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A Note on Performance Profiles for Benchmarking Software

NICHOLAS GOULD and JENNIFER SCOTT, Rutherford Appleton Laboratory

In recent years, performance profiles have become a popular and widely used tool for benchmarking and
evaluating the performance of several solvers when run on a large test set. Here we use data from a real
application as well as a simple artificial example to illustrate that caution should be exercised when trying
to interpret performance profiles to assess the relative performance of the solvers.
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1. INTRODUCTION TO PERFORMANCE PROFILES

The quantities of data that results from benchmarking mathematical software (such as
optimization packages or sparse linear solvers) with large problem sets have naturally
led to researchers developing tools to analyse the data. A popular and widely used
tool is the performance profile, which was proposed by Dolan and Moré [2002] as a
means of providing objective information when benchmarking optimization software.
Since their introduction, performance profiles have been used in many studies; as of
May 2016, there were more than 1,750 citations of the original paper [Dolan and Moré
2002] listed on Google Scholar.

Benchmark results are generated by running a solver on a set T of problems and
recording the information of interest (which might include, for example, the computa-
tion time, the number of function evaluations, the number of iterations or the memory
used). Let S represent the set of solvers that are to be compared. Suppose that a given
solver i ∈ S reports a statistic sij ≥ 0 when run on example j from the test set T , and
that the smaller this statistic the better the solver is considered to be. For j ∈ T , let
ŝj = min{sij : i ∈ S}, and define rij = sij/ŝj to be the performance ratio.1 Then for f ≥ 1
and each i ∈ S, define

k(rij, f ) =
{

1 if rij ≤ f
0 otherwise.

1If a solver i ∈ S fails to solve problem j, rij = ∞.
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Fig. 1. Time performance profiles for a real test case for S = {ma97, mi35, diag} for S̃ = {mi35, diag}.

The performance profile of solver i is given by the function

pi( f ) =
∑

j∈T k(rij, f )

|T | , f ≥ 1,

where |T | denotes the cardinality of T . Thus, pi( f ) is the probability for solver i ∈ S
that a performance ratio rij for each j ∈ T is within a factor f of the best possible ratio.
In particular, pi(1) gives the fraction of the examples in T for which solver i is the
winner (i.e., the best according to the statistic sij), while p∗

i := lim f →∞ pi( f ) gives the
fraction of |T | for which solver i is successful. If we are just interested in the number
of wins on T , we need only compare the values of pi(1) for all the solvers i ∈ S, but if
we are interested in solvers with a high probability of success on the set T , we should
choose those for which p∗

i is largest.
As many researchers have found, for a selected test set, performance profiles provide

a very useful and convenient means of assessing the performance of a solver relative
to the best solver on each example from that set. When commenting on a performance
profile presented in their paper, Dolan and Moré state that it “gives a clear indication
of the relative performance of each solver” (see also Moré and Wild [2009]), and they go
on to say that “performance profiles provide an estimate of the expected performance
difference between solvers.” Data from a practical study of solvers applied to a large
test set and a simple artificial example will show that using performance profiles to
assess the relative performance of the solvers should be undertaken with a degree of
caution.

2. EXAMPLE

We recently carried out a study to assess the performance of a number of sparse solvers
(here denoted as diag, mi35, and ma97) on a set T of 207 linear least squares problems;
details may be found in Gould and Scott [2015a, 2015b]. In particular, solution times
for each solver were recorded and the performance measure sij was taken to be the time
for solver i on problem j. One of the time performance profiles we obtained during the
preliminary stages of our study is given in Figure 1(a). Here and elsewhere, log denotes
logarithm to the base 2. The set of solvers is S = {ma97, mi35, diag}. From this figure,
it is clear that while the solver ma97 has the most failures (22 failures compared to 5
failures for solvers mi35 and diag), it has the highest number of wins (it is the fastest
on 59% of the problems), and over our chosen range of f, it dominates the other solvers,
while the solver diag wins a respectable 34% of the time. Solver mi35 has the lowest
number of wins, and if we are only interested in solvers that are within a factor 5 of
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Table I. Performance of Three Solvers on a Test
Set T of Five Problems; Here, the Smaller the

Statistic, the Better the Solver Performance

Problem Solver A Solver B Solver C
1 2 1.5 1
2 1 1.2 2
3 1 4 2
4 1 5 20
5 2 5 20

Fig. 2. Performance profiles for our artificial test case for S1 = {Solver A, Solver B, Solver C} and S2 =
{Solver B, Solver C}.

the best, then it is tempting to conclude that, as the curve for solver mi35 lies below
the other curves for f ∈ [1, 5], it is the worst solver in S on the set T (see, e.g., Higham
[2009] where a similar conclusion is drawn). However, if we remove solver ma97 and
redraw the performance profiles for S̃ = {mi35, diag}, we obtain Figure 1(b). We see
that solver mi35 is the better solver in S̃ for f ∈ [1, 10].

This apparent change in fortunes can be seen clearly using the artificial sample
data for five test problems and three solvers given in Table I and the corresponding
performance profiles given in Figure 2. With S1 = {Solver A, Solver B, Solver C}, Solver
A is the best on 80% of the problems in the test set, Solver B is not the winner on any,
and if we are interested in having a solver that can solve at least 60% of the test
problems with the greatest efficiency, then Solver A or C should be chosen. However,
if S2 = {Solver B, Solver C} (i.e., Solver A is removed), Solver B, which was the second
best solver in S1 on 60% of the test set, is the best solver in S2. In Figure 1(a), it is not
apparent that solver mi35 is the second best solver in S for the set T on the interval
f ∈ [1, 5].

3. CONCLUSIONS

When comparing two solvers on a given test set, performance profiles give a clear
measure of which is the better solver for a selected range of f . But as the examples
above illustrate, if performance profiles are used to compare more than two solvers
(and Dolan and Moré state that “performance profiles are most useful in comparing
several solvers”), we can determine which solver has the highest probability pi( f ) of
being within a factor f of the best solver for f in a chosen interval, but we cannot
necessarily assess the performance of one solver relative to another that is not the
best. In some situations, being able to rank (or partially rank) the solvers may be
important. For example, a user may not have access to the best solver and so may want
to know which is second (or perhaps third) best. To rank the solvers for a chosen range
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Fig. 3. A sequence of time performance profiles for the real test case from Section 2 in which the “best”
solver is removed from the set S of solvers until only two remain.

[1, f ], an obvious approach is to produce a series of performance profiles, excluding the
best solver over the range from successive profiles until only two remain. We illustrate
this in Figure 3, again using real data from our least squares study but now with a
larger set S of solvers. Notice how that, as before, removing the “leading” solver ma97
from S exposes mi35 as the runner up, and further removals illustrate that solver rif
is higher in the performance hierarchy than the initial profiles might suggest.

A switch in the expected ordering may indicate the test set contains a large number of
problems for which each solver performs in a consistent way and further examination
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of the test set and how it was selected may be advisable. However, our experience
has been that, even without such a subset apparently present within the test set,
switches can occur. We conclude that, while performance profiles are a powerful tool
for benchmarking a solver relative to the best solver, as Dolan and Moré point out,
“performance profiles must be used with care.” Finally, we observe that elsewhere in
the literature, limitations of performance profiles have been noted and other tools for
comparing performances have been proposed (see, e.g., Moré and Wild [2009]).
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