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DESIGN OF A MULTICORE SPARSE CHOLESKY FACTORIZATION
USING DAGs∗

J. D. HOGG† , J. K. REID† , AND J. A. SCOTT†

Abstract. The rapid emergence of multicore machines has led to the need to design new
algorithms that are efficient on these architectures. Here, we consider the solution of sparse symmetric
positive-definite linear systems by Cholesky factorization. We were motivated by the successful
division of the computation in the dense case into tasks on blocks and use of a task manager to exploit
all the parallelism that is available between these tasks, whose dependencies may be represented by
a directed acyclic graph (DAG). Our sparse algorithm is built on the assembly tree and subdivides
the work at each node into tasks on blocks of the Cholesky factor. The dependencies between these
tasks may again be represented by a DAG. To limit memory requirements, blocks are updated
directly rather than through generated-element matrices. Our algorithm is implemented within a
new efficient and portable solver HSL MA87. It is written in Fortran 95 plus OpenMP and is available
as part of the software library HSL. Using problems arising from a range of applications, we present
experimental results that support our design choices and demonstrate that HSL MA87 obtains good
serial and parallel times on our 8-core test machines. Comparisons are made with existing modern
solvers and show that HSL MA87 performs well, particularly in the case of very large problems.
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1. Introduction. Many problems require the efficient and accurate solution of
linear systems

Ax = b,(1.1)

where A is a large, sparse, symmetric positive-definite matrix of order n. A number of
direct solvers using the Cholesky factorization A = LLT have been developed for this
problem in recent years, including the serial codes MA57 [19] and HSL MA77 [40] from the
HSL software library [29] and CHOLMOD [10] as well as the parallel codes MUMPS
[2], PARDISO [42], PaStiX [26, 27], TAUCS [30], and WSMP [23]. We summarize the
main features of the parallel codes in section 2. They each have three phases: analyze
the structure, factorize the matrix A, and solve sets of equations (1.1). Moreover,
they each rely on an assembly tree that is constructed by nested dissection and/or
other ordering strategies, followed by node amalgamation to make more effective use
of level-3 BLAS at the expense of additional entries in L and operation counts. Some
are multifrontal codes (see [15, sections 10.7 and 10.8]), relying on temporary storage
for the frontal matrices at the active nodes of the assembly tree and the generated-
element matrices from their child nodes. Others subdivide the generated-element
matrix at each node and add the parts directly into the columns of L associated with
the ancestors of the node.
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Our focus is on multicore architectures, which differ from traditional symmetric
multiprocessing (SMP) by having shared caches and shared links to memory, making
efficient reuse of data in (shared) cache more important. Inspired by recent multicore
solvers for dense positive-definite linear systems [8, 9], we aim to integrate tree-based
and at-a-node parallel schemes into the same task-based parallel framework used in the
dense codes. This is done by splitting each computation into tasks of modest size but
sufficiently large that good level-3 BLAS performance can be achieved. The dependen-
cies between the tasks are implicitly represented by a directed acyclic graph (DAG)
that embeds the assembly tree. This allows the independence of operations both in
different subtrees and within a single node to be easily recognized and exploited. Our
approach uses the assembly tree and is non-multifrontal. This avoids the need to hold
generated-element matrices for later assembly, reducing memory requirements.

Our algorithm is implemented within a new sparse Cholesky solver HSL MA87 that
we have developed for inclusion within the Fortran library HSL [29]. It is written in
Fortran 95 with the widely available extension of allocatable components of structures,
part of Fortran 2003. To provide a portable approach that allows the exploitation of
shared caches, HSL MA87 uses OpenMP.

The outline of this paper is as follows. We begin by presenting a concise overview
of existing parallel sparse direct solvers in section 2. In section 3, we provide a short
description of the recent developments for dense linear systems that we will adapt to
the sparse case. Section 4 describes the algorithm implemented within our DAG-based
sparse Cholesky solver HSL MA87, highlighting the features that distinguish it from the
other modern Cholesky codes. Results of experiments with HSL MA87 and comparisons
with other parallel direct solvers on a range of problems are given in sections 5 and
6. Finally, in section 7, we make some concluding remarks and comment on the
availability of HSL MA87.

2. Background and related work. Since the 1980s, there has been significant
interest in the development of parallel sparse symmetric algorithms and solvers. To
help put our work into context, we briefly summarize the key algorithmic features
of five well-known modern parallel codes that offer facilities for sparse symmetric
positive-definite systems and may be run on multicore machines.
MUMPS [2] is a multifrontal Fortran/MPI package. While it is designed to solve

symmetric and nonsymmetric linear systems on distributed-memory machines, it
can be run on shared-memory machines. It allocates the nodes of the assembly
tree to threads during the analyze phase. Large nodes other than the root of the
tree are subdivided into block rows, which may be processed during the factorize
phase by separate “slave” threads. The root node is processed by all the threads
using ScaLAPACK [6]. Load and memory balancing are achieved by the dynamic
scheduling of slave threads, taking account of the current load and memory de-
mands on all the threads. In the solve phase, MUMPS uses the ScaLAPACK
parallelism at the root and the parallelism implied by the assembly tree at other
nodes.

PARDISO [42] is a non-multifrontal Fortran/C/OpenMP package for solving large
sparse symmetric and nonsymmetric linear systems of equations on shared-memory
multiprocessors. It chooses a set of independent subtrees and begins by processing
these in parallel, one for each thread. The subtrees are placed in a queue so that,
when a thread has finished processing its subtree, it can request another. The
remaining nodes are placed in a queue in bottom-up breadth-first order, and each
is processed by a thread as it becomes available. For nodes having a large number
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of eliminations, the corresponding columns are subdivided into sets of columns
termed “panels”, each of which is updated by a single thread. For each panel, all
the processing is performed by a single thread, which means that good use is made
of caching. The thread starts by applying all the updates that are then available
and applies the others as they become available. Once the updates have been
completed, the thread factorizes its diagonal block, then calculates its off-diagonal
blocks of L, and finally records that these blocks are available for later updates
within ancestor nodes.

PaStiX [26, 27] is non-multifrontal C/Pthreads/MPI code that is primarily designed
for positive-definite systems. It uses blocks defined by the variables of the nodes
of the assembly tree, with large nodes subdivided. Zero rows within these blocks
are held explicitly unless they are leading or trailing rows. Data distribution is
as a block column (when the number of variables at the node is small) or as a
block, each owned statically by a thread during factorize (when the number of
variables at the node is not small). A block-column task involves everything for
the block column, including calculating update matrices for later blocks. A block
task is to factorize a diagonal block, calculate an off-diagonal block of L and send
it to other block owners in the block column, or calculate the update matrices
that involve the block. If a thread does several updates to the same block from
different block columns, it accumulates them locally. The distribution is found
during analyze by simulating all the costs. The sequence of tasks performed by
each thread during factorize is fixed then. Recently, in [20], a dynamic scheduling
designed for multicore and NUMA (Non-Uniform Memory Access) architectures
was added.

TAUCS [30] is a C/Cilk library of sparse linear solvers. In particular, it offers a mul-
tifrontal sparse symmetric positive-definite solver. Cilk [7] supports spawning of
tasks as special procedure calls that can execute in parallel independently of the
caller until synchronization in the caller. This is done recursively at the nodes of
the assembly tree for each of the children, with synchronization before processing
the frontal matrix at the node. Large nodes are partitioned recursively, and the
blocks are factorized recursively, which allows Cilk to manage parallelism dynami-
cally both within and between the nodes. A recursive block data structure is used
to limit cache movement.

WSMP [23, 24] is a Fortran/C/Pthreads multifrontal package. It is comprised of two
parts: one for solving symmetric systems (both LLT and LDLT factorizations are
offered) and one for general systems. On a shared-memory machine, it assigns all
the threads to the root node and recursively assigns the threads of each parent
node to its children to balance the load. At the nodes of the assembly tree that
are assigned more than one thread, the dense operations on the frontal matrices
are parallelized. The threads are managed through a task-parallel engine [31] that
achieves fine-grain load balance via work-stealing.
Other important shared-memory codes include SuiteSparseQR [13] for sparse QR,

while for sparse unsymmetric linear systems there is the well-known and widely used
package SuperLU MT [14] and a parallel version of UMFPACK 4 [11] developed by
Avron, Shklarski, and Toledo [5].
SuiteSparseQR [13] is a recent C++ sparse QR factorization package based on the

multifrontal algorithm. Within each frontal matrix, LAPACK and multithreaded
BLAS are used to achieve good performance on multicore architectures. Par-
allelism across different frontal matrices is handled with Intel’s new threading
building blocks (TBB) library for writing parallel applications in C++ on shared-
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memory multicore architectures [41]. During the analyze phase, the frontal matri-
ces are assigned to TBB tasks; normally, there are fewer tasks than frontal matri-
ces. The relationship between the tasks is held as a tree. During the factorization
phase, TBB handles all synchronization and scheduling of the tasks.

SuperLU MT [14, 34] was developed as a C/Pthreads package for the solution of un-
symmetric systems, targeted at SMPs of modest size. More recently, OpenMP
support has been added. As explained in the overview given in [35], the factoriza-
tion uses a left-looking algorithm, with threshold partial pivoting. Sets of adjacent
columns are grouped into “panels” for efficient use of BLAS. The kernel is based
on a supernode-panel update, which invokes multiple calls to level-2 BLAS, effec-
tively achieving so-called BLAS 2.5 speed. Parallelization uses an asynchronous
and barrier-free dynamic allocation algorithm to schedule both coarse-grained and
fine-grained parallel tasks and achieve a high level of concurrency. A global task
queue is used to store ready panels in the column elimination tree, and whenever
a thread becomes free, it takes a panel from this queue. The coarse-grained task is
to factorize the independent panels in disjoint subtrees, while the fine-grained task
is to update panels by previously computed supernodes. The scheduler facilitates
the smooth transition between the two types of tasks and maintains load balance
dynamically.

Parallel UMFPACK [5] is a C/Cilk package that implements an unsymmetric-pattern
multifrontal approach. It employs column preordering and partial pivoting. Avron,
Shklarski, and Toledo started with UMFPACK 4, designed and implemented their
own serial version, and then parallelized it. Parallelism is exploited at a number
of levels, including within the elimination tree, the merging of contribution blocks,
and parallel dense operations. Numerical comparisons with SuperLU MT show
that a multifrontal approach can outperform a left-looking algorithm (particularly
on a small number of processors) [5].
As is clear from these brief descriptions, the use of task scheduling and dependency

management in direct methods is not new. This is primarily because the elimination
tree naturally leads to a task-orientated view in which operations and updates within
columns or fronts may be viewed as tasks. These ideas are present in a number of
early works on the subject, including papers by, amongst others, Duff [18], Duff et al.
[16], Geist and Ng [21], and George et al. [22] that use the concept of a pool or queue
of tasks that are dynamically scheduled. Static scheduling has often been preferred,
however, to minimize expensive communication overheads. Much of the development
up to the early 1990s is described in a comprehensive review article by Heath, Ng,
and Peyton [25]. Initially, the tasks involved columns, but later involved the nodes of
the supernodal approach and the fronts of the multifrontal algorithm.

As methods were developed to use level-3 BLAS to avoid cache overheads (see,
for example, [36]), the granularity of the tasks was substantially reduced. To achieve
good performance, it became necessary to exploit parallelism in the dense tasks near
the root of the tree. The simplest way to do this is to switch to a parallel dense
code toward the end of the factorization. More advanced techniques have been devel-
oped, such as the master and slave processes of MUMPS and the artificial splitting
of supernodes into panels as used by PARDISO and SuperLU. This allows the two
levels of parallelism to be used together in a cohesive sense—though they are still
fundamentally separate.

A finer-grained level of parallelism can be exposed in the supernodal case if the
generation of updates from a given supernode (or panel) is split into tasks depending
on the destination supernode, as is done, for example, in PARDISO. A similar grain
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size can be obtained in the multifrontal method by splitting a front across multiple
processors, each of which performs its own update operation; this approach is used
by WSMP.

We address a key weakness of many existing shared-memory parallel strategies,
which is that the parallelism inherent in the tree and the parallelism inherent in
the dense submatrix factorizations are implemented using different mechanisms. Our
aim in combining the parallel techniques for sparse and dense tasks is to achieve an
algorithm that is simple to schedule.

Although our algorithm was developed independently of PaStiX, it employs sim-
ilar concepts. By using a supernodal partition of the columns to also partition the
rows, PaStiX creates a blocking scheme where the sparsity pattern is stored using
blocks that are either zero or nonzero (rather than individual entries). This approx-
imates the sparsity pattern of the factors reasonably well if the separators coming
from a nested dissection ordering are preserved as the supernodes. This scheme elim-
inates sparse operations with blocks, allowing all dense level-3 BLAS operations to be
scheduled as tasks.

Our scheme overcomes a number of deficiencies present in the PaStiX algorithm.
Firstly, PaStiX may store zero rows in the middle of a block. This potentially increases
the size of the stored factors that must be moved through memory and also the
number of floating-point operations that must be performed. Secondly, as the PaStiX
algorithm avoids sparse expansion operations, the block sizes limit the dimension
of matrices passed to the BLAS, reducing the performance. Our algorithm, however,
allows the multiplication of a block by an entire column if that is desirable. Finally, the
scheduling algorithm and storage schemes of our implementation are better tuned to
exploit shared-memory and multicore architectures than the PaStiX implementation,
which targets hybrid distributed/shared-memory systems.

Our contribution is to establish a supernodal sparse Cholesky algorithm that
extends current state-of-the-art techniques used in the dense case. The task-orientated
design allows schedulers developed there to be easily applied to sparse factorizations on
multicore architectures. Our approach incorporates and extends many of the features
found in existing sparse solvers including a two-dimensional (that is, blocking by rows
as well as by columns) supernodal parallel scheme with arbitrary row blocking. We
also employ a new variable reordering algorithm at the nodes of the elimination tree
to improve cache locality in the sparse operations; this is described in section 4.3.

3. Dense DAG solvers. In this section, we briefly describe state-of-the-art
DAG-based solvers for dense linear systems of equations on multicore processors. In
the next section, we discuss how we have extended these ideas to the sparse case.

Recent research by Buttari et al. [8, 9] has shown that significant parallel speedups
may be obtained by subdividing the computation into block operations and perform-
ing these in parallel, subject only to their interdependencies. A blocked Cholesky
factorization of a dense matrix A divides A into square blocks Aij of order nb and
then divides the work into a number of tasks:
factorize block factorizes a block on the diagonal, Akk = LkkL

T
kk, where Lkk is lower

triangular. This must wait until the block Akk has been fully updated.
solve block solves a triangular set of equations LT

kkLik = Aik(i > k) to obtain an
off-diagonal block Lik of the Cholesky factor. This must wait for the block Aik to
be fully updated and for the factorize block Akk = LkkL

T
kk to be completed.

update block updates a block of the remaining submatrix Aij ⇐ Aij − LikL
T
jk, i ≥

j > k. This must wait for solve block to have completed for blocks Lik and Ljk.
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The dependencies between tasks may be represented by a DAG, with a node for each
task and an edge for each dependency. A task is ready for execution if and only
if all tasks with incoming edges to it are completed. The first node corresponds to
the factorization of the first diagonal block, and the final node corresponds to the
factorization of the final diagonal block. While tasks must be ordered in conformance
with the DAG, there remains much freedom.

Hogg [28] has implemented a dense Cholesky factorization that takes advantage of
this freedom. He uses a single task pool from which all threads draw tasks to execute
and in which new tasks are placed when the data they need become available. The
choice of which available task to execute will clearly affect the overall execution time.

To guide this choice, Hogg formulates and solves a series of recurrence relations
describing start times in relation to the critical path, assigning each node a schedule
based on the latest start time on an infinitely parallel machine. Given a finite number
of threads, whenever a node has to be chosen from a set of candidates, the one
earliest in the schedule is chosen. If there are several such nodes, one that reuses data
is preferred, which reduces the transfer of data between caches. Hogg compared his
strategy with other strategies for choosing a task from those available and found that
it was the most satisfactory, though the performance advantages were modest.

The DAG-based approach offers significant improvements over utilizing more tra-
ditional fork-join parallelism by block columns. It avoids requiring all threads to finish
their tasks for a block column before any thread can move on to the next block column.
It also allows easy dynamic work-sharing when another user or an asymmetric system
load causes some threads to become slower than others. Such asymmetric loading
can be common on multicore systems, caused either by operating system scheduling
of other processes or by unbalanced triggering of hardware interrupts.

4. DAG-based sparse direct solver. The sparse factorization work of this
paper was motivated by the aim of applying the ideas of the previous section to the
sparse case. In particular, we aimed to work with tasks of a sufficient size for efficient
execution on a single thread using level-3 BLAS while seeking to take advantage of
all the potential parallelism available between such tasks. We use a supernodal-based
approach. Throughout the rest of the paper, we use the term node to refer to a
(relaxed) supernode of L.

4.1. Nodal matrix data structure. The columns of L associated with a node
of the assembly tree consist of a trapezoidal matrix that has zero rows corresponding
to variables that are eliminated later in the pivot sequence at nodes that are not
ancestors. We compress this matrix in the traditional manner (see [15, section 10.5])
by holding only the nonzero rows, each with an index held in an integer. We refer to
this dense trapezoidal matrix as the nodal matrix.

As in the dense case, we subdivide this matrix into blocks under the control of
a parameter nb. This is illustrated in Figure 4.1(a). We divide the computation
into tasks in which a single block is revised (details in section 4.2). If the number of
columns nc in the nodal matrix is small, this may yield tasks that are too small to
justify their associated overheads. Therefore, if nc is less than nb, we base the block
size on the value nb2/nc, rounding up to a multiple of 8 to avoid overlaps between
cache lines. PaStiX also treats nodal matrices with few columns differently; it treats
such a matrix as a single entity. We discuss the (small) effect of our approach on the
factorize time in section 5.5.

We store the nodal matrix using the row hybrid blocked structure of Andersen et
al. [3] with the modification that “full” storage is used for the blocks on the diagonal
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Fig. 4.1. Row hybrid block structure for a nodal matrix.

Ldiag

Ldiag

Lrect

Ldiag

Ldest

(a) factorize block (b) factorize block
Lrect ⇐ LrectL

−T
diag

(c) solve block
Ldest ⇐ LdestL

−T
diag

Fig. 4.2. factorize block and solve block.

rather than storing only the actual entries (“packed” storage). This is illustrated
in Figure 4.1(b). Note that the final block on the diagonal is often trapezoidal, to
allow the other blocks of its block row to be square. Using the row hybrid scheme
rather than the column hybrid scheme facilitates updates between nodes by removing
any discontinuities at row block boundaries (we explain the importance of this in
section 4.2). Storing the blocks on the diagonal in full storage allows us to exploit
efficient BLAS and LAPACK routines: routines for performing symmetric updates to,
or multiple solves with, and Cholesky factorization of triangular matrices stored in
packed storage are either nonexistent or suffer from a performance penalty compared
with their full storage equivalent.

4.2. Tasks. Following the design of our dense DAG-based code (section 3), we
split the work involved in the sparse factorization of A into the following tasks:
factorize block(Ldest) computes the Cholesky factor Ldiag of the triangular part of a

block Ldest that is on the diagonal using the LAPACK subroutine potrf. If Ldest

is trapezoidal, this is followed by a triangular solve of its rectangular part

Lrect ⇐ LrectL
−T
diag

using the BLAS-3 subroutine trsm; see Figures 4.2(a) and 4.2(b).
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Lc

Lr Ldest

Lc

Lr Ldest

(a) Ldest not in last block (b) Ldest in last block

Fig. 4.3. Update internal(Ldest, scol), Ldest ⇐ Ldest − LrLT
c .

solve block(Ldest) performs a triangular solve of an off-diagonal block Ldest by the
Cholesky factor Ldiag of the block on its diagonal,

Ldest ⇐ LdestL
−T
diag,

using the BLAS-3 subroutine trsm; see Figure 4.2(c).
update internal(Ldest, scol) performs the update of the block Ldest from the block

column scol of the same nodal matrix,

Ldest ⇐ Ldest − LrL
T
c ,

where Lr is a block of the block column scol and Lc is a submatrix of this block
column. If Ldest is not in the final block column of the node, Lc is a block of
scol (see Figure 4.3(a)); otherwise, Lc is the submatrix that corresponds to the
columns of Ldest; see Figure 4.3(b). If Ldest is an off-diagonal block, we use the
BLAS-3 subroutine gemm for this. If Ldest is on the diagonal, we use the BLAS-3
subroutine syrk for the triangular part and gemm for the rectangular part, if any.

update between(Ldest, snode, scol) performs the update of the block Ldest from the
block column scol of a descendant node snode:

Ldest ⇐ Ldest − LrL
T
c ,

where Lr and Lc are submatrices of contiguous rows of the block column scol of
the node snode that correspond to the rows and columns of Ldest, respectively.
Unless the number of entries updated is very small, we exploit the BLAS-3 sub-
routine gemm (and/or syrk for a block that is on the diagonal) by placing its
result in a buffer from which we add the update into the appropriate entries of the
destination block Ldest; see Figure 4.4.
Note that the submatrices Lr and Lc in Figure 4.4 are determined by the block

Ldest that is being updated, and in general they are not blocks of the block column
scol. Using row storage for the block column (see Figure 4.1(a)) means that Lr and
Lc are stored as contiguous arrays, allowing efficient use of BLAS-3 subroutines.

We could have cast the update between task as an operation from a pair of blocks,
but this would often result in a destination block needing to be updated more than
once from the same block column. This is undesirable since contested writes cause
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Fig. 4.4. Update between(Ldest, snode, scol).

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

P
er

ce
nt

ag
e 

of
 fl

op
s

Problem Index

factorize_block + solve_block
update_internal

update_between

Fig. 4.5. Percentage of flops in the different kinds of tasks. (Problem index refers to Table 5.2).

more cache misses than contested reads (a write may invalidate a cache line in another
cache but a read cannot). As we are updating a single destination block, the number
of operations is bounded by 2nb3, so we are not generating a large amount of work
per task, though we do risk generating very little computation.

The tasks are partially ordered; for example, the updating of a block of a nodal
matrix from a block column of L that is associated with one of the node’s descendants
has to wait until all the relevant rows of the block column have become available. At
a moment during factorize, we will be executing some tasks while others will be ready
for execution. We store the tasks that are ready in local stacks, one for each cache,
and a global task pool. We explain how this is managed in section 4.3. Initially, the
task pool is given a factorize block task from each leaf node of the assembly tree.

In practice, it seems that the update between tasks are by far the most demanding
of computer resources. In Figure 4.5, we show the percentages of flops needed for the
different kinds of tasks for the test problems of section 5.

We now explain how we determine when a task is ready without needing to
represent the whole DAG explicitly. During analyze, we calculate a count for each
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block of L. This is the total number of updates (update internal and update between)
that will be applied to it, plus one if the block is not on the diagonal. During factorize,
we decrement the block’s count by one after the completion of each update for it.
When the count for a block on the diagonal reaches zero, a factorize block task for it
is stored. When a factorize block task completes, we decrement the count of all the
blocks in its block column. When the count for an off-diagonal block reaches zero, all
its updates are complete and the factorize block for its block column is complete, so
its solve block task may be stored.

When a factorize block or solve block task completes, we decrement the block’s
count to flag this event with a negative value. A column lock is set, and we store each
update task that depends on the completion of this task and does not depend on a task
that has not yet completed. Once this has been done, the lock is released. The column
lock and the counts ensure that each update task is added exactly once. The flagging
of blocks with negative values is needed so that when a subsequent solve block task
completes, we can identify which update tasks have now become ready. The column
lock is needed to ensure that this identification is made correctly.

4.3. Task dispatch engine. Our task scheduler is fairly basic and has many
features and ideas in common with established scheduling engines such as those offered
by Cilk [7], Intel’s TBB [41], and SMP Superscalar (SMPSs) [39]. As none of these
can support our implicit task DAG representation and only SMPSs can be used from
Fortran, we decided to improve the portable OpenMP scheduler originally developed
for our dense Cholesky code (see section 3). The design is such that this task scheduler
can be easily replaced as newer implementations are developed, for example, as part of
the PLASMA [1], PFunc [31], or StarPU [4] projects. We note that a similar upgrade
to use PFunc has been applied to WSMP while this paper was under review.

Our experience in the dense case was that complex prioritization schemes that
take optimal schedules into account offered very limited benefit. In HSL MA87, we have
therefore chosen to use a simple prioritization scheme that favors cache awareness by
using local task stacks and a single global task pool, in a similar fashion to SMPSs.
For each shared cache, there is a small local stack holding tasks that are intended
for use by the threads sharing this cache. During the factorization, each thread adds
or draws tasks from the top of its local stack. A stack is used rather than a more
complicated data structure because this gives all the properties that are needed. Each
stack has a lock to control access by its threads.

When a thread completes the last update task for a diagonal block, it places the
relevant factorize block task onto the stack and will immediately take it off again
for its next task, in effect executing the factorize block task for this block at once.
This promotes both cache reuse and the generation of further tasks. When a thread
completes a solve block task, it first places any update between tasks generated onto
its stack, then it places any update internal tasks generated. Both will be above any
stacked solve block tasks. Since some of the data needed for an update are likely to
be in the local cache, cache reuse is encouraged naturally without the need for explicit
management. This corresponds to the depth-first scheduling of Cilk.

If a local stack becomes full, a global lock is acquired and the bottom half is
moved to the global task pool. This is similar in concept to the main ready list of
SMPSs, but the method of entry is different. SMPSs uses the main ready list for leaf
tasks of the DAG, which are unlikely to need data already in a cache. We overflow the
tasks that have been in the stack the longest so that their data are unlikely still to be
in the local cache. This avoids the need to dynamically resize tasks’ lists and signifi-
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cantly reduces the amount of work-stealing. Another difference between our scheduler
and that of SMPSs is that rather than having a list of tasks with high priority for
immediate execution, we give tasks in the task pool numerical priorities. In descend-
ing order of priority, our tasks are factorize block, solve block, update internal, and
update between. However, our experience has been that using these priorities does
not significantly improve the execution time. To understand why this should be the
case, note that (as already observed) a factorize block task is executed as soon as it is
generated and so never reaches the task pool. When a factorize block task completes,
several solve block tasks may be placed on the local stack, one of which is probably
executed immediately. When the final update task for an off-diagonal block com-
pletes, a single solve block task is placed on the local stack and probably executed
immediately. Few solve block tasks therefore reach the task pool. It follows that
prioritization mainly affects the update tasks, and update internal tasks will have
already been favored by the order in which they are added to the local stacks.

When establishing update between tasks, it is convenient to search the path from
the node to the root through links to parents. This leads to the tasks being placed on
the stack with those nearest the root uppermost, so that these will be executed first.
This is the opposite to the order that will lead to early availability of further tasks.
We tried reversing this order and indeed found that the number of available tasks can
increase significantly. This led to a larger task pool being needed (for many of our
test problems, the maximum size of the pool increased by a factor of between 2 and
4) and to a small increase in execution time (in our experiments, typically less than
2 percent). It is unclear whether this results from additional task handling overheads
or differences in cache locality. On the basis of numerical experimentation, we have
set the default value for the initial size of the task pool to 25,000 (the size of the pool
is increased whenever necessary during execution). For many of the test problems of
section 5, the number of tasks in the pool never exceeded 10,000; the largest number
in the pool was approximately 22,000.

If a local task stack is empty, the thread tries to take a task from the task pool.
Should this also be empty, the thread searches for the largest local stack belonging
to another cache. If found, the tasks in the bottom half of this local stack are moved
to the task pool (work-stealing). This is similar to the breadth-first work-stealing of
Cilk, the FIFO work-stealing of SMPSs or the deques of TBB. The thread then takes
the task of highest priority from the pool as its next task.

To check the effect of having a stack for each cache, we tried two tests while
running the problems of section 5. First, we ran with a stack for each thread. This
led to a small loss of performance (around 1% to 2% for the larger problems). Second,
we disabled processor affinity, which means that the threads are not required to share
caches in the way the code expects. This led to a similar loss of performance.

We also investigated the effect of using the global lock to control the local stacks as
well as the global task pool. We found that this had no noticeable effect on execution
time on our test machine fox (see Table 5.1). We conclude from this that most of
the performance advantage we demonstrate in the results section is due to better
exploitation of the cache rather than reducing contention for the global lock. Despite
this, we have retained the separate locks to avoid problems as core counts increase.

4.4. Improving cache locality in update between. It is desirable for the
efficiency of an update between task that the rows of Lr and Lc correspond to rows
and columns of Ldest that are in the same order and that many of these rows and
columns of Ldest are contiguous. This reduces cache misses and assists hardware
prefetching when the contents of the buffer holding LrL

T
c are added into Ldest; see
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Figure 4.4. To ensure that they are in the same order, we permute the index lists at
each node to pivot order.

The elimination order is usually determined during analyze by a depth-first search
of the assembly tree, and we follow this practice. Let n1, n2, . . . , nk be a path of the
assembly tree in which nj is the first child of nj+1, j = 1, . . . k − 1. The index list
at n1 may be subdivided as v1, v2, . . . , vk, where vi indexes those of its variables that
are eliminated at ni, i = 1, 2, . . . , k (some of these lists vi may be empty). The
corresponding part of the pivot sequence is v1, w1, s1, v2, w2, s2, . . . , where wi lists
the other variables eliminated at node ni (w1 is empty) and si lists the variables
eliminated at siblings of ni and their descendants. Therefore, the variables indexed
in each of the sets v1, v2, . . . are contiguous in the pivot sequence, which is desirable
for updates between node n1 and each of the nodes n2, . . . , nk. It is not all we would
like; for example, updating the off-diagonal part of the matrix at n2 involves the rows
indexed by the lists v2, v3, . . . , and in general there is a gap in the pivot sequence
between each of these lists and the next. However, we can apply the same argument
to a subsequence ni, ni+1, . . . , nk, and the lists are likely to get progressively larger
as we approach the root.

This property does not extend to a node n1 that is not a first child because some
of the indexes v2 may also index variables of its first sibling and be scattered among
other indices for the first-child sibling. For example, if the variables indexed 7, 8, 9 are
eliminated at the parent and the index list of the first child is (7, 8, 9, . . .), the index
list of the second child might be (7, 9, . . .).

To exploit this property, it is desirable for the length of the list of each first child,
excluding its eliminated variables, to be long. At every node, we have therefore made
the child with the greatest such length be first. The effect of this strategy is reported
on in section 5.2.

5. Numerical results. In this section, we present numerical results for our new
sparse Cholesky code HSL MA87.

5.1. Test environment. The experiments of this section were performed on
our multicore test machine fox, details of which are given in Table 5.1. Note that
the sharing of level-2 caches and memory buses makes speed-up near 2 on 2 cores
much easier to obtain than speed-up near 4 on 4 cores, which in turn is much easier
to obtain than speed-up near 8 on 8 cores.

The sparse test matrices used in our experiments are listed in Table 5.2. Each
problem is available from the University of Florida Sparse Matrix Collection [12]. The
problem indices will be used in tables and figures to identify the problems. In selecting

Table 5.1

Specifications of our 8-core test machine fox.

2-way quad Harpertown (fox)
Architecture Intel(R) Xeon(R) CPU E5420
Operating system Red Hat 5
Clock 2.50 GHz
Cores 2 × 4
Theoretical peak (1/8 cores) 10 / 80 Gflop/s
DGEMM peak (1/8 cores1) 9.3 / 72.8 Gflop/s
Level-1 cache 32 K on each core
Level-2 cache 6 M for each pair of cores
Memory 32 GB for all cores
BLAS Intel MKL 10.1
Compiler Intel 11.0 with option -fast
1 Measured by using MPI to run independent matrix-matrix multiplies on each core

D
ow

nl
oa

de
d 

12
/1

9/
12

 to
 1

30
.2

46
.1

32
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTICORE SPARSE CHOLESKY FACTORIZATION USING DAGs 3639

Table 5.2

Test matrices factorized without node amalgamation. nz(A) is the number of entries in the
lower triangular part of A; nz(L) is the number of entries in L. ∗ indicates only the sparsity pattern
is provided.

Problem n nz(A) nz(L) Flops
index Identifier (103) (106) (106) (109) Application/description

1 CEMW/tmt sym 727 2.9 30.0 9.4 Electromagnetics
2 Schmid/thermal2 1228 4.9 51.6 14.6 Unstructured thermal FEM
3 Rothberg/gearbox∗ 154 4.6 37.1 20.6 Aircraft flap actuator
4 DNVS/m t1 97.6 4.9 34.2 21.9 Tubular joint
5 Boeing/pwtk 218 5.9 48.6 22.4 Pressurised wind tunnel
6 Chen/pkustk13∗ 94.9 3.4 30.4 25.9 Machine element
7 GHS psdef/crankseg 1 52.8 5.3 33.4 32.3 Linear static analysis
8 Rothberg/cfd2 123 1.6 38.3 32.7 CFD pressure matrix
9 DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector
10 DNVS/shipsec8 115 3.4 35.9 38.1 Ship section
11 DNVS/shipsec1 141 4.0 39.4 38.1 Ship section
12 GHS psdef/crankseg 2 63.8 7.1 43.8 46.7 Linear static analysis
13 DNVS/fcondp2∗ 202 5.7 52.0 48.2 Oil production platform
14 Schenk AFE/af shell3 505 9.0 93.6 52.2 Sheet metal forming
15 DNVS/troll∗ 214 6.1 64.2 55.9 Structural analysis
16 AMD/G3 circuit 1586 4.6 97.8 57.0 Circuit simulation
17 GHS psdef/bmwcra 1 149 5.4 69.8 60.8 Automotive crankshaft
18 DNVS/halfb∗ 225 6.3 65.9 70.4 Half-breadth barge
19 Um/2cubes sphere 102 0.9 45.0 74.9 Electromagnetics
20 GHS psdef/ldoor 952 23.7 145 78.3 Large door
21 DNVS/ship 003 122 4.1 60.2 81.0 Ship structure
22 DNVS/fullb∗ 199 6.0 74.5 100 Full-breadth barge
23 GHS psdef/inline 1 504 18.7 173 144 Inline skater
24 Chen/pkustk14∗ 152 7.5 107 146 Tall building
25 GHS psdef/apache2 715 2.8 135 174 3D structural problem
26 Koutsovasilis/F1 344 13.6 174 219 AUDI engine crankshaft
27 Oberwolfach/boneS10 915 28.2 278 282 Bone micro-FEM
28 ND/nd12k 36.0 7.1 117 505 3D mesh problem

JGD Trefethen/
29

Trefethen 20000
20.0 0.3 90.7 652 Integer matrix

30 ND/nd24k 72.0 14.4 321 2054 3D mesh problem
31 Oberwolfach/bone010 987 36.3 1076 3876 Bone micro-FEM
32 GHS psdef/audikw 1 944 39.3 1242 5804 Automotive crankshaft

the test set, our aim was to choose a wide variety of large-scale problems. In our tests,
we use the nested dissection ordering that is computed by METIS NodeND [32, 33]. In
Table 5.2, we include the number of entries in the matrix factor and the number of
flops when this pivot sequence is used by HSL MA87 without node amalgamation (see
section 5.3).

Unless stated otherwise, runs were performed using all 8 cores on our test machine
fox with all control parameters of HSL MA87 at their default settings. All times are
elapsed times for the factorization phase, in seconds, measured using the system clock.
Unfortunately, we found that when the elapsed time on 8 cores was less than a second,
it could vary by 20% to 30% between runs. Occasionally, a time would be greater by
much more than this.1 We therefore averaged over 10 complete runs of each of the
problems except for the slowest five, where we averaged over two. We will refer to
these five problems as the slow subset, each of which requires more that 500 Gflops
to factorize A and always took longer than 10 seconds.

1We believe that the occasional very slow runs were caused by a core with a critical task being
asked to perform work for the operating system.
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Table 5.3

The effect of reordering the children on the HSL MA87 factorize times on 1 and 8 cores.

Problem Without reordering With reordering
index 1 8 speedup 1 8 speedup
9 5.14 1.01 5.08 5.09 0.93 5.50
16 14.5 2.73 5.30 14.1 2.54 5.55
18 11.5 1.93 5.95 11.4 1.89 6.02
28 83.3 13.1 6.36 80.0 12.3 6.49
29 120 20.1 5.99 120 19.8 6.03
30 333 51.8 6.44 317 48.0 6.62
31 519 73.1 7.10 507 70.8 7.17
32 788 113 7.06 760 106 7.18

5.2. Effect of reordering the children. In section 4.4, we explained our strat-
egy for choosing, at each nonleaf node of the assembly tree, which child node to order
as the first child. Note that this does not change the flop count or the number of en-
tries in L. The effect of our strategy on the factorize time is illustrated in Table 5.3,
which includes results for the slow subset together with three other problems, chosen
to show the range of behaviors found. In this comparison, we denote the natural
ordering of the children (i.e., that derived from pivot order) in the column “without
reordering”. Though reasonably modest, of particular note is that the performance
gains in parallel are often more than merely an eighth of the serial gains, leading to
better speedups. Throughout the remainder of the paper, all results are obtained
using the child reordering strategy.

5.3. Effect of node amalgamation. Node amalgamation (see section 4 of [17])
has become well established as a means of improving factorization speed at the expense
of the number of entries in L and the operation counts during factorize and solve. The
original strategy relied on a postorder generated by a depth-first search of the tree. A
parent and child that were adjacent in this order were merged if both involved fewer
than a chosen number node amal of eliminations. A more powerful version is used in
[40], involving the recursive merge of any child/parent pair if both involve fewer than
node amal eliminations. We have chosen to use this version.

In a new environment, a new exploration is needed for the most suitable value
of the parameter node amal. We expected the best value to be in the range 8 to
64, so we ran the tests with the values 8, 16, 32, and 64. To illustrate the value of
amalgamation, we also ran the tests with the value 1.

Table 5.4 shows the factorize times for the slow subset and for three others that
represent the three kinds of behavior that we saw: flat (problem 3), node amal = 1
much slower (problem 16), and U-shaped (problem 22). The two biggest problems
showed flat behavior, but node amal = 64 was best for problems 28–30.

Table 5.4 also shows the number of entries in L and the solve times. The exam-
ples illustrate the kinds of behavior that we saw for the solve times: flat (problems
28, 29), rising slowly (problems 31, 32), rising less slowly (problems 3, 16, 22), and
node amal = 1 much slower (problem 16).

These considerations led us to choose 32 as the default node amalgamation value.
However, if the number of entries in L increases slowly with node amal, it can be
advantageous to use a larger value. This is the case, for instance, with problem 30.
On the other hand, if a large number of solves is to follow the factorization, we would
recommend using a smaller node amalgamation value (for example, node amal = 8).

5.4. Block size. The block size nb was discussed in section 4.1. In Table 5.5,
we report the factorize time for a range of block sizes on a single core and on 8 cores.
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Table 5.4

Performance on 8 cores for values of the node amalgamation parameter node amal in the range
1 to 64. The factorize times within 3% of the fastest are in bold.

Problem nz(L) (millions)
index 1 8 16 32 64
3 37 39 41 44 49
16 98 119 139 172 228
22 74 76 79 86 101
28 117 117 118 119 121
29 91 92 94 96 99
30 321 322 323 326 331
31 1076 1090 1108 1135 1183
32 1242 1257 1275 1303 1359

Problem Factorize times Solve times
index 1 8 16 32 64 1 8 16 32 64
3 0.91 0.83 0.86 0.83 0.89 0.27 0.27 0.29 0.31 0.34
16 5.00 2.77 2.59 2.61 3.04 1.52 1.09 1.24 1.49 1.80
22 2.70 2.57 2.59 2.64 2.89 0.50 0.51 0.53 0.58 0.66
28 22.5 15.3 13.7 12.3 11.1 0.75 0.74 0.74 0.76 0.74
29 119.9 40.8 27.5 19.9 15.7 0.62 0.58 0.59 0.65 0.61
30 80.4 58.4 53.1 48.0 44.1 2.05 2.02 2.03 2.08 2.03
31 72.0 71.0 70.7 70.8 71.4 6.82 6.86 7.00 7.19 7.39
32 109 107 106 106 106 7.82 7.85 8.01 8.23 8.43

Table 5.5

Comparison of the factorize times for different block sizes nb. The factorize times within 3%
of the fastest are in bold.

Problem Single core factorize times 8-core factorize times
index 128 192 256 320 384 448 128 192 256 320 384
3 4.30 4.13 4.09 4.08 4.06 4.06 0.77 0.80 0.82 0.84 0.94
15 10.07 9.58 9.36 9.33 9.30 9.25 1.67 1.63 1.63 1.67 1.77
22 17.5 16.3 16.1 15.9 15.8 15.8 2.79 2.60 2.61 2.69 2.69
28 90.9 82.6 80.0 79.0 79.2 80.1 14.5 12.6 12.3 12.4 13.1
29 148 125 120 117 117 116 23.8 20.5 19.8 19.7 20.6
30 394 331 318 313 312 316 63.8 50.3 48.0 48.1 50.1
31 580 528 508 499 492 488 82.9 73.4 70.9 69.5 69.6
32 884 794 761 747 735 729 128 110 106 104 103

As in Table 5.4, we show results for the slow subset and three cases representing the
behavior of the other problems for both factorize and solve times. On a single core,
for all but the largest problems, there was little difference in the times for nb in the
range 256 to 448, but the times for smaller nb were usually greater by more than 3%.
On 8 cores, 256 almost always gave times within 3% of the best. These considerations
led us to use 256 as our default value. While a smaller value is beneficial for the large
problems on a single core, we want a single parameter for simplicity and expect large
problems to be solved on more than one core.

5.5. Extended rectangular blocks. We explained in section 4.1 the merits
of using extended rectangular blocks when the number of columns nc in the nodal
matrix is less than nb. To assess the efficacy of this, we ran our tests with a fixed block
size of 256. The most significant change was that the factorize time for problem 29
on 8 cores increased from 19.8 (extended) to 25.2 (fixed). For one problem, the time
reduced by about 7% with a fixed size, while for another it increased by about 8%.
Otherwise, the changes were not greater than 4% and in both directions. Throughout
the remainder of this paper (and in HSL MA87) extended rectangular blocks are used.
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Table 5.6

Comparison of the factorize times on 8 cores for different local task stack sizes. The factorize
times within 3% of the fastest are in bold.

Problem No local Stack size
index stack 10 50 100 200 300
3 0.92 0.86 0.86 0.82 0.84 0.85
15 1.80 1.74 1.63 1.63 1.59 1.61
16 3.14 2.80 2.60 2.58 2.58 2.61
28 12.8 12.7 12.4 12.3 12.2 12.1
29 20.3 20.3 20.0 19.8 19.7 19.5
30 49.9 49.5 48.7 48.0 47.4 47.2
31 74.0 73.6 71.3 70.9 70.7 70.8
32 110 110 107 106 106 106

Table 5.7

Tasks taken directly from local stacks, moved to pool because of a full stack, and moved to pool
because of work-stealing (W-S). Results are on 8 cores for a range of local stack sizes.

Problem Stack Direct Full W-S
index size (103) (103) (103)
19 10 19 28 0.14

(880 50 40 7 0.30
leaves) 100 45 1 0.43

(48,000 200 46 0 0.54
tasks) 300 46 0 0.47
28 10 19 105 0.16

(60 50 45 78 0.47
leaves) 100 66 56 0.81

(124,000 200 92 30 1.61
tasks) 300 108 13 1.83

Problem Stack Direct Full W-S
index size (103) (103) (103)
29 10 21 221 0.13

(60 50 46 195 0.39
leaves) 100 63 177 1.25

(241,000 200 97 144 0.89
tasks) 300 119 121 1.76
32 10 232 534 0.16

(5,580 50 573 192 0.92
leaves) 100 703 60 2.84

(772,000 200 751 11 3.57
tasks) 300 759 4 3.95

5.6. Local task stack size. In section 4.3, we discussed the use of local task
stacks. We have performed experiments without local task stacks and with local
task stacks of size in the range 10 to 300. Except for the slow subset, we found
improvements in the factorize time in the approximate range of 10%–20% over running
without local stacks. In Table 5.6, we report the results for three representative
problems that gave gains at the ends and middle of the range 10%–20%. For the slow
subset, there was a gain but of less than 10%. These experiments led us to use 100
as the default size.

For three of the slow problems, we show in Table 5.7 the number of leaf nodes
(initially a factorize block task is put into the global task pool for each leaf), the total
number of tasks, the number of tasks taken directly from the local stacks, the number
of tasks sent to the global task pool because a local stack became full, and the number
of tasks moved to the global task pool by work-stealing. We see that the number of
tasks moved by work-stealing is small. Provided the stack size is at least 100, a good
proportion of the tasks are executed directly.

For the smaller problems, the local stacks became full for only eight cases when
the stack size was 100. This happened most often for problem 19, shown in Table 5.7.
Next was problem 26, where 750 tasks were moved to the pool because of a full stack.
For a further six problems, fewer than 400 tasks were moved to the pool because of
a full stack. With a stack size of 200, a local stack became full only for problem 22,
and only 100 tasks were moved to the task pool because of this.

Although the work-stealing figures in Table 5.7 are small, work-stealing is impor-
tant for load balance, and its importance increases with the local stack size. In our
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Fig. 5.2. The speed of HSL MA87 factorize in Gflop/s on 8 cores.

tests at stack size 100, enabling work-stealing reduced the execution time by up to
25% on some problems.

5.7. Speedups and speed for HSL MA87. One of our concerns is the speedup
achieved by HSL MA87 as the number of cores increases. In Figure 5.1, we plot the
speedups in the factorize times when 2, 4, and 8 cores are used. We see that the
speedup on 2 cores is close to 2, on 4 cores it is at least 3 for all but 4 of the smallest
test problems, and for the 2 largest problems it exceeds 3.6. On 8 cores, HSL MA87

achieves speedups of more than 6 for many of the larger problems, reaching nearly
7.2 for the 2 largest. For all but the 3 smallest problems, the speedup exceeds 5. It is
very encouraging to note that, as the problem size increases, so too does the speedup
achieved.

Of course, our primary concern is the actual speed. We show the speeds in Gflop/s
on 8 cores in Figure 5.2. Here we compute the flop count from a run with the node
amalgamation parameter node amal having the value 1 (the flop count reported in
Table 5.2). We note that for 14 of our 30 test problems, the speed exceeds 36.4
Gflop/s, which is half the maximum dgemm speed (see Table 5.1). Furthermore, for
only the two smallest problems is the speed significantly less than 24.3 Gflop/s, which
is a third of the dgemm maximum.
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Table 6.1

Sparse direct solvers used in our numerical experiments on fox.

Code Date/version/compiler Authors/website
HSL MA87 08.2009/ v1.4.0/ J.D. Hogg, J.K. Reid, and J.A. Scott, HSL

Intel 11.0 -fast http://www.hsl.rl.ac.uk

PARDISO 10.2009/ v4.0.0/ O. Schenk and K. Gärtner
Intel 10.1 -fast http://www.pardiso-project.org

PaStiX 04.2009/ v5.1.2/ P. Henon, P. Ramet, and J. Roman
Intel 11.0 -fast http://pastix.gforge.inria.fr

TAUCS 09.2003/ v2.2/ D. Irony, G. Shklarski, and S. Toledo
cilk 5.4.6/ GNU 4.1.2 -O3 http://www.cs.tau.ac.il/∼stoledo/taucs

WSMP 06.2010/ v10.5.26/ A. Gupta, IBM
Intel 11.1 http://www-users.cs.umn.edu/∼agupta/wsmp.html

6. Comparisons with other solvers. We end by presenting some comparisons
of the performance of HSL MA87 with that of the recent sparse Cholesky solvers out-
lined in section 1. Note that the intention here is not to make a detailed study of the
advantages and disadvantages of each package or to assist potential users in the selec-
tion of a solver. The versions of the solvers used together with other details are given
in Table 6.1. MUMPS is not included since it is an MPI-based code and not designed
for shared-memory architectures. Where a solver offers more than one version, we use
the one designed for shared memory (in particular, we used the Pthreads version of
PaStiX, but note that in some shared memory environments the code’s authors ob-
serve it may be more efficient to mix MPI and Pthreads). Unless stated otherwise, all
control parameters for each of the solvers are set to their default settings, and, where
offered, the positive-definite option is selected (so that none of the codes performs any
numerical pivoting). We provide HSL MA87, PARDISO, and WSMP with the ordering
generated by METIS NodeND [32]. TAUCS has no option to input an ordering, but
it calls METIS internally. This may result in a slightly different ordering because of
tie breaking. We tried supplying PaStiX with the same ordering as HSL MA87 and
PARDISO, but found this significantly increased its subsequent factorization time.
Instead, for PaStiX, as recommended, we use its internal call to the nested dissection
routine of SCOTCH [38, 37]. We found this generally produced slightly sparser fac-
tors than METIS NodeND. TAUCS is run using its multifrontal option, as this is the
advice given in the user documentation.

We note that because of how the codes were supplied and the mix of languages
employed, we were unable to use a single compiler for all our tests. Where possible we
have used compilers from the Intel suite. PARDISO was supplied as a library built
with a slightly older version of the compiler, and the Cilk extensions to C used by
TAUCS supports only the GNU gcc compiler. However, our experience of running
HSL MA87 with the Intel 10.1, 11.0, and gcc compilers was that it had little effect on
the factorize times because most of the time was spent in the BLAS or other small
kernels that are equally well optimized by the versions of both compilers used. On
our test machines, each solver used the same Intel BLAS.

6.1. Comparisons on one core of fox. Although the solvers are primarily
designed to run in parallel, it is of interest to first run them on a single core. In
Figure 6.1, the ratios of the factorize times for PARDISO, PaStiX, TAUCS, and
WSMP to the factorize time for HSL MA87 on fox are plotted for each of our 32D
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Fig. 6.1. The ratios of the supernodal solvers PARDISO and PaStiX and multifrontal solvers
TAUCS and WSMP factorize times to the HSL MA87 factorize time (single core of fox).

test problems. Compared with the other supernodal solvers, we see that HSL MA87 is
generally faster than PaStiX while it is comparable to PARDISO, although the latter is
slightly poorer on the largest problems. Looking at the multifrontal solvers, HSL MA87

consistently outperforms TAUCS, but for most problems offers similar performance to
WSMP. On problems 28, 29, and 30, the multifrontal codes show a better comparative
performance, with WSMP having the fastest times. We suspect this is due to the
nature of these problems favoring one technique over another (problems 28 and 30
are from the same test set and are related, while problem 29 is an unusual academic
problem).

6.2. Comparisons on 8 cores of fox. In Figure 6.2, the ratios of the factorize
times for PARDISO, PaStiX, TAUCS, and WSMP to the factorize time for HSL MA87

on eight cores of fox are given. We see that, on 8 cores, HSL MA87 performs well (the
only exceptions being a small number of problems for which PARDISO or WSMP is
faster). Both PaStiX and TAUCS are significantly slower than HSL MA87, delivering
their best performance on the largest problems. Conversely, in our tests, the speedups
for PARDISO are poor for the largest problems. We believe that this is because
PARDISO does not use a two-dimensional decomposition of the block columns. All
the problems where WSMP outperforms HSL MA87 in parallel are also ones where it
outperformed HSL MA87 in serial. However, with the exception of the smallest problem,
the gap is proportionally smaller, as HSL MA87 achieves better speedups than WSMP.D
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Fig. 6.2. The ratios of the supernodal solvers PARDISO and PaStiX and multifrontal solvers
TAUCS and WSMP factorize times to the HSL MA87 factorize time (8 cores of fox).

Table 6.2

Specifications of two further test machines.

Intel Nehalem AMD Shanghai
Architecture Intel(R) Xeon(R) CPU E5540 AMD Opteron 2376
Clock 2.53 GHz 2.30 GHz
Cores 2 × 4 2 × 4
Level-1 cache 128 K on each core 128 K on each core
Level-2 cache 128 K on each core 512 K on each core
Level-3 cache 8192 K shared by 4 cores 6144 K shared by 4 cores
Memory 24 GB for all cores 16 GB for all cores

For a number of problems where the WSMP and HSL MA87 times are comparable in
serial, HSL MA87 is faster in parallel.

6.3. Comparisons on other processors. So far, the results have all been for
our test machine fox (see Table 5.1). We end this section by presenting runs on two
further multicore machines, brief details of which are given in Table 6.2. Since the
results we have already reported indicate that, of the solvers tested, PARDISO and
WSMP most closely rival HSL MA87, we restrict our runs to these solvers (on both
machines the version of PARDISO included in the Intel MKL 11.0 is used). The
ratios of the factorize times on 8 cores are given in Figures 6.3 and 6.4. We observe
that on both machines the performance of HSL MA87 compares favorably with that
of both PARDISO and WSMP. In particular, on the largest problems running on 8
cores, HSL MA87 is significantly faster than PARDISO.
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Fig. 6.3. Comparison of HSL MA87, PARDISO, and WSMP factorize times on the Intel Nehalem
architecture (8 cores).
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Fig. 6.4. Comparison of HSL MA87, PARDISO, and WSMP factorize times on the AMD Shang-
hai architecture (8 cores).

7. Concluding remarks. The rapid emergence of multicore architectures de-
mands the design and development of algorithms that are able to effectively exploit
the new architectures. In particular, the efficient solution of sparse linear systems on
multicore architectures is a challenging and important problem. In this paper, we
have reported on the development of a task DAG-based algorithm that we have im-
plemented in a new sparse direct solver, HSL MA87, for solving large-scale symmetric
positive-definite linear systems on multicore machines. We have described the main
components of the algorithm and have used numerical experiments to support the
reasons behind our algorithm choices. In addition, we have presented numerical com-
parisons with other state-of-the-art sparse direct solvers. These show that our code
is performing well on a range of problems on our 8-core test machines.

Our DAG-based sparse Cholesky solver HSL MA87 has been developed for inclusion
in the mathematical software library HSL. Versions exist for A real symmetric and
positive definite and A complex Hermitian and positive definite. All use of HSL
requires a licence. Individual HSL packages (together with their dependencies and
accompanying documentation) are available without charge to individual academic
users for their personal (noncommercial) research and for teaching; licences for other
uses normally involve a fee. Details of the packages and how to obtain a licence plus
conditions of use are available at [29].
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[27] P. Hénon, P. Ramet, and J. Roman, PaStiX: A high-performance parallel direct solver for
sparse symmetric definite systems, Parallel Comput., 28 (2002), pp. 301–321.

[28] J. D. Hogg, A DAG-based Parallel Cholesky Factorization for Multicore Systems, Technical
report RAL-TR-2008-029, Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK,
2008.

[29] HSL, A Collection of Fortran Codes for Large-scale Scientific Computation, http://www.hsl.
rl.ac.uk/.

[30] D. Irony, G. Shklarski, and S. Toledo, Parallel and fully recursive multifrontal sparse
Cholesky, Future Gener. Comput. Syst., 20 (2004), pp. 425–440.

[31] P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lumsdaine, Modern task paral-
lelism for modern high performance computing, in Proceedings of the SC09 (International
Conference for High Performance Computing, Networking, Storage and Analysis), 2009,
ACM, New York, http://www.coin-or.org/projects/PFunc.xml.

[32] G. Karypis and V. Kumar, METIS—Family of Multilevel Partitioning Algorithms,
http://glaros.dtc.umn.edu/gkhome/views/metis.

[33] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[34] X. S. Li, An overview of SuperLU: Algorithms, implementation, and user interface, ACM
Trans. Math. Software, 31 (2005), pp. 302–325.

[35] X. S. Li, Evaluation of SuperLU on multicore architectures, J. Phys. Conf. Ser., 125 (2008),
article 012079.

[36] E. G. Ng and B. W. Peyton, A supernodal Cholesky factorization algorithm for shared-
memory multiprocessors, SIAM J. Sci. Comput., 14 (1993), pp. 761–769.

[37] F. Pellegrini, J. Roman, and P. Amestoy, Hybridizing nested dissection and halo approx-
imate minimum degree for efficient sparse matrix ordering, Concurrency: Practice and
Experience, 12 (2000), pp. 69–84.

[38] F. Pellegrini and J. Roman, Sparse matrix ordering with SCOTCH, in Proceedings of
HPCN’97, Vienna, Austria, Lecture Notes in Comput. Sci. 1225, Springer-Verlag, New
York, 1997, pp. 370–378.

[39] J. M. Perez, R. M. Badia, and J. Labarta, A dependency-aware task-based programming
environment for multi-core architectures, in Proceedings of the IEEE International Con-
ference on Cluster Computing, 2008, pp. 142–151.

[40] J. K. Reid and J. A. Scott, An out-of-core sparse Cholesky solver, ACM Trans. Math.
Software, 36 (2009), article 9.

[41] J. Reinders, Intel threading building blocks: Outfitting C++ for Multi-core Processor Paral-
lelism, O’Reilly Media, Sebastopol, CA, 2007.
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