
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.1810

An efficient analyse phase for element problems

Jonathan D. Hogg and Jennifer A. Scott*,†

Computational Science and Engineering Department, STFC Rutherford Appleton Laboratory, Harwell Oxford,
Didcot OX11 0QX, UK

SUMMARY

The analyse phase of a sparse direct solver for symmetrically structured linear systems of equations is used
to determine the sparsity pattern of the matrix factor. This allows the subsequent numerical factorisation and
solve phases to be executed efficiently. Many direct solvers require the system matrix to be in assembled
form. For problems arising from finite element applications, assembling and then using the system matrix
can be costly in terms of both time and memory. This paper describes and implements a variant of the work
of Gilbert, Ng and Peyton for matrices in elemental form. The proposed variant works with an equivalent
matrix that avoids explicitly assembling the system matrix and exploits supervariables. Numerical exper-
iments using problems from practical applications are used to demonstrate the significant advantages of
working directly with the elemental form. Copyright © 2012 John Wiley & Sons, Ltd.

Received 24 November 2010; Revised 11 October 2011; Accepted 30 October 2011

KEY WORDS: sparse symmetric linear systems; direct solver; analyse phase; element problems; supervari-
ables; supernodes

1. INTRODUCTION

The solution of sparse symmetric linear systems of equations

Ax D b

using a direct method is a well-established and important problem. Most sparse direct solvers use a
classical four-phase approach: first, a fill-reducing ordering is found; next, an analysis is performed
using the sparsity pattern of A to establish the work flow and data structures for the numerical fac-
torisation phase; then, the matrix is factorised; finally, the solve phase uses the computed factors
to solve for one or more right-hand sides b. We remark that some solvers optionally combine the
ordering and analyse phase, but in this paper, we focus on the analyse phase.

Key objectives of the analyse phase are to identify supernodes (sets of columns of L with similar
sparsity patterns) that will allow the exploitation of high-level Basic Linear Algebra Subroutines
(BLAS) during the subsequent factorisation to determine the supernode index lists (i.e. the nonzero
pattern of the factors) and to determine an assembly tree that will be used to guide the numerical
factorisation. The determination of supernode index lists may be performed during the factorisa-
tion, in which case the number of nonzeros in each column of the factors is normally determined
by the analyse phase. Other tasks the analyse phase may perform include modifying the ordering
of the assembly tree to minimise memory requirements in a multifrontal method, reordering vari-
ables within supernodes to increase cache locality during the factorisation and handling errors in the
user-supplied data (including out-of-range indices and duplicate entries).

*Correspondence to: Jennifer A. Scott, Computational Science and Engineering Department, STFC Rutherford Appleton
Laboratory, Harwell Oxford, Didcot OX11 0QX, UK.

†E-mail: jennifer.scott@stfc.ac.uk

Copyright © 2012 John Wiley & Sons, Ltd.

J. D. HOGG AND J. A. SCOTT

In this paper, our aim is to design and implement an efficient analyse phase that can be used in
the development of modern sparse direct solvers. Our main interest is in element problems but we
want to allow both matrices that are held in assembled form (input by columns) and in elemen-
tal form (input by elements). In each case, we want to exploit supervariables (columns of A with
the same sparsity pattern) and we want to keep memory bandwidth to a minimum, while not com-
promising efficiency. Thus, our main contributions are the incorporation of supervariables into the
Gilbert, Ng and Peyton [1] approach to the analyse phase for assembled problems and the design and
implementation of an efficient analyse phase for elemental problems that avoids explicitly assem-
bling the matrix pattern. Our new analyse phase is available within the HSL software library [2]
as package HSL_MC78. We remark that, historically, the analyse phase was much faster than the
factorisation phase. Considerable effort has gone into parallelizing the factorisation so that the gap
between the times for the two phases has narrowed. It is therefore important that the analyse phase
be implemented efficiently to prevent it from becoming a bottleneck.

This paper is organised as follows. In the rest of this introduction, we introduce the terms and
notation that we will use throughout the paper and we present our test problems and our test environ-
ment. Then, in Section 2, we summarise and briefly discuss key algorithms used within the analyse
phase. Section 3 focuses on the case whenA is in assembled form and looks at efficiently identifying
supervariables, incorporating supervariables into constructing the elimination tree and into the col-
umn count algorithm of Gilbert, Ng and Peyton [1]; numerical results illustrate the potential savings
resulting from exploiting supervariables. In Section 4, we consider how to handle problems in ele-
mental form without explicitly assembling the sparsity pattern of A. Results for problems arising
from finite-element applications are presented. Timings for the analyse phase of one of our sparse
direct solvers that incorporates our new analyse code are presented in Section 5, along with timings
for other state-of-the-art packages. Finally, in Section 6, our findings are summarised.

1.1. Terms and notation

We assume a basic knowledge of the steps involved in sparse Cholesky factorisation and with the use
of graphs in these algorithms (see, e.g. [3]). However, as the terminology used in the sparse matrix
literature is not always consistent, in this section, we define the terms and introduce the notation we
will employ throughout the remainder of the paper; we will use these when discussing both our own
and others’ work.

Given a sparse n� n symmetric matrix A with ne nonzero entries, we describe an analyse phase
that seeks to find the sparsity pattern of the Cholesky factor L of the matrix PAP T , where P
is a user-supplied fill-reducing permutation. To simplify notation, we will assume throughout that
P D I (i.e. the pivot order is the natural order 1, 2, : : : ,n), but all the algorithms can be written in
terms of a general P , and in our numerical experiments, a fill-reducing permutation is used.

Sparse matrices are normally held using one of the two forms:

(1.) In assembled form AD faij g where only the nonzero entries aij are stored using, for example,
coordinate format or compressed sparse row or column storage (see, for instance, [4]).

(2.) As a sum of nelt element matrices

AD

neltX

k

A.k/,

where A.k/ is nonzero only in those rows and columns that correspond to variables in the k�th
element. We refer to this as elemental form. For each k, an integer list Ek of length nvark
specifies which columns of A are associated with A.k/, and an nvark � nvark array is used to
hold A.k/.

We define Aj to be the set of row indices of the entries on or below the diagonal of column j
of A,

Aj D fi W i > j , aij ¤ 0g.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

Following the standard approach, we will use the concept of an elimination tree. Consider the
assembled matrix A and associate a node with each column labelled with the column index. The
parent �.j / of node j is the first nonzero below the diagonal in column j of the factor L, that is

�.j /Dminfi W i > j , lij ¤ 0g.

If this set is empty, j has no parent and is a root of the elimination tree. For a root, we set
�.j / D n C 1. If �.j / D i , i is a child of j . A leaf node is one with no children. The tree
may be a forest with more than one root, but it is convenient to still call it an elimination tree. An
extensive theoretical survey and treatment of elimination trees and associated structures in sparse
matrix factorisations is given by Liu [5]. A key result stated in that paper (see also [6]) is that any
postordering of the elimination tree (that is any ordering where the nodes within every subtree of
the elimination tree are numbered consecutively, with the root of the subtree numbered last in the
subtree) will not alter the number of floating-point operations or amount of fill-in associated with
the factorisation.

The performance of most algorithms used in the analyse phase can be enhanced by identifying
sets of columns with the same (or similar) sparsity patterns. The set of variables that correspond to
such a set of columns in A is called a supervariable. In the elemental case, they are normally identi-
fied as a set of variables that belong to the same set of elements, and in problems arising from finite
element applications, they occur frequently as a result of each node of the finite element mesh hav-
ing multiple degrees of freedom associated with it. Under the assumption that diagonals are always
present in the factor L, supervariables cannot exist in L because L is lower triangular. Instead, we
use the concept of a supernode. Let Lj denote the sparsity pattern of column j of L

Lj D fi W lij ¤ 0g.

The column count cc.j / for node j is the number of entries in Lj . A supernode is a set of nodes
corresponding to a set of contiguously numbered columns of L, say i , iC1, : : : , iC r �1, such that
for any successive pair j � 1 and j in the set, j � 1 is the only child of j , and Lj D Lj�1nfj g.
That is, the set of nodes in a supernode forms a chain in the elimination tree, and the correspond-
ing columns of L have identical nonzero patterns, excluding entries in the upper triangular part (so
that cc.j /D cc.j � 1/� 1 for j D i C 1, : : : , i C r � 1). If we regard all nodes that are not part
of a supernode as supernodes of size 1, we can define the assembly tree to be the reduction of
the elimination tree that contains only supernodes (this is sometimes referred to as the supernodal
elimination tree).

Supernodes can be exploited in the factorisation phase to facilitate the use of highly efficient
dense linear algebra kernels and, in particular, Level-3 BLAS kernels. These can offer such a large
performance increase that it is often advantageous to merge supernodes that have similar (but not
exactly the same) nonzero patterns, despite this, increasing the fill-in and operation count. This pro-
cess is termed supernode amalgamation, and the resultant nodes are often referred to as relaxed
supernodes (see, e.g. [6–8]). A survey of available heuristics for supernode amalgamation is outside
the scope of this paper; we will employ supernode amalgamation but will not distinguish between
supernodes and relaxed supernodes in our discussions.

Throughout this paper, we assume that compressed sparse column storage is used for assembled
matrices.

1.2. Test environment

In this paper, we employ two test sets. The first is a set of 12 large-scale assembled matrices
taken from the University of Florida Sparse Matrix Collection [9]. These were selected to repre-
sent the different subcollections of symmetric problems within the Collection and because they
have non-trivial supervariables. The second set comprises 18 elemental matrices; they are available
at ftp://ftp.numerical.rl.ac.uk/pub/matrices/. Note that the assembled form
of these matrices is included in the University of Florida Sparse Matrix Collection, whereas we
obtained the elemental versions from Christian Damhaug of DNV Software. The two sets are listed
in Tables I and II.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

Table I. Assembled test problems. nsvar is number of supervariables, and k is the average number of vari-
ables in each supervariable. The storage is the integer storage for holding the sparsity pattern of A in its

original form and in its condensed form (see Section 3).

n ne nsvar k Storage (Mbytes)
Problem .103/ .106/ .103/ Original Condensed

Boeing/bcsstk39 47 2.06 10 4.61 15 <1
TKK/s4dkt3m2 90 3.75 15 5.93 28 <1
Rothberg/gearbox 154 9.08 56 2.74 69 11
Boeing/pwtk 218 11.52 42 5.25 88 3
DNVS/fullb 199 11.71 33 5.96 89 2
Chen/pkustk14 152 14.84 34 4.45 113 6
INPRO/msdoor 416 19.17 61 6.82 154 3
Koutsovasilis/F1 344 26.84 120 2.85 204 25
GHS_psdef/ldoor 952 42.49 138 6.92 354 7
Schenk_AFE/af_shell10 1508 52.26 302 5.00 401 16
Oberwolfach/bone010 987 47.85 328 3.01 546 60
GHS_psdef/audikw_1 944 77.65 314 3.00 592 65

Table II. Elemental test problems. nsvar is the number of supervariables, and k is the average
number of variables in each supervariable.

n nelt nsvar k

Problem .103/ .103/

trdheim 22 813 3 7.71
opt1 15 977 4 4.06
tsyl201 21 960 3 7.18
crplat2 18 3152 3 6.00
thread 30 2176 9 3.36
ship_001 35 3431 6 5.98
srb1 55 9240 9 6.00
m_t1 98 5328 17 5.72
x104 108 26019 17 6.28
shipsec8 115 32580 19 5.88
shipsec1 141 41037 23 6.00
scondp2 202 35836 34 5.95
ship_003 122 45464 20 6.00
troll 213 41084 48 4.41
shipsec5 180 52272 30 5.91
fullb 199 59738 33 5.97
halfb 225 70211 78 2.86

The numerical results reported in this paper were performed on a single thread of a 2-way
quadcore Harpertown machine. The Intel 11.1 compiler with options -g -static -xSSE4.1 -O3
-no-prec-div -ipo was used.

2. THE GILBERT, NG AND PEYTON APPROACH

A basic tree-based algorithm for computing the pattern of L and parent pointers is shown as
Algorithm 1. The sparsity pattern Lcol of each column col of L is determined in turn and is the
union of the sparsity pattern Acol of column col of A with the pattern of the children i of col in the
elimination tree. The elimination tree is built node-by-node, by definition, the parent of any node
corresponds to a column that is later in the pivot sequence.

The operation of computing the union of a set of column sparsity patterns is fundamental to
algorithms that identify the supernode index lists. However, it is expensive, executing in time pro-
portional to the number of entries in L. The sparsity pattern of every column of L is not needed,

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

only that of the first column of each supernode. If supernodes can be found without the need to find
the index lists, the amount of merging can be substantially reduced. This was realised by Gilbert, Ng
and Peyton [1], who describe an algorithm for determining the column counts that is almost linear
in the number of entries in A. They also propose a scheme for determining supernodes that takes the
column counts and elimination tree as inputs. An efficient analyse algorithm that uses this approach
is summarised in Algorithm 2.

In a postordering, the di descendants of each node i in the elimination tree are numbered from
i �di to i �1. The postordering ensures that a node with a single child c is always numbered cC1.
Iteration over the tree in postorder corresponds to a depth-first search, and the reordering has no
effect on the number of entries in L.

This analyse algorithm was incorporated by Ng and Peyton into their sparse Cholesky solver
SPRSBLKLLT (details of this package are given in [10]) and their incomplete Cholesky factorisa-
tion preconditioner [11]. In the mid 1990s, it was employed by Damhaug and Reid in the analyse
phase of the HSL [2] package MA46 for the direct solution of sparse unsymmetric linear systems
of equations from finite-element applications [12]. A notable example of more recent use is the
CHOLMOD package of Davis [8, 13]. An unsymmetric variant was developed by Gilbert, Li, Ng
and Peyton [14] for use in QR and LU codes. In particular, the unsymmetric variant is used in the
sparse solver SuperLU [15, 16].

In Algorithm 3, we outline the approach of Liu [5] for computing the elimination tree. The algo-
rithm exploits the characterisation of the elimination tree as the first nonzero below the diagonal in
the column of L. One node at a time is added to the tree. At the start of stage i , the partially built
tree has i � 1 nodes and node i is the next to be added. Suppose the entries in row i of A to the left
of the diagonal are in columns j1, j2, : : : , jk . For each nonzero jp , we find jroot, the root of the
partial elimination tree that contains jp . Node i is added to the tree by setting �.jroot/ D i . Once
all nonzeros in row i have been processed, i is (temporarily) the new root of the tree containing i ,
so �.i/ is set to n C 1. Path compression is used to improve the efficiency of finding jroot and
employs a virtual tree N�.W/ that is only used for this purpose. After the traversal, the new root of
the tree will be i and thus future traversals may be accelerated by setting N�.k/D i for each node k
visited. Note that the entries of the lower triangular part of A are accessed by rows. This is straight-
forward if both the lower and upper triangles are stored, but this roughly doubles the amount of data
to be read, which may negatively impact performance.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

The algorithm we use for computing column counts of L is a modification of the original algo-
rithm of Gilbert, Ng and Peyton [1] for assembled problems (the original algorithm also found row
counts). Our variant is given in Algorithm 4. To cope with supervariables that have different num-
bers of variables, it allows variables to be weighted. The use of these weights will be described
in Section 3. We note that, in their work on union-find algorithms, Patwary et al. [17] recently
described advances on the Gilbert, Ng and Peyton algorithm. However, their interleaved algorithms
are not suitable for use in Algorithm 4.

Key to Algorithm 4 is the determination of the number of indices shared by the children of a
node. This is accomplished by storing the last column at which an index was encountered (last_p)
and a partial elimination tree (N�). The partial elimination tree consists of all nodes processed so far,
plus their parents. As the tree is postordered, the current root of the partial tree containing node j
is the least common ancestor of node j and the current node. Observe that the first time an index
will be double counted is at the least common ancestor of the current node and the last node where
it was encountered. By storing the first descendant and last neighbour of each node (in first and
last_nbr, respectively), redundant work can be avoided if an index has already been encountered at
a descendant.

3. IDENTIFYING AND USING SUPERVARIABLES: ASSEMBLED CASE

Supervariables are identified and used within the analyse phase of a number of sparse solvers includ-
ing, for example, the HSL codes MA47 [18] and HSL_MA77 [19]. Gilbert, Ng and Peyton did not
incorporate supervariables within their original description of their analyse algorithm. For assem-
bled problems, the system matrix can be condensed so that we are dealing with supervariables
rather than variables. If the average number of variables in each supervariable is k, this reduces the
amount of integer data read during the analyse phase by a factor of about k2. The final two columns
of Table I illustrate the storage savings. These savings can substantially reduce memory traffic and
may allow the problem to reside in cache.

We can now see how the weights of Algorithm 4 may be used. Rather than feeding the original
matrix with weights of 1, instead the condensed matrix can be supplied with weights equal to the
number of variables in each supervariable to achieve the same answer with less memory traffic.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

With careful choice of data structures, the process of identifying supervariables can be made to
execute in O.nC ne/ time. The algorithm we use is outlined in Algorithm 5; it is a variant of that
of Duff and Reid [18]. The algorithm works progressively so that after j steps the supervariable
structure for the submatrix comprising the first j columns has been constructed, the algorithm com-
mences with all the variables in a single supervariable S1 (for the submatrix with no columns). It
then splits this supervariable into two, according to which rows do or do not have an entry in column
1. These are then split according to the entries in column 2, and so on. The splitting is performed by
moving the variables one at a time to the new supervariable. At each stage, seen.sv/ < j indicates
that supervariable Ssv has not yet occurred in the current column j . When it does occur in the current
column, seen.sv/ is set to j . Should a second variable from supervariable Ssv be encountered, it is
placed into the same supervariable as the first; this information is stored as map.sv/. Once super-
variables have been identified, the pivot order is modified so that all variables in a supervariable
occur consecutively in the location of the first such occurrence. Note that this will not increase the
size of the factors L.

Key features of our supervariable algorithm are that the special case of trivial supervariables is
handled efficiently and a stack is used to ensure that new supervariables are established using space
from those that have recently become empty, exploiting cache locality.

Further discussion together with timing comparisons for other supervariable identification algo-
rithms from the HSL library may be found in the report by Hogg and Scott [20]. This report also
examines combining identification of supervariables with constructing the elimination tree. Hogg
and Scott found that, for problems with non-trivial supervariables, this approach was slower than
first identifying the supervariables, condensing the matrix and running the elimination tree algorithm
on the condensed matrix.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

Table III. The performance of our analyse code with and without supervari-
ables. k is the average number of variables in each supervariable. Times are

given in seconds.

Problem k With Without Ratio

Boeing/bcsstk39 4.61 0.0222 0.0419 1.89
TKK/s4dkt3m2 5.93 0.0399 0.0799 2.00
Rothberg/gearbox 2.74 0.1358 0.1732 1.27
Boeing/pwtk 5.25 0.1263 0.2236 1.77
DNVS/fullb 5.96 0.1212 0.2212 1.82
Chen/pkustk14 4.45 0.1606 0.2339 1.46
INPRO/msdoor 6.82 0.2140 0.4277 2.00
Koutsovasilis/F1 2.85 0.4127 0.5192 1.26
GHS_psdef/ldoor 6.92 0.5118 1.0183 1.99
Schenk_AFE/af_shell10 5.00 0.7250 1.3473 1.86
Oberwolfach/bone010 3.01 0.9795 1.3782 1.41
GHS_psdef/audikw_1 3.00 1.0794 1.4443 1.34

In Table III, we present run times for our implementation of the analyse code applied to assem-
bled problems. Times are given both with and without the exploitation of supervariables. We see that
the time taken to identify supervariables is more than offset by the time saved in the remainder of
the analyse phase by working with the condensed matrix, with gains of close to a factor of 2 for the
test problems with more than five variables in each supervariable. Recall that all our test problems
have non-trivial supervariables. For problems with almost n supervariables, using the supervariable
option adds an overhead. Experiments on such problems show that if our analyse code is run both
with and without the supervariable option, the latter is about 20% faster (full details are given in
Hogg and Scott [20]).

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

4. ANALYSE PHASE FOR ELEMENTAL PROBLEMS

4.1. Avoiding explicit assembly of elemental problems

A comparison of columns 2, 3 and 5 headed ‘Elemental’ and ‘Assembled’ in Table IV illustrate that
for each of our elemental test problems, it is more memory efficient to hold A in elemental format
than to assemble it explicitly. Thus, when performing the memory-bound analyse phase on modern
computers, we want to avoid assembling A. With the exception of the work of Damhaug and Reid,
all other references and software that we are aware of relate exclusively to the use of the Gilbert,
Ng and Peyton algorithm within the analyse phase for assembled matrices. The code MA46 of
Damhaug and Reid is designed for problems in elemental form; it avoids holding the sparsity pattern
of the assembled matrix by using an implicit adjacency structure that represents the nodal structure
of the coefficient matrix. For each variable, a list of the associated elements is held. This facilitates
iterating over all entries in a column by iterating over the variables belonging to all associated ele-
ments. However, this approach is inefficient because it is equivalent to assembling the column of
A (and it must be repeated each time the column is needed). Thus, we seek an alternative; one is
provided by the following lemma.

Lemma 1
The pattern of the Cholesky factor L of the matrix AD

P
k A

.k/, where each A.k/ is nonzero in the
rows and columns corresponding to the set Ek , is the same as that of the Cholesky factor OL of the
matrix OA D

P
k
OA.k/, where the first row and column of OA.k/ have the same sparsity pattern as the

first row and column of A.k/, and all other entries are zero.

We observe that this lemma follows straightforwardly from fill in during the Cholesky factorisa-
tion. Consider the element matrices in turn. Each missing entry in OA.k/ is replaced by fill in caused
by its first row and column. It follows that the pattern of the factors is identical. We now formalise
this proof.

Proof of Lemma 1
Because OA1 DA1, the first column of L has the same sparsity pattern as the first column OL
(i.e. OL1 D L1).
Proceed by induction: assume that all columns i with i < j satisfy Li D OLi .

Table IV. A comparison of the storage (in Mbytes) for the elemental, assembled and equivalent forms.

Lower triangle only Upper + lower triangles Condensed lower triangle

Problem Elemental Assembled Equivalent Assembled Equivalent Assembled Equivalent

trdheim 0.34 7.64 0.50 14.9 1.01 0.31 0.17
opt1 0.41 7.54 0.47 14.8 0.94 0.91 0.12
tsyl201 0.45 9.60 0.53 18.9 1.06 0.36 0.16
crplat2 0.57 3.87 0.49 7.47 0.99 0.23 0.14
thread 0.98 17.4 1.01 34.3 2.01 3.17 0.23
ship_001 1.21 18.2 1.23 35.7 2.46 1.03 0.27
srb1 1.75 11.9 1.49 23.0 2.97 0.70 0.42
m_t1 2.08 38.3 2.53 75.2 5.06 2.54 0.74
x104 2.25 40.0 2.80 78.4 5.60 2.15 0.83
shipsec8 5.43 26.7 3.77 51.6 7.53 1.61 0.88
shipsec1 6.30 31.4 4.54 60.7 9.08 1.83 1.07
fcondp2 6.81 45.4 5.66 87.7 11.3 2.68 1.54
ship_003 7.08 32.2 4.58 62.6 9.15 1.87 0.93
troll 7.61 48.2 6.35 93.1 12.7 5.78 1.63
shipsec5 8.09 40.6 5.80 78.5 11.6 2.42 1.37
fullb 9.38 46.9 6.55 90.8 13.1 2.76 1.52
halfb 10.4 49.8 7.25 96.2 14.5 3.04 1.71

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

For each nonzero p 2 Lj , one of the following holds:

1. p 2Aj \ OAj . Because p belongs to OAj , it must also belong to OLj .
2. p 2Aj n OAj . There exists k such that j ,p 2 Ek . Let i be the smallest index in Ek . Then, i < j

and j ,p 2 OLi . Because j 6 p, p 2 OLj .
3. p 2 Lj nAj . By induction, any fill in Lj must also be in OLj .

Hence, Lj � OLj and because OAj �Aj , we conclude that OLj D Lj . �

We will refer to the matrix OA as the equivalent matrix. We hold it as an assembled matrix; the stor-
age it requires is reported in Table IV. We see that for most of our problems, it is the best. Although
comparing columns 2 and 4, for some very sparse problems (including m_t1, thread and tsyl201),
the overhead of storing the column pointers that are needed for the equivalent matrix means that the
original elemental storage requires less memory.

4.2. Identification of supervariables: elemental case

As in the assembled case, the use of supervariables will reduce storage requirements further. In the
elemental case, we seek variables that are present in the same set of elements, rather than the same
set of columns. A simple modification of Algorithm 5 replacing the loop over columns with a loop
over elements is sufficient to identify the sets of elements. This may mean we miss some supervari-
ables that would be found from the columns of the assembled matrix. However, for our problems
arising from finite element applications, our experience is that we obtain the majority of them.
Indeed, for all but four of our elemental test examples, all the supervariables were found, except for
only one problem (opt1) where the number of missed supervariables was more than 1%. In the final
two columns of Table IV, we report the storage for the condensed assembled and equivalent forms.
In each case, the condensed equivalent form requires significantly less storage than the condensed
assembled form and less storage than the original elemental form.

4.3. Building the elimination tree: elemental case

Motivated by the storage savings offered by the equivalent matrix, we now compare two possible
approaches to constructing the elimination tree in the elemental case. The first is a purely element-
based algorithm, whereas the second applies the Liu algorithm [5] (Algorithm 3) to the equivalent
matrix. For the former, we first characterise the elimination tree in element terms. For each element
variable list Ek , we build a simple tree with each node representing an entry j 2 Ek . The parent
of j is the next variable of Ek in elimination order. The elimination tree is obtained by merging
these simple trees and finding the transitive reduction. This leads to Algorithm 6, where variable
lists are merged into the tree one at a time. Each ancestral relationship is added individually, with
all changes propagated before the next is added. An example of adding a variable list is shown in
Figure 1. Note how the variable ancestor is used to temporarily store swapped out ancestors as the
change is propagated.

Algorithm 6 may be applied to the original elemental form or to the condensed elemental form;
the times for our test problems are given in columns 2 and 4 of Table V, respectively. The time to
identify supervariables and obtain the condensed elemental form is given in column 3 (headed ‘find
svs’), whereas column 5 reports the total time for the condensed elemental approach to construct
the elimination tree. A comparison of columns 2 and 5 shows that exploiting supervariables when
using the elemental approach for constructing the elimination tree results in substantial savings.

For efficiency of the equivalent matrix approach using supervariables, we need to minimise the
number of passes through the data. Recall that Algorithm 3 requires access to the lower triangle ofL
by rows (or equivalently, access to the upper triangle by columns). Hogg and Scott [20] investigated
a number of alternatives and found that the most efficient approach uses the first pass to determine
the supervariables and builds a lower triangular supervariable condensed equivalent matrix on the
second pass, which also determines column counts needed in finding the upper triangle. A pass
through the condensed lower form is sufficient to place entries of the upper triangle in their final

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

n+1

2 7 6

3 54

1

(a) (b) (c)

7 6

3 54

1 2

n+1

3

1 2

6

54

7

n+1

Figure 1. Example showing the merger of element variable list f2, 3, 4g into the partially constructed elimi-
nation tree (a). Incorporating the relation that 3 is an ancestor of 2 gives (b). Adding the relation that 4 is an

ancestor of 3 results in (c).

locations, enabling Algorithm 3 to then be used to determine the elimination tree. Timings for the
equivalent matrix approach, with and without supervariables, are included in Table V. The times in
column 9 are for Algorithm 3 applied to the condensed equivalent matrix, whereas those in column
10 are the total times for constructing the elimination tree by using the condensed equivalent matrix.
Comparing the total times in columns 5 and 10, we conclude that using the condensed equivalent
matrix is faster than using the condensed elemental approach and thus we adopt the former. In
Figure 2, columns 2, 5 and 8 are compared with column 10.

5. COMPARISON OF ANALYSE PHASE TIMINGS

One of our main aims was to design and implement an efficient analyse phase for elemental prob-
lems, without explicitly assembling the system matrixA. We have already shown that the condensed
equivalent form for elemental problems leads to significant storage savings and to savings in the time
for constructing the elimination tree. To assess how successful we have been in terms of the analyse
time, in Figure 3, we compare the performance of our implementation HSL_MC78 of the analyse

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

Table V. Comparison of the performance of the elemental and equivalent matrix approaches for constructing
the elimination tree of a problem in elemental form. ‘Total’ denotes the total time to construct the elimination

tree. Times are given in seconds.

Elemental approach Equivalent matrix approach

Original Condensed Original Condensed

Problem Alg. 6 Find svs Alg. 6 Total Build Alg. 3 Total Alg. 3 Total

trdheim 0.0060 0.0006 0.0003 0.0010 0.0006 0.0005 0.0011 0.0001 0.0008
opt1 0.0135 0.0009 0.0015 0.0024 0.0008 0.0007 0.0015 0.0003 0.0011
tsyl201 0.0256 0.0008 0.0008 0.0016 0.0007 0.0007 0.0014 0.0001 0.0010
crplat2 0.0127 0.0009 0.0007 0.0016 0.0009 0.0008 0.0017 0.0001 0.0011
thread 0.0820 0.0018 0.0096 0.0114 0.0019 0.0019 0.0038 0.0006 0.0026
ship_001 0.0367 0.0019 0.0022 0.0041 0.0024 0.0019 0.0043 0.0004 0.0025
srb1 0.0611 0.0030 0.0030 0.0060 0.0033 0.0024 0.0057 0.0005 0.0036
m_t1 0.0852 0.0041 0.0046 0.0088 0.0047 0.0038 0.0084 0.0009 0.0056
x104 0.2002 0.0043 0.0079 0.0122 0.0047 0.0040 0.0088 0.0009 0.0057
shipsec8 0.1895 0.0099 0.0114 0.0213 0.0145 0.0091 0.0235 0.0014 0.0128
shipsec1 0.2262 0.0108 0.0118 0.0226 0.0171 0.0112 0.0282 0.0016 0.0155
fcondp2 0.4800 0.0131 0.0218 0.0349 0.0133 0.0113 0.0246 0.0019 0.0182
ship_003 0.2432 0.0118 0.0161 0.0279 0.0172 0.0123 0.0295 0.0018 0.0166
troll 0.6562 0.0155 0.0569 0.0724 0.0178 0.0154 0.0331 0.0034 0.0240
shipsec5 0.3343 0.0148 0.0182 0.0331 0.0251 0.0147 0.0398 0.0021 0.0213
fullb 0.4395 0.0166 0.0229 0.0395 0.0250 0.0168 0.0418 0.0024 0.0241
halfb 0.3185 0.0183 0.0192 0.0375 0.0277 0.0191 0.0468 0.0027 0.0272

Alg. 6 no svs
Alg. 6 with svs

Alg. 3 no svs

1

10

100

trdheim

opt1
tsyl201

crplat2

thread

ship_001

srb1
m_t1

x104
shipsec8

shipsec1

fcondp2

ship_003

troll
shipsec5

fullb
halfb

T
im

e
/ T

im
e

(A
lg

. 3
 w

ith
 s

vs
)

Figure 2. Comparison of the total time to find the elimination tree to the time for the best approach
(Algorithm 3 applied to the equivalent matrix using supervariables).

assembled
sup_assembled

elemental

0

0.05

0.1

0.15

0.2

0.25

trdheim

opt1
tsyl201

crplat2

thread

ship_001

srb1
m_t1

x104
shipsec8

shipsec1

fcondp2

ship_003

troll
shipsec5

fullb
halfb

T
im

e(
s)

Figure 3. Graph of the performance of the analyse code HSL_MC78 using the elemental and assembled
mode with and without supervariables.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

phase run in both elemental and assembled modes. For the latter, we do not include the time to
assemble A and report only the run time for HSL_MC78. The elemental mode exploits supervari-
ables, and the assembled mode is run with and without using supervariables. We see that working
with the elemental form is significantly faster for all our problems and, once assembled, substantial
savings can be achieved by exploiting supervariables.

Finally, we present timings to illustrate that incorporating our new analyse phase into our pro-
totype symmetric multifrontal solver RAL_SYMF (an in-core version of HSL_MA77 [19]) leads to
this solver having an analyse phase whose performance compares favourably with that of other
state-of-the-art sparse direct solvers. The solvers we use in our experiments are listed in Table VI.

Table VI. Sparse direct solvers used in our numerical experiments.

Code Date/version Authors/website

CHOLMOD [13] 3.2009/ v1.7.1 T. Davis
http://www.cise.ufl.edu/research/sparse/cholmod/

MA57 [21] 11.2009/ v3.4.0 I.S. Duff, HSL
http://www.hsl.rl.ac.uk/

PARDISO [22] 10.2009/ v4.0.0 O. Schenk and K. Gärtner
http://www.pardiso-project.org

WSMP [23, 24] 06.2010/ v10.5.26 A. Gupta, IBM
http://www-users.cs.umn.edu/�agupta/wsmp.html

Table VII. Times (in seconds) for the analyse phase of a range of solvers.

Problem MA57 RAL_SYMF PARDISO WSMP CHOLMOD

Boeing/bcsstk39 0.1061 0.0336 0.2286 0.1029 0.0821
TKK/s4dkt3m2 0.2221 0.0587 0.4156 0.1881 0.1538
Rothberg/gearbox 0.5005 0.1874 1.0595 0.4675 0.3679
Boeing/pwtk 0.6336 0.1869 1.2692 0.5693 0.4658
DNVS/fullb 0.8407 0.1827 1.3890 0.6116 0.4704
Chen/pkustk14 1.0654 0.2358 1.7716 0.7291 0.5655
INPRO/msdoor 1.0717 0.3229 2.2412 1.1063 0.8375
Koutsovasilis/F1 2.5116 0.5429 3.6837 1.7772 1.1028
GHS_psdef/ldoor 3.2226 0.7689 5.8729 2.5869 1.9596
Schenk_AFE/af_shell10 5.5576 1.2044 6.5910 2.8010 2.4545
Oberwolfach/bone010 9.9569 1.3642 10.889 3.9215 2.9509
GHS_psdef/audikw_1 11.727 1.5352 12.799 4.7763 3.2384

crplat2 0.0368 0.0054 0.0928 0.0523 0.0319
fcondp2 0.8640 0.0914 1.2544 0.7341 0.4436
fullb 1.1186 0.1049 1.3930 0.8063 0.4666
halfb 1.0557 0.1133 1.4371 0.8376 0.4966
m_t1 0.5892 0.0339 0.9917 0.5837 0.3455
opt1 0.0705 0.0053 0.1910 0.1107 0.0658
ramage02 0.1399 0.0070 0.3135 0.1778 0.1002
ship_001 0.2076 0.0133 0.4666 0.2816 0.1608
ship_003 0.6155 0.0709 0.9852 0.5326 0.3178
shipsec1 0.4715 0.0629 0.8714 0.5000 0.3167
shipsec5 0.8228 0.0881 1.1515 0.6545 0.4057
shipsec8 0.4199 0.0525 0.7593 0.4310 0.2652
srb1 0.1492 0.0175 0.3065 0.1856 0.1148
thread 0.2673 0.0125 0.5195 0.2901 0.1608
trdheim 0.0564 0.0050 0.1724 0.1071 0.0675
troll 0.9852 0.1085 1.4103 0.7948 0.4759
tsyl201 0.0986 0.0057 0.2532 0.1383 0.0858
x104 0.5093 0.0354 0.9929 0.6007 0.3593

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

RAL_SYMF accepts problems in either assembled or elemental form and then employs the corre-
sponding mode of HSL_MC78. We remark that it is beyond the scope of this paper to attempt to
describe and review the algorithms implemented by the analyse phase of each of the packages but
observe that the analyse phase of the HSL multifrontal code MA57 is built on the original work
of Duff and Reid in the early 1980s that was initially used in developing the well-known package
MA27 [6, 25]. We note also that all the solvers generate different computational data during their
analyse phase. In particular, PARDISO and WSMP are designed to be run in parallel and so the
analyse phase of each of these codes includes the setting up of data structures for parallel working,
which incurs additional overheads; we are not able to separate out the times for the different stages
within the analyse phase and are only able to report total analyse times.

Timings are presented in Table VII and plotted in Figure 4. In each test, the same pivot order is
supplied to all the solvers and this is generated using the METIS graph partitioning package [26,27].
Otherwise, default settings are used for all control parameters (for RAL_SYMF the option to exploit
supervariables is selected). For problems in the lower half of the table, RAL_SYMF is run in ele-
mental mode. RAL_SYMF is the only package tested that is able to accept problems in elemental
form; for the other solvers, we assemble the element matrices but omit the time for this. The time
reported for RAL_SYMF includes work to set up its multifrontal data structures and prepare for the
numerical factorisation in addition to the execution of HSL_MC78. From Table VII and Figure 4,
we conclude that the performance of the analyse phase of RAL_SYMF compares favourably with
that of other solvers, and in particular, these results demonstrate that it is beneficial both to exploit
supervariables and to use the elemental form.

MA57
RAL_SYMF

PARDISO
WSMP

CHOLMOD
 0.001

 0.01

 0.1

1

 10

 100

Boeing/bcsstk39

TKK/s4dkt3m2

Rothberg/gearbox

Boeing/pwtk

DNVS/fullb

Chen/pkustk14

INPRO/msdoor

Koutsovasilis/F1

GHS_psdef/ldoor

Schenk_AFE/af_shell10

Oberwolfach/bone010

GHS_psdef/audikw_1

T
im

e(
s)

MA57
RAL_SYMF

PARDISO
WSMP

CHOLMOD

 0.001

 0.01

 0.1

1

 10

 100

crplat2

fcondp2

fullb
halfb

m_t1
opt1

ramage02

ship_001

ship_003

shipsec1

shipsec5

shipsec8

srb1
thread

trdheim

troll
tsyl201

x104

T
im

e(
s)

Figure 4. Comparison of the time taken for the analyse phase of a range of solvers.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

AN EFFICIENT ANALYSE PHASE FOR ELEMENT PROBLEMS

6. CONCLUDING REMARKS

In this paper, we have considered the key steps within the analyse phase of a modern sparse direct
solver and, in particular, we have focused on designing and implementing an efficient analyse phase
for problems in elemental form. Our starting point was the algorithm of Gilbert, Ng and Peyton
for determining the column counts of the matrix factor L. We have incorporated supervariables and
have shown that, for problems with a significant number of non-trivial supervariables, worthwhile
savings in terms of memory and time can be achieved. For problems in elemental form, we have
shown how the introduction of an equivalent matrix can avoid explicit assembly of the matrix and
can lead to very fast analyse times.

Our implementation of the analyse phase is included as a separate package HSL_MC78 within
the HSL mathematical software library and is available without charge for academic purposes. The
performance of HSL_MC78 within our sparse multifrontal solver RAL_SYMF has been shown to
compare favourably with that of other state-of-the-art packages. In particular, the efficient perfor-
mance of RAL_SYMF on elemental problems has confirmed our view that, where available, the
elemental form should be used in preference to the assembled form.

ACKNOWLEDGEMENTS

We are grateful to our colleagues Iain Duff and John Reid for commenting on a draft of this paper and to the
authors of the codes run in Section 5 for access to their software. Thanks, as ever, to Tim Davis and Yifan
Hu for the University of Florida Sparse Matrix Collection. Finally, we would like to thank two anonymous
referees for their comments. Contact grant sponsor: EPSRC; contact grant number: EP/E053351/1

REFERENCES

1. Gilbert JR, Ng EG, Peyton BW. An efficient algorithm to compute row and column counts for sparse Cholesky
factorization. SIAM Journal on Matrix Analysis and Applications 1994; 15(4):1075–1091.

2. HSL. A collection of Fortran codes for large-scale scientific computation, 2011. http://www.hsl.rl.ac.uk.
3. George A, Liu JWH. Computer Solution of Large Sparse Positive Definite Systems. Prrentice-Hall Inc: Englewood

Cliffs, New Jersey, 1981.
4. Duff IS, Erisman AM, Reid JK. Direct Methods for Sparse Matrices. Oxford University Press: Oxford, 1986.
5. Liu JWH. The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications

1990; 11(1):134–172.
6. Duff IS, Reid JK. The multifrontal solution of indefinite sparse symmetric linear systems. ACM Transactions on

Mathematical Software 1983; 9:302–325.
7. Ashcraft C, Grimes R. The influence of relaxed supernode partitions on the multifrontal method. ACM Transactions

on Mathematical Software 1999; 15:291–309.
8. Davis TA, Hager WW. Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM

Transactions Mathematical Software 2009; 35. Article 27.
9. Davis TA, Hu Y. The University of Florida sparse matrix collection. ACM Transactions on Mathematical Software

2011; 28. Article 1, 25 pages.
10. Ng EG, Peyton BW. Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM Journal on

Scientific Computing 1993; 14(5):1034–1056.
11. Ng EG, Peyton BW, Raghavan P. A blocked incomplete Cholesky preconditioner for hierarchical-memory comput-

ers. In Proceedings of the Fourth IMACS International Symposium on Iterative Methods in Scientific Computation,
Kincaid DR, Elster AC (eds), 1999; 211–222.

12. Damhaug AC, Reid JK. MA46, a FORTRAN code for the direct solution of sparse unsymmetric linear systems
of equations from finite-element applications. Technical Report RAL-TR-96-010, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1996.

13. Chen Y, Davis TA, Hager WW, Rajamanickam S. Algorithm 887: CHOLMOD, supernodal sparse Cholesky
factorization and update/downdate. ACM Transactions on Mathematical Software 2008; 35. Article 22 (14 pages).

14. Gilbert JR, Li XS, Ng EG, Peyton BW. Computing row and column counts for sparse QR and LU factorization. BIT
2001; 41(4):693–710.

15. Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH. A supernodal approach to sparse partial pivoting. SIAM
Journal on Matrix Analysis and Applications 1999; 20(3):720–755.

16. Demmel JW, Gilbert JR, Li XS. SuperLU users’ guide, 2010. LBNL-44289, Lawrence Berkeley National Laboratory.
17. Patwary M, Blair J, Manne F. Experiments on union-find algorithms for the disjoint-set data structure. Experimental

Algorithms 2010; 6049:411–423.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

J. D. HOGG AND J. A. SCOTT

18. Duff IS, Reid JK. Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems.
ACM Transactions on Mathematical Software 1996; 22(2):227–257.

19. Reid JK, Scott JA. An out-of-core sparse Cholesky solver. ACM Transactions on Mathematical Software 2009; 36(2).
Article 9, 33 pages.

20. Hogg JD, Scott JA. A modern analyse phase for sparse tree-based direct methods. Technical Report RAL-TR-2010-
031, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2010.

21. Duff IS. MA57– a new code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions
on Mathematical Software 2004; 30:118–154.

22. Schenk O, Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future
Generation Computer Systems 2004; 20:475–487.

23. Gupta A, Joshi M, Kumar V. WSMP: a high-performance serial and parallel sparse linear solver. Technical Report
RC 22038 (98932), IBM T. J. Watson Research Center, 2001. http://www.cs.umn.edu/~agupta/doc/wssmp-paper.ps.

24. Gupta A. WSMP: Watson sparse matrix package (Part-I: direct solution of symmetric sparse systems). Technical
Report RC 21886, IBM T. J. Watson Research Center, Yorktown Heights, NY, November 2000. http://www.cs.umn.
edu/~agupta/wsmp.

25. Duff IS, Reid JK. MA27 - a set of Fortran subroutines for solving sparse symmetric sets of linear equations. Technical
Report AERE-R 10533, Harwell Laboratory, 1982.

26. Karypis G, Kumar V. METIS - family of multilevel partitioning algorithms, 1998. http://glaros.dtc.umn.edu/gkhome/
views/metis.

27. Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing 1999; 20:359–392.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
DOI: 10.1002/nla

