficient and maintains the quality of the
ordering. The method was not found to be very sensitive to the choice of �: values between 30
and 50 produced, in general, similar results.

Note that removing row and column i from Ak results in a matrix Ak+1 with mean degree

�k+1=
(n−k)�k−2dki

n−k−1
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Algorithm 3 The AMDD method
Set A0= A, k=0, and q to be an empty list
For each row i in A0, set d0i to be the degree of row i
Calculate the mean �0 of the degrees of the rows in A0
Calculate tn , where tn is defined by (2)
Select row i in A0 of largest degree
while �k−((n−k)�k−2dki )/(n−k−1)�tn−k do

Add i to the beginning of the list q
Set Ak+1← Ak with row and column i removed
�k+1=((n−k)�k−2dki )/(n−k−1)
Set k←k+1
For each row i in Ak , calculate dki
Calculate tn−k , where tn−k is defined by (2)
Select row i in Ak of largest degree

end while
Apply classical AMD to Ak to form a pivot order
Append the list q to the end of this pivot order to form a pivot order for A

where dki is the number of off-diagonal entries in the i th row of Ak . Therefore, our criteria for
declaring a row as dense are

�k−
(n−k)�k−2dki

n−k−1 �� ln(n−k)
n−k + �k

n−k−1
Rearranging, we obtain

dki−�k�
�

2

n−k−1
n−k ln(n−k)≈ �

2
ln(n−k)

Comparing our definition of a dense row with that of AMDpre, we observe that our new definition
additionally takes the mean degree into account, it contains a function that rises less steeply with
the order of the matrix, and it also makes allowances for the reduction in the order as rows are
removed. We believe that all of these properties are sensible. Our proposed new variant, which we
call the AMDD method, is outlined in Algorithm 3. Note that, given an efficient implementation of
the classical AMD, the AMDD variant is straightforward to implement and requires no additional
memory.

4.1. Numerical results for the AMDD algorithm

In this section, we compare our proposed AMDD variant with the AMDpre, CS AMD, and QAMD
variants. Table III contains the complete set of numerical results. In Figure 1, we compare the
forecast number of reals in the matrix factor relative to that of the AMDD variant. The problems
are numbered as in Table I. For seven out of the first nine problems, AMDpre removed a large
number of rows that the other variants regarded as sparse and, as a result, the quality of the ordering
was significantly worse than that for all the other variants. By comparison, AMDD consistently
produces high-quality orderings. Problem 8 (crankseg 1) is a notable exception where both
CS AMD and QAMD result in the forecast number of reals in the matrix factors being 38.3×106
and 38.9×106, respectively, but AMDD has a corresponding value of 45.6×106. However, it is
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Figure 1. The forecast number of reals nz(L) in the matrix factor relative to that of AMDD.
The problems are numbered as in Table I.

worth noting that AMDD produced a higher-quality ordering than the minimum degree algorithm
(nz(L)=49.8×106).

As noted in Section 3.3, we also require the AMDD variant to be efficient. In Figure 2, we
compare the time required for CS AMD and QAMD to form an ordering relative to the time
taken by AMDD. If the forecast number of nonzeros in the matrix factor exceeds 1.25 times that
of the AMDD, then we omit the (relative) time from the figure. We also omit the relative times
that are greater than 2.4 and those for which the time differs from that of the AMDD by at most
0.03 seconds. We observe that the fastest time for problem 13 was achieved by QAMD, but it gave
a poorer-quality ordering than AMDD. We see that AMDD is significantly faster than CS AMD
and QAMD for a number of our test problems.

5. CONCLUSIONS

We have compared a number of variants of AMD that aim to efficiently compute elimination
orderings for matrices containing some dense rows and shown that both CS AMD and QAMD
can be slow compared with AMDpre. Although AMDpre performs well on many problems, we
have shown that it can fail to correctly detect the dense rows. This led us to propose a new
variant, called AMDD, that combines the robustness of QAMD in detecting dense rows with the
speed of AMDpre. Our implementation of AMDD requires no extra storage over that required
in the implementation of the classical AMD algorithm used within this paper and is much more
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Figure 2. The time required to compute the ordering relative to that of AMDD. Times are
omitted from the figure if the relative value of nz(L) (with respect to AMDD) exceeds 1.25,
if the relative time is greater than 2.4, or if the time differs from that of AMDD by at most

0.03 seconds. The problems are numbered as in Table I.

straightforward to implement than QAMD because it does not need to restart or sub-partition the
dense rows.

An efficient Fortran 95 implementation of the AMDD is available as one of the options offered
by the new ordering package HSL MC68. We remark that this package also offers options for
a variety of different orderings, allowing the user a straightforward way of generating and then
comparing the different orderings for his or her applications. HSL MC68 is available as part of
the 2007 release of the mathematical software library HSL. All use of HSL requires a licence.
Individual HSL packages (together with their dependencies and accompanying documentation) are
available without charge to individual academic users for their personal (non-commercial) research
and for teaching; licences for other uses involve a fee. Details of all HSL packages and how to
obtain a licence plus conditions of use are available at www.cse.scitech.ac.uk/nag/hsl/.
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