
4

Pivoting Strategies for Tough Sparse Indefinite Systems

JONATHAN D. HOGG and JENNIFER A. SCOTT, Rutherford Appleton Laboratory

The performance of a sparse direct solver is dependent upon the pivot sequence that is chosen before the
factorization begins. In the case of symmetric indefinite systems, it may be necessary to modify this sequence
during the factorization to ensure numerical stability. These modifications can have serious consequences
in terms of time as well as the memory and flops required for the factorization and subsequent solves. This
study focuses on hard-to-solve sparse symmetric indefinite problems for which standard threshold partial
pivoting leads to significant modifications. We perform a detailed review of pivoting strategies that are aimed
at reducing the modifications without compromising numerical stability. Extensive numerical experiments
are performed on a set of tough problems arising from practical applications. Based on our findings, we make
recommendations on which strategy to use and, in particular, a matching-based approach is recommended
for numerically challenging problems.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Numerical algorithms; G.4
[Mathematical Software]

General Terms: Algorithms

Additional Key Words and Phrases: Sparse symmetric linear systems, indefinite systems, direct solver,
pivoting.

ACM Reference Format:
Hogg, J. D. and Scott, J. A. 2013. Pivoting strategies for tough sparse indefinite systems. ACM Trans. Math.
Softw. 40, 1, Article 4 (September 2013), 19 pages.
DOI: http://dx.doi.org/10.1145/2513109.2513113

1. INTRODUCTION

The accurate and efficient solution of sparse symmetric indefinite linear systems has
long been an important area of interest since such systems arise in a wide range of prac-
tical applications, including incompressible flow problems, electromagnetic scattering,
eigenvalue problems and augmented systems within linear and nonlinear optimization
problems. A key difference between a sparse direct solver for the solution of symmetric
positive-definite systems and one for symmetric indefinite systems is that the latter
needs to incorporate pivoting to maintain numerical stability. Not only does pivoting
contribute significantly to the complexity of the development of the solver, it also adds
overheads when the solver is run. These overheads occur in the search for a suitable
pivot at each stage of the factorization and then in the handling of candidate pivots that
are found to be unsuitable. We have recently developed new task-based sparse direct
solvers for multicore machines [Hogg et al. 2010; Hogg and Scott 2010b, 2012a]. In the
indefinite case, the need for pivoting means there is less scope for achieving parallelism
and also a reduction in performance when compared to the positive definite case. Our

This work was funded by the EPSRC Grant EP/1013067/1.
Authors’ addresses: Scientific Computing Department, STFC Rutherford Appleton Laboratory, Oxon OX11
0QX, England; email: jennifer.scott@stfc.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0098-3500/2013/09-ART4 $15.00

DOI: http://dx.doi.org/10.1145/2513109.2513113

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:2 J. D. Hogg and J. A. Scott

long-term goal is to develop an efficient communication-avoiding strategy that, while
fast, is as stable as standard threshold partial pivoting. This will be dependent on be-
ing able to precompute pivot sequences that can be used with (almost) no modification
during the factorization, without compromising numerical stability and the accuracy
of the computed solution while retaining sparsity in the factors.

The most common direct solution method for the sparse symmetric indefinite linear
system

Ax = b (1)

involves factorizing A into the form

A = LDLT , (2)

where D is a diagonal matrix with 1 × 1 and 2 × 2 pivot blocks and L is a sparse unit
lower triangular matrix. In practice, a more general factorization of the form

SAS = PLD(PL)T (3)

is computed, where S is a diagonal scaling matrix and P is a permutation matrix (or,
more generally, a product of permutation matrices) that holds the pivot order. In some
implementations, this is further generalized to

S(A+ E)S = PLD(PL)T , (4)

where E is a diagonal matrix with small entries. It is the choice of S, P and E that
determines the sparsity of L as well as the accuracy and stability of the numerical fac-
torization. The aim of this study is to examine different choices for P and E and, using
a range of hard-to-solve symmetric indefinite linear systems, illustrate how well they
work in practice. Based on the findings reported in Hogg and Scott [2008, 2012b], for S
we use the scaling generated by the well-known weighted-matching code HSL MC64 [Duff
and Koster 2001].

Before the factorization commences, a pivot sequence (elimination order) is computed
using one of the many available algorithms (for example, a variant of nested dissection
[George 1973] or minimum degree [Tinney and Walker 1967; Liu 1985; Amestoy et al.
1996]). An analyze phase uses this sequence to set up the (provisional) data structures
for the subsequent factorization phase. If at a given stage of the factorization there are
p candidate pivots but only q < p pivots are selected as being suitable, the remaining
p − q candidates are called delayed. The effects of this are that at a later stage in
the factorization, the number of candidate pivots will be greater than predicted for
the supplied pivot sequence; the data structures set up during the analyze phase will
have to be modified to accommodate this, more operations will be performed in the
computation of the factors, and L will be less sparse than if the pivot sequence were
used without modification. These issues are well-known and over the last two decades,
a number of techniques have been proposed to limit delays. We review and summarize
these approaches and, using a set of hard-to-solve symmetric indefinite problems
arising from practical applications, we report on how well they work in practice.

The article is organized as follows. In Section 2, we consider threshold partial piv-
oting and discuss variants that are designed to weaken the standard test criteria to
reduce delayed pivots without, it is hoped, substantially affecting stability. We then
consider, in Section 3, strategies to choose 2 × 2 pivot blocks during the analyze phase.
Numerical experiments are reported in Section 4. Finally, we summarize our findings
and recommendations in Section 5.

We observe that it is not our intention to attempt to exhaustively describe and
review the pivoting strategies that are used in each of the modern state-of-the-art
sparse indefinite solvers, although where appropriate, we indicate in which solver(s) a

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:3

strategy is used. Our key contribution is a systematic review of the techniques that have
been proposed to improve the performance of indefinite solvers and, using a set of tough
problems that these methods are aimed at, we examine and compare their effectiveness
as well as looking at using them in combination. Experts in the development of sparse
direct solvers undoubtedly understand the issues well but we have been unable to
find any comprehensive results that bring together and compare and combine different
strategies. Furthermore, our contact with users of sparse indefinite solvers has led us
to believe that they are not always aware of the potential consequences of selecting
a particular strategy and may not appreciate that some approaches may sacrifice
robustness for speed.

2. PIVOTING STRATEGIES

2.1. Threshold Partial Pivoting

In the case of symmetric linear systems, 1 × 1 and 2 × 2 pivoting must be performed
if symmetry is to be kept while stability is retained. Stability of the factorization
of symmetric indefinite systems was considered in detail by Ashcraft et al. [1999].
They showed that bounding the size of the entries of L, together with a backward
stable scheme for solving 2 × 2 linear systems, suffices to show backward stability
for the entire solution process. They found that the widely used strategy of Bunch and
Kaufmann [1977] does not have this property whereas the threshold pivoting technique
first used by Duff and Reid [1983] in their original multifrontal solver does.

Duff and Reid choose the pivots one-by-one, with the aim of limiting the size of the
entries li, j in L so that

|li, j | < u−1, (5)

where the pivot threshold parameter u is in the range 0 ≤ u ≤ 1.0. In the case where u is
zero, this is interpreted as requiring that the entries be finite. Suppose q is the number
of rows and columns of D found so far (that is, the number of 1×1 pivots plus twice the
number of 2×2 pivots). Let ai, j , with i > q and j > q, denote an entry of the matrix after
it has been updated by all the permutations and pivot operations so far. For a 1×1 pivot
in column j = q+1, the requirement for inequality (5) corresponds to the threshold test

|aq+1,q+1| > u max
q+1<i≤n

|ai,q+1|. (6)

The original test used by Duff and Reid for 2 × 2 pivots proved unnecessarily severe.
Instead, following Duff et al. [1991], an appropriate test for a 2 × 2 pivot is∣∣∣∣∣

(
aq+1,q+1 aq+1,q+2

aq+1,q+2 aq+2,q+2

)−1
∣∣∣∣∣
(

maxq+2<i≤n |ai,q+1|
maxq+2<i≤n |ai,q+2|

)
<

(
u−1

u−1

)
, (7)

where the absolute value notation for a matrix refers to the matrix of corresponding
absolute values and the threshold parameter u is between 0 and 0.5. In the case where
u is zero, this is interpreted as requiring that the pivot be nonsingular. While this
test is not used universally by modern sparse direct solvers, it has been incorporated
into all recent sparse indefinite solvers within the HSL mathematical software
library [HSL 2013] (including MA57 [Duff 2004], HSL MA77 [Reid and Scott 2008, 2009],
HSL MA86 [Hogg and Scott 2010b] and HSL MA97 [Hogg and Scott 2011]) and is thus the
one used in this study.

2.2. Choice of Pivot Threshold Parameter

The choice of the pivot threshold parameter u not only influences the number of
candidate pivots that are rejected and hence delayed, but also the stability of the

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:4 J. D. Hogg and J. A. Scott

factorization. A large u means a tight bound on the size of the entries of L at the
possible cost of a large number of delays, whereas a smaller value potentially reduces
the number of delays but, because the pivot test is less strict, the factorization may be
less accurate and it may be necessary to perform refinement during the solve phase
to try and recover the required accuracy. In extreme cases, entries of the factors may
become unbounded. Frequently used choices are u = 0.1 or 0.01. On the basis of exten-
sive numerical experience, these values generally provide a good compromise between
stability and sparsity. However, in some application areas it is common to use a much
smaller threshold, despite the attendant risk of numerical instability. For example, the
well-known optimization package Ipopt [Wächter and Biegler 2006] optionally uses
one of the HSL indefinite solvers MA27 [Duff and Reid 1992] and MA57. For both solvers,
the default setting for u within Ipopt is u = 10−8. If, at some stage of the computation,
this is found to give an unstable factorization (detected via an unexpected inertia or
large backward error following solution), the factorization is recomputed with a larger
of value of u, and this process repeated as necessary until either a stable factorization
is achieved or the maximum allowable value for u is reached (which, by default, in
Ipopt is 10−4). The use of small u in an optimization context is common and has
been discussed, for example, in Fourer and Mehrotra [1993] and Gill et al. [1996].
Numerical experiments using u = 10−8 are reported on in Section 4.2.

2.3. Relaxed Threshold Pivoting

The idea behind relaxed threshold pivoting is to relax the threshold parameter during
the factorization when no pivot satisfying the threshold tests for the input u is available.
In this way, the pivot threshold used during the computation may be smaller than at the
start of the factorization, reducing the number of delays but ideally without seriously
compromising stability. Relaxed pivoting strategies have been explored by Duff and
Pralet [2007] (see also Reid and Scott [2011]). The factorization commences with the
user-supplied u. If at some stage no 1 × 1 or 2 × 2 candidate pivot satisfies the tests
(6) or (7), pivots are accepted using a weaker threshold, provided this is at least a
user-defined minimum umin. Our numerical experiments [Hogg and Scott 2012b] found
that, compared to using a small u throughout the factorization, the gains were modest
and do not justify the additional complexity they add to the implementation.

2.4. Restricted Pivoting

Threshold partial pivoting requires all the entries below the diagonal in the candidate
pivot column(s) to be searched when checking the threshold tests (6) and (7). This is ex-
pensive, particularly in a parallel implementation. One way of avoiding this is, at each
stage, to limit the search to a restricted set of rows (typically the rows corresponding
to the candidate pivot columns). Thus, if there are r such rows, (6) is replaced by

|aq+1,q+1| > u max
q+1<i≤r

|ai,q+1|, (8)

and (7) is modified in the same way. The hope here is that, for a well-scaled matrix,
restricting the search will save time without leading to the acceptance of pivots that
would otherwise have been rejected. Because of the greater potential for numerical
instability, refinement is more likely to be needed to recover accuracy. Note that time
is saved not only in the search for pivots but also because entries in the candidate
pivot columns that lie in rows r + 1 to n do not need to be updated after each pivot has
been chosen. This allows block update operations (using high level BLAS kernels) to
be employed, thereby improving efficiency. Furthermore, additional parallelism can be
exploited when performing these updates.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:5

2.5. Static Pivoting

A static pivoting strategy refers to one that allows the factorization to respect the pivot
ordering passed to it from the analyze phase. The factorization does not necessarily
follow the analysis exactly and some slight variations are allowed. For example, in a
multifrontal algorithm it is sufficient that the factorization decisions be compatible
with the assembly tree (numerical pivoting can be performed within a front). The key
point is that pivots are not delayed so that the analysis predicts exactly the memory and
operations needed to perform the factorization and thus the data structures can remain
static. A static approach for LU factorization was proposed by Li and Demmel [1998]
for the SuperLU solver. If necessary, during the factorization, small perturbations
are added to the diagonal to prevent pivots from becoming too small and failing the
threshold test. The computed factorization is thus not of A but of a perturbed matrix
A+ E, where E is a diagonal matrix.

For symmetric indefinite systems, Schenk and Gärtner [2006] combine static pivoting
with Bunch-Kaufman and restricted pivoting strategies. Their strategy is implemented
within the solver PARDISO [Schenk and Gärtner 2004]. A similar approach is available
as an option within WSMP [Gupta 2000]. In this case, the matrix is perturbed whenever
numerically acceptable 1 × 1 and 2 × 2 pivots cannot be found within a diagonal
supernode block (checks on potential pivots are only made within the supernode block).
This has been shown to perform well in many applications. An important downside is
that the solve phase can require an increased number of refinement steps to achieve the
requested accuracy (and, in the extreme case, as our numerical results in Section 4.3
show, it may not be possible to recover accuracy). Furthermore, since a perturbed
system is solved, the computed inertia of the original matrix A may not be reliable
and, in some applications, accurate knowledge of the inertia is required (for example,
to ensure local convexity in a nonlinear interior point method).

Duff and Pralet [2007] propose combining threshold partial pivoting with static
pivoting to try to minimize both the number of perturbations that are added and the
amount of refinement required. If no 1×1 or 2×2 candidate pivot satisfies the test (6) or
(7) the 1 × 1 pivot that is nearest to satisfying the test is accepted. If its absolute value
is less than another user-supplied threshold static, it is given the value that has the
same sign but absolute value static [Reid and Scott 2011]. This strategy (or variants
of it) is available as an option within a number of solvers, including MA57, HSL MA77,
HSL MA86, and MUMPS [Amestoy et al. 1999; MUMPS 2011].

3. BLOCK PIVOT STRATEGIES

Standard algorithms for computing a pivot sequence, including minimum degree and
nested dissection, compute a sequence of 1 × 1 pivots. For many indefinite problems,
it is necessary to use 2 × 2 pivots during the factorization and so the supplied pivot
sequence will be modified. To try to minimize modifications, it is therefore natural to
try and construct a tentative pivot sequence that contains 2 × 2 pivots. In this section,
we discuss a number of approaches that have been proposed for this.

3.1. Reusing a Pivot Sequence

If a sequence of linear systems

Akxk = bk (9)

is to be solved in which the matrix Ak varies from the previous matrix Ak−1 by a
relatively small amount (in terms of both the sparsity pattern and the values of the
entries), an obvious possibility is to pass the pivot sequence actually used by the
factorization phase for Ak−1 to the analyze phase for Ak. This is a strategy that could
be used, for example, within a nonlinear optimization package, such as Ipopt.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:6 J. D. Hogg and J. A. Scott

In Hogg and Scott [2012b], we performed experiments with k = 2 and A2 = A1 = A
(that is, we call the analyze and factorization phases twice and on the second call to the
analyze phase we input the pivot sequence returned by the first call to the factorization
phase). The results were disappointing, with only 8 out of 23 test problems achiev-
ing a modest speedup while 12 ran more slowly (in some cases significantly slower).
The cause of this under performance is that the assembly trees used in the first and
subsequent factorizations are very different because of the effects of supernode amal-
gamation. It may be that additional work will yield better techniques for preserving
assembly trees between the factorizations but it is beyond the scope of this study.

3.2. MA47 Orderings

MA47 [Duff and Reid 1996] is a sparse symmetric solver specifically designed for solving
indefinite systems and, in particular, for matrices that have some zeros on the diagonal.
A key feature is that the analyze phase may choose tentative block pivots. A variant of
the Markowitz criterion recommended in Duff et al. [1991] is used to extend the strategy
of minimum degree to block pivots. As with other minimum degree algorithms, the
pivots are chosen during the analyze using the sparsity structure of A alone (without
the assumption that the diagonal is implicitly present that is made by standard fill-
reducing ordering algorithms).
MA47 distinguishes between block pivots with different sparsity patterns. Specifically,

pivots may be classified as

—oxo pivots of the form (
0 a1

a1 0

)
, (10)

—tile pivots of the form (
a2 a1

a1 0

)
or

(
0 a1

a1 a2

)
, (11)

—or of any other form, called full.

Tile and oxo pivots are termed structured pivots and their structure is taken into
account within the analyze and factorize phases. As far as we are aware, MA47 is the
only sparse symmetric solver that exploits the structure of block pivots. However, the
analyze phase of MA47 can be used to compute a tentative pivot sequence containing
2 × 2 structured pivots that may be passed to other solvers.

3.3. Constraint Pivot Orderings

Many tough indefinite problems are saddle-point problems of the form

A =
(

H BT

B −C

)
, (12)

with H symmetric positive semidefinite, B rectangular, and C symmetric positive
semidefinite. The problem of finding a permutation P such that PAPT can be factorized
stably without the need for numerical pivoting and without modifying the entries of A,
while still limiting the number of entries in L, has been examined for special classes of
such matrices [de Niet and Wubs 2009; Tůma 2002]. For general saddle-point problems,
Bridson [2007] proposed splitting the nodes of the adjacency graph of A into two disjoint
sets: those that correspond to the diagonal entries of H are known as H-nodes and the
remaining nodes as C-nodes. The ordering constraint proposed by Bridson is extremely

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:7

simple: a C-node can only be ordered after all its H-node neighbours have been ordered.
Bridson shows that, provided H is semi-definite and B is of full row rank, with this
constrained ordering the LDLT factorization exists. Moreover, the pivots associated
with the H-nodes are guaranteed to be positive and those associated with C-nodes are
guaranteed to be negative. By rescaling, L ← L|D|1/2 and D ← sign(D) = diag(±1),
the diagonal matrix is fully determined in advance by the structure of the problem,
independent of the numerical values. This constrained ordering allows a Cholesky
factorization code to be modified to perform the factorization of the indefinite A with
no threshold pivoting (that is, this ordering can be used without the need to perform
numerical pivoting or to alter the pivot sequence). While a stability analysis is lacking,
Bridson reports the constrained ordering is generally sufficient to avoid the need for
numerical pivoting (see also Scott [2009]). The hope is that, if an initial ordering is
chosen to reduce fill in L, the modifications required to obtain a constrained ordering
will be such that the additional fill will be modest.

Bridson proposed two approaches to computing a constrained ordering. The first mod-
ifies the minimum degree algorithm (or one of its variants) to incorporate the constraint
within it. An alternative approach is to post process a given fill-reducing ordering to
satisfy the constraint. If a C-node is the next node in the supplied ordering it is only
included in the modified ordering once all its H-node neighbours have been ordered
(that is, a C-node is postponed until after all its H-node neighbours). This approach
can be applied to any fill-reducing ordering and is very cheap and straightforward
to implement. As Bridson reports that neither approach consistently outperforms the
other, our experiments use post processing.

We remark that WSMP offers a limited form of constrained ordering for indefinite
systems. This allows the user to specify that the final m < n columns are to be pivoted
on last. This is recommended in the WSMP documentation for problems that have a few
zero (or near-zero) entries on the diagonal. For such matrices, an LDLT factorization
is performed without pivoting. The documentation states. “By ordering the n− m rows
and columns with zero diagonal entries in the end, the user ensures (unless there is
numerical cancellation) that these diagonal entries are nonzero by the time they are
pivoted on.”

3.4. Matching-Based Orderings

In the unsymmetric case, maximum weighted matching algorithms are used to move
large entries on to the diagonal of the matrix. The idea is that these will provide
potentially good candidate pivots and the number of delayed pivots during the sub-
sequent factorization will be reduced. In the symmetric case, symmetry needs to be
preserved but a symmetric permutation leaves the diagonal unchanged. Thus the aim
is to permute a large off-diagonal entry ai, j close to the diagonal so that the 2 × 2 block

(
ai,i ai, j

ai, j aj, j

)
(13)

is potentially a good 2×2 candidate pivot. Duff and Gilbert [2002] noticed that the cycle
structure of the permutation PM associated with the unsymmetric maximum weighted
matching M can be exploited to obtain such a permutation Ps. This has been explored
further by Duff and Pralet [2005] and, amongst others, Schenk et al. [Hagemann and
Schenk 2006; Schenk and Gärtner 2006; Schenk et al. 2007], and symmetric maximum
weighted matchings are (optionally) used within the sparse solvers HSL MA97, MUMPS,
PARDISO and WSMP.

A maximum weighted matching M is first computed. Assume initially that A is not
found to be structurally singular. Any diagonal entries that are in the matching are

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:8 J. D. Hogg and J. A. Scott

immediately considered as potential 1 × 1 pivots and are held in a set M1. A set M2
of potential 2 × 2 pivots is then built by expressing the computed permutation PM in
terms of its component cycles. Because of the scaling, all the entries in the cycles of
PM are 1 in absolute value so a structural criterion is used to select the potential 2 × 2
pivots. A cycle of length 1 corresponds to an entry aii in the matching. A cycle of length 2
corresponds to two nodes i and j, where aij and aji are both in the matching. k potential
2 × 2 pivots can be extracted from even cycles of length 2k or from odd cycles of length
2k+1. The idea is to select k entries aij and their symmetric counterpart and to discard
the other matched entries. In practice, most of the cycles in the matching permutation
are of length 1 or 2 [Duff and Pralet 2005]. Where there are longer cycles, Duff and
Pralet discuss possible ways of extracting 2×2 pivots, based on the sparsity patterns of
the rows of A (in particular, they seek to pair up rows that have as similar a structure
as possible). Since long cycles do not occur often, we adopt the more straightforward
approach of taking the first two entries as the first 2 × 2 pivot, the next two as the next
2 × 2 pivot, and so on, until if the cycle is of odd length, a single entry remains, which
is added to the set M1.

To combine the resulting permutation with a fill-reducing ordering (such as nested
dissection or minimum degree), the graph of Ps APT

s is compressed and the ordering
applied to the compressed graph. In the compression step, the union of the sparsity
structure of the two rows and columns corresponding to a potential 2 × 2 pivot is built
and used as the structure of a single row and column in the compressed matrix. A
fill-reducing ordering is applied to the (weighted) compressed graph, and the resulting
permutation is expanded to a permutation Pf for the original matrix. The final permu-
tation is the product P = Pf Ps. The rows/columns corresponding to a potential 2 × 2
pivot are reordered consecutively.

A by-product of computing a matching-based ordering is a scaling for A and this is
the scaling computed by HSL MC64. To employ a matching algorithm within the analyze
phase it is necessary for the analyze phase to have available the numerical values of
the entries of A (and thus the analyze phase will not depend solely on the structure of
A). If the user wants to factorize more than one matrix with the same sparsity pattern
but different numerical values, it may be necessary to recompute the ordering and the
scaling. This can add a significant overhead when compared with an analyze phase that
uses the sparsity structure only. However, if scaling factors need to be computed prior to
the factorization of each matrix, then the additional cost associated with the matching-
based ordering will generally be modest compared with the total solution time.

4. NUMERICAL EXPERIMENTS

4.1. Test Environment

As already indicated, the HSL mathematical software library contains a number of
sparse solvers that are designed for symmetric indefinite systems. In this study, most
of our experiments are performed using HSL MA77 (Version 5.8.0). HSL MA77 implements
a multifrontal algorithm and includes the possibility of holding the matrix data, the
computed factors, and some of the intermediate work arrays in files on disk, thus allow-
ing the solution of much larger problems than would otherwise be possible. HSL MA77
offers the user a number of options. Importantly for this study, these include the use
of threshold pivoting and static pivoting. Furthermore, the user is required to supply
the pivot sequence (which may include 2 × 2 pivots) to the analyze phase, allowing us
to experiment with constraint and matching-based orderings. An option also exists to
supply a scaling. In our experiments, we use the scaling returned by HSL MC64.

All our experiments are performed using double precision on a Dell Precision T5400
with two Intel E5420 quad core processors running at 2.5 GHz. The ifort compiler

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:9

0.1

1

10

100

0 5 10 15 20 25

tim
e

Problem

METIS u = 0.01
METIS u = 10−8

Matching u = 0.01

Fig. 1. The complete solution times (in seconds) for HSL MA97 run with METIS and the matching ordering
(u = 0.01 and u = 10−8).

(Version 12.0) with option -O3 and MKL BLAS (Version 10.2) are used. The right-hand
side b is chosen so that the solution is xi = 1 for all i. We measure the accuracy of the
computed solution using the scaled residual:

‖Ax − b‖
‖A‖‖x‖ + ‖b‖ (14)

with the infinity norm ‖x‖ = maxi |xi| and its induced matrix norm ‖A‖ = maxi
∑

j |ai, j |.
The computed solution is only accepted if the scaled residual is less than 10−14; where
necessary, iterative refinement or refinement using Flexible GMRES (FGMRES) [Saad
1993; Arioli and Duff 2009] is performed. For some problems, FGMRES is able to
compute backward stable solutions when iterative refinement fails to converge but, as
it is more expensive, we restrict its use to such cases. We use the restarted FGMRES
algorithm described in [Hogg and Scott 2010a]. This is essentially as given in Arioli
and Duff [2009] but additionally uses an adaptive restart parameter that was found
in numerical experiments to be more efficient than using a fixed restart parameter
(that is, in general, it reduced the number of iterations required). Our choice of initial
restart parameter of 4 is based on the results given in Hogg and Scott [2010a]. Note
that the results are sensitive to this choice: using a larger value can lead to a larger
total number of solves (that is, to a larger number of calls to the solve phase of the direct
solver) because we only test the termination conditions when FGMRES is restarted.
When iterative refinement or FGMRES is used, we limit the number of solves to 100.

For each test, we impose for each problem a time limit of 1 hour (note that runtimes
for most problems are less than 1 minute; see Figure 1). In the tables of results,
nitr is the number of solves performed during refinement (0 indicates refinement was
not needed); OOT denotes the time limit was exceeded and * indicates the required
accuracy was not achieved (after refinement).

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:10 J. D. Hogg and J. A. Scott

Table I.
Test problems. n denotes the order of A, nz(A) is the number of entries in A, nz(L) is the predicted number of
entries in L and nflop is the predicted number of flops required to compute L (METIS ordering). QP = quadratic
programming problem, FE = finite-element.

Identifier n nz(A) nz(L) nflop Description/Application
TSOPF/TSOPF FS b162 c1 10798 608540 1.3930 × 106 2.0509 × 108 Optimal power flow
TSOPF/TSOPF FS b39 c7 28216 730080 1.5755 × 106 1.0796 × 108 Optimal power flow
GHS indef/ncvxqp1 12111 73963 1.6839 × 106 7.2793 × 108 Non-convex QP
QY/case39 40216 1042160 2.2885 × 106 1.5130 × 108 Optimal power flow
GHS indef/stokes128 49666 558594 2.9813 × 106 3.6881 × 108 FE model Stokes problem
GHS indef/cvxqp3 17500 122462 3.1398 × 106 1.7670 × 109 Convex QP
TSOPF/TSOPF FS b162 c3 30798 1801300 4.2194 × 106 6.3970 × 108 Optimal power flow
TSOPF/TSOPF FS b39 c19 76216 1977600 4.4010 × 106 2.8666 × 108 Optimal power flow
GHS indef/cont-201 80595 438795 4.7815 × 106 8.6513 × 108 Convex QP
TSOPF/TSOPF FS b162 c4 40798 2398220 5.5772 × 106 8.3825 × 108 Optimal power flow
GHS indef/bratu3d 27792 173796 6.2769 × 106 4.4174 × 109 Optimization
TSOPF/TSOPF FS b39 c30 120216 3121160 7.0473 × 106 4.7541 × 108 Optimal power flow
GHS indef/darcy003 389874 2101242 8.1587 × 106 5.5664 × 108 Mixed FE model
TSOPF/TSOPF FS b300 29214 4400122 1.0603 × 107 4.3977 × 109 Optimal power flow
TSOPF/TSOPF FS b300 c1 29214 4400122 1.0603 × 107 4.3977 × 109 Optimal power flow
GHS indef/cont-300 180895 988195 1.1744 × 107 2.9559 × 109 Convex QP
GHS indef/ncvxqp5 62500 424966 1.2052 × 107 9.7223 × 109 Non-convex QP
GHS indef/turon m 189924 1690876 1.3723 × 107 4.2270 × 109 Mixed FE model
GHS indef/d pretok 182730 1641672 1.4581 × 107 5.0572 × 109 Mixed FE model
GHS indef/ncvxqp3 75000 499964 1.9007 × 107 2.0692 × 1010 Non-convex QP
TSOPF/TSOPF FS b300 c2 56814 8767466 2.1433 × 107 8.9629 × 109 Optimal power flow
GHS indef/ncvxqp7 87500 574962 2.4731 × 107 3.0939 × 1010 Non-convex QP
TSOPF/TSOPF FS b300 c3 84414 13135930 3.3105 × 107 1.4253 × 1010 Optimal power flow

The problems used in this study are from the University of Florida Sparse Matrix
Collection [Davis and Hu 2011]. The Collection includes a large number of nonsingular
symmetric indefinite matrices. We ran our solver on all such problems of order at least
10,000 for which numerical values are supplied.1 We used default settings, nested
dissection ordering computed using routine METIS NodeND from the METIS package
[Karypis and Kumar 1998] (note we use METIS Version 4), and HSL MC64 scaling. We
include in our test set those for which the number of reported delayed pivots is at
least max(5000, 0.2 ∗ n); this is the definition of a tough indefinite problem used in
this study. Our test problems are listed in Table I. For each problem, we give its order
n and number of entries nz(A). In addition, we report the number of entries nz(L)
in L and the number nflop of floating-point operations (flops) required to compute L
that are returned by the analyze phase of HSL MA77 and are the values that would be
returned by the factorization phase if the supplied pivot sequence could be used without
modification. Further details of the problems can be found by referring to [Davis and
Hu 2011].

4.2. A Comparison of Pivoting Strategies (without Static Pivoting)

In Tables II to V, we report results for the following orderings: METIS (u = 0.01 and
10−8), MA47 (u = 0.01), matching (u = 0.01 and 10−8) and matching combined with
restricted pivoting (u = 0.01). For the matching orderings, routine METIS NodeWND

1All problems available as of March 2012 were included.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:11

Table II.
Number of delayed pivots for various methods. OOT denotes the 1 hour time limit was exceeded. The numbers
in parentheses are for Matching using METIS NodeND. * indicates required accuracy not achieved.

Matching
Ordering: METIS METIS MA47 Matching Matching Restrict

u: 0.01 10−8 0.01 0.01 10−8 0.01
TSOPF/TSOPF FS b162 c1 5087 3961 225 354 (348) 0 0
TSOPF/TSOPF FS b39 c7 11238 8527 883 1315 (1356) 0 0
GHS indef/ncvxqp1 10359 9267 10731 337 (25) 292 224
QY/case39 14806 11011 4800 5392 (5925) 0 0
GHS indef/stokes128 9274 9274 2548 5 (5) 5 50
GHS indef/cvxqp3 26152 26145 18383 186 (64) 0 0
TSOPF/TSOPF FS b162 c3 17497 12126 441 1381 (1264) 0 0
TSOPF/TSOPF FS b39 c19 29668 22610 4640 8074 (9010) 0 0
GHS indef/cont-201 70021 66002 185801 0 (0) 0 0
TSOPF/TSOPF FS b162 c4 21778 15926 532 1482 (1410) 0 0
GHS indef/bratu3d 58888 41829 250517 0 (0) 0 0
TSOPF/TSOPF FS b39 c30 47578 37293 10135 5655 (5699) 0 0
GHS indef/darcy003 43702 43702 18909 345 (119) 345 213∗

TSOPF/TSOPF FS b300 20599 19033 1898 1105 (1017) 0 0
TSOPF/TSOPF FS b300 c1 24511 19310 2430 1220 (1269) 0 0
GHS indef/cont-300 148976 141089 OOT 0 (0) 0 0
GHS indef/ncvxqp5 11869 10636 OOT 85 (112) 0 0
GHS indef/turon m 18931 18928 15101 262 (129) 234 190∗

GHS indef/d pretok 21399 18012 17715 758 (313) 698 441∗

GHS indef/ncvxqp3 65603 64876 OOT 641 (220) 564 547∗

TSOPF/TSOPF FS b300 c2 52593 41836 OOT 2579 (2533) 0 0
GHS indef/ncvxqp7 272409 270790 OOT 104 (195) 89 89
TSOPF/TSOPF FS b300 c3 116630 99361 OOT 5205 (6764) 0 0

is applied to the compressed graph, with a vertex weight of two for each vertex that
corresponds to two rows/columns of the original matrix and a weight of one for all other
vertices. For u = 0.01 we also include results for the matching ordering with the un-
weighted variant (METIS NodeND) applied to the compressed graph. These show that
the solver performance is generally not very sensitive to whether METIS NodeWND
or METIS NodeND is used but, in terms of the flop counts (Table IV), for some prob-
lems (including GHS indef/cvxqp3, GHS indef/darcy003, and GHS indef/d pretok), the
former gives worthwhile savings. Note that we also experimented with combining
the METIS ordering with restricted pivoting but found that, for our tough indefinite
problems, iterative refinement and FGMRES were unable, in general, to recover the
required accuracy. If restricted pivoting is combined with a matching-based ordering,
the approach is generally successful, but since it failed to achieve the required accu-
racy for three of our problems, it does not offer the robustness that we require. Table II
reports the number of delayed pivots. If a candidate pivot is delayed more than once,
we count the number of times it is delayed. We see that the matching-based order-
ings generally lead to the smallest number of delayed pivots, although for some of
the TSOPF problems, the MA47 ordering also results in a relatively small number of
delays. Indeed, in most cases where the time limit was not exceeded, the MA47 ordering
led to fewer delays than the METIS ordering. However, for large problems, minimum
degree-based orderings (such as the MA47 ordering) are generally not as effective as
those based on nested dissection. This is seen in Tables III and IV, where the ratios

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:12 J. D. Hogg and J. A. Scott

Table III.
Number of entries in the factors for various methods. Ratios of the actual number of entries against the pre-
dicted number of entries for the METIS ordering are given. The numbers in parentheses are for Matching using
METIS NodeND. OOT denotes the 1 hour time limit was exceeded. * indicates required accuracy not achieved.

Matching
Ordering: METIS METIS MA47 Matching Matching Restrict

u: 0.01 10−8 0.01 0.01 10−8 0.01
TSOPF/TSOPF FS b162 c1 1.31 1.20 9.67 1.25 (1.26) 1.23 1.23
TSOPF/TSOPF FS b39 c7 1.40 1.24 17.2 1.49 (1.50) 1.46 1.46
GHS indef/ncvxqp1 1.35 1.32 12.4 1.79 (1.70) 1.83 1.83
QY/case39 1.36 1.21 15.1 1.63 (1.63) 1.56 1.56
GHS indef/stokes128 1.10 1.10 1.12 1.52 (1.59) 1.52 1.52
GHS indef/cvxqp3 1.56 1.56 3.63 1.69 (1.82) 1.70 1.70
TSOPF/TSOPF FS b162 c3 1.44 1.23 27.1 1.43 (1.43) 1.40 1.40
TSOPF/TSOPF FS b39 c19 1.49 1.22 29.0 1.56 (1.56) 1.49 1.49
GHS indef/cont-201 1.79 1.72 55.9 0.92 (0.95) 0.92 0.92
TSOPF/TSOPF FS b162 c4 1.49 1.25 36.1 1.23 (1.23) 1.21 1.21
GHS indef/bratu3d 1.88 1.53 16.0 0.90 (0.97) 0.90 0.90
TSOPF/TSOPF FS b39 c30 1.61 1.22 41.7 1.46 (1.46) 1.40 1.40
GHS indef/darcy003 1.09 1.09 1.32 1.63 (1.75) 1.63 1.63∗

TSOPF/TSOPF FS b300 1.20 1.19 9.37 1.26 (1.24) 1.23 1.23
TSOPF/TSOPF FS b300 c1 1.29 1.19 9.39 1.25 (1.27) 1.22 1.22
GHS indef/cont-300 1.83 1.77 OOT 0.94 (0.95) 0.94 0.94
GHS indef/ncvxqp5 1.11 1.11 OOT 1.53 (1.64) 1.53 1.53
GHS indef/turon m 1.05 1.05 3.28 1.22 (1.37) 1.22 1.21∗

GHS indef/d pretok 1.05 1.04 2.92 1.20 (1.38) 1.20 1.20∗

GHS indef/ncvxqp3 1.32 1.32 OOT 1.79 (1.84) 1.78 1.78∗

TSOPF/TSOPF FS b300 c2 1.35 1.21 OOT 1.23 (1.24) 1.20 1.20
GHS indef/ncvxqp7 1.59 1.58 OOT 1.72 (1.75) 1.65 1.65
TSOPF/TSOPF FS b300 c3 1.38 1.19 OOT 1.21 (1.19) 1.16 1.16

for MA47 are generally much larger than for METIS (and, in 6 instances, the time limit
using the MA47 ordering is exceeded).

From column 2 of Tables III and IV, we see that, for many of our test examples run
with default settings, the actual number of entries in L is more than 50% greater than
predicted and the difference between the predicted and actual number of flops can be
significantly larger (close to a factor of 10 for TSOPF/TSOPF FS b39 c30). For each of
our prescaled test examples, at most one step of iterative refinement is required, con-
firming that stability is achieved with threshold u = 0.01. Using a smaller u (column 3)
may have little or no effect on reducing the ratios (they are unchanged for problems
GHS indef/darcy003 and GHS indef/turon m). However, for some problems, u = 10−8

leads to worthwhile reductions in nz(L) and nflop (for example, GHS indef/bratu3d and
TSOPF/TSOPF FS b39 c30), but possibly at the cost of a large number of solves (and
possibly FGMRES) being needed during refinement.

The implementation of the matching-based ordering is that provided by the HSL
package HSL MC80, with METIS applied to the compressed graph. The predictions for the
matching-based ordering are usually greater than for the METIS ordering (typically,
between 50 and 100% greater). However, with the default threshold (u = 0.01), the
matching-based ordering results in substantially fewer delayed pivots. If we run the
matching-based ordering with u = 10−8, for all our test examples, the number of delays
reduces to 0 (or close to 0) and, in contrast to the METIS ordering with the same u, we
found a single step of iterative refinement sufficient to achieve the requested accuracy

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:13

Table IV.
Number of flops to perform the factorization using various methods. Ratios of the actual number of flops against
the predicted number of flops for the METIS ordering are given. The numbers in parentheses are for Matching
using METIS NodeND. OOT denotes the 1 hour time limit was exceeded. * indicates required accuracy not
achieved.

Matching
Ordering: METIS METIS MA47 Matching Matching Restrict

u: 0.01 10−8 0.01 0.01 10−8 0.01
TSOPF/TSOPF FS b162 c1 1.82 1.45 221 1.56 (1.58) 1.50 1.50
TSOPF/TSOPF FS b39 c7 2.56 1.64 673 1.96 (1.98) 1.87 1.87
GHS indef/ncvxqp1 1.68 1.61 102 3.37 (2.84) 3.56 3.55
QY/case39 2.63 1.56 520 2.50 (2.53) 2.27 2.27
GHS indef/stokes128 1.09 1.09 1.37 1.98 (2.23) 1.98 1.98
GHS indef/cvxqp3 2.16 2.16 13.3 2.65 (3.08) 2.60 2.60
TSOPF/TSOPF FS b162 c3 2.78 1.52 1782 2.04 (2.03) 1.96 1.96
TSOPF/TSOPF FS b39 c19 5.38 1.56 3551 2.44 (2.44) 2.16 2.16
GHS indef/cont-201 3.00 2.75 4134 0.82 (0.87) 0.82 0.82
TSOPF/TSOPF FS b162 c4 3.37 1.60 3179 1.52 (1.52) 1.46 1.46
GHS indef/bratu3d 2.75 1.81 163 0.84 (0.96) 0.84 0.84
TSOPF/TSOPF FS b39 c30 9.81 1.56 8235 2.22 (2.22) 1.82 1.82
GHS indef/darcy003 1.08 1.08 2.57 3.46 (3.95) 3.46 3.46∗

TSOPF/TSOPF FS b300 1.45 1.41 209 1.57 (1.54) 1.49 1.49
TSOPF/TSOPF FS b300 c1 1.75 1.41 210 1.56 (1.61) 1.48 1.48
GHS indef/cont-300 3.33 3.11 OOT 0.88 (0.87) 0.88 0.88
GHS indef/ncvxqp5 1.17 1.16 OOT 2.14 (2.36) 2.14 2.14
GHS indef/turon m 1.02 1.02 14.6 1.11 (1.52) 1.12 1.12∗

GHS indef/d pretok 1.03 1.02 11.4 1.18 (1.48) 1.18 1.18∗

GHS indef/ncvxqp3 1.61 1.60 OOT 2.79 (2.90) 2.72 2.72∗

TSOPF/TSOPF FS b300 c2 2.03 1.50 OOT 1.52 (1.55) 1.44 1.44
GHS indef/ncvxqp7 2.26 2.25 OOT 2.78 (2.77) 2.49 2.49
TSOPF/TSOPF FS b300 c3 2.26 1.43 OOT 1.47 (1.44) 1.35 1.35

(see columns 3 and 6 of Table V). Thus, the matching-based approach produces a very
stable ordering, although for many problems there is a penalty of a (generally modest)
increase in nz(L) and nflop.

4.3. Static Pivoting Results

The static pivoting strategy used in this study follows that of Duff and Pralet described
in Section 2.5. We also consider combining static pivoting with restricted pivoting,
which more closely follows the strategy used within PARDISO. In our tests, we follow
Duff and Pralet [2007] and set the parameter static (see Section 2.5) to ‖Â‖√ε, where
ε is the machine precision and Â is the scaled matrix. Note that there is no deviation
from the supplied pivoting sequence and the number of delays is zero. For the METIS
ordering, the ratios of the actual to the predicted nz(L) and flop count are all 1’s,
while for the matching-based orderings the ratios are essentially the same as those
in column 7 of Tables III and IV. In Table VI, we report the number of pivots that
are perturbed together with the number of solves performed during refinement; the
threshold u = 0.01 is used. The matching-based orderings require far fewer pivots to
be perturbed and this in turn leads to only a few steps of refinement being required to
recover accuracy (although, again, if restrictive pivoting is combined with the matching-
based ordering, FGMRES fails to converge for a number of problems).

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:14 J. D. Hogg and J. A. Scott

Table V.
Number of solves performed during refinement. The numbers in parentheses are for Matching using
METIS NodeND. OOT denotes the 1 hour time limit was exceeded. * indicates required accuracy not achieved.
(F) indicates FGMRES was required to achieve requested accuracy.

Matching
Ordering: METIS METIS MA47 Matching Matching Restrict

u: 0.01 10−8 0.01 0.01 10−8 0.01
TSOPF/TSOPF FS b162 c1 1 2 1 0 (0) 1 1
TSOPF/TSOPF FS b39 c7 1 2 1 1 (1) 1 1
GHS indef/ncvxqp1 1 1 1 1 (0) 0 1
QY/case39 1 2 1 0 (1) 1 1
GHS indef/stokes128 0 0 0 0 (0) 0 0
GHS indef/cvxqp3 1 1 1 1 (1) 1 1
TSOPF/TSOPF FS b162 c3 1 2 1 0 (0) 1 1
TSOPF/TSOPF FS b39 c19 1 2 1 1 (1) 1 1
GHS indef/cont-201 1 (F) 24 1 1 (1) 1 1
TSOPF/TSOPF FS b162 c4 1 3 1 0 (1) 1 1
GHS indef/bratu3d 1 (F) 44 1 0 (0) 0 0
TSOPF/TSOPF FS b39 c30 1 3 1 1 (1) 1 1
GHS indef/darcy003 1 1 1 0 (0) 0 *
TSOPF/TSOPF FS b300 1 5 0 0 (0) 1 1
TSOPF/TSOPF FS b300 c1 1 4 1 0 (0) 1 1
GHS indef/cont-300 1 (F) 12 OOT 1 (1) 1 1
GHS indef/ncvxqp5 1 1 OOT 1 (1) 1 1
GHS indef/turon m 0 0 0 0 (0) 0 *
GHS indef/d pretok 0 0 0 0 (0) 0 *
GHS indef/ncvxqp3 1 2 OOT 1 (1) 1 *
TSOPF/TSOPF FS b300 c2 1 5 OOT 0 (0) 1 1
GHS indef/ncvxqp7 1 2 OOT 1 (1) 1 1
TSOPF/TSOPF FS b300 c3 1 5 OOT 0 (0) 1 1

Traditionally, the factorize phase of a sparse direct solver has generally required
the greatest portion of the total execution time. It typically involves the majority of
the floating-point operations (often as many as 98% of the flops are performed by the
factorize phase) and is computation bound; the other phases are memory bound. Over
the past decade or so, the increase in computational capacity (flops per second) has
vastly outstripped the increase in memory bandwidth (bytes per second). The result of
this for sparse direct solvers has been an increase in the proportion of the computation
time taken by the solve phase (see Hogg and Scott [2010c] for further discussion and
computational results). Thus, although static pivoting can eliminate delays, there is a
potentially costly penalty to pay of subsequently requiring many solves and, since the
solve does not parallelize well, this can become a bottleneck.

4.4. Constrained Ordering

Table VII presents results for the constrained ordering (obtained by post processing
the METIS ordering) with u = 0.0 (no pivoting). Only a subset of our test problems are
included because this approach is limited to saddle-point systems (12). With u = 0.0,
there are no delays and the actual nz(L) and nflop are equal to the predicted values.
Comparing the ratios in Table VII with those in columns 2 and 5 of Tables III and IV,
we see that the constrained ordering results in significantly denser factors and higher
flop counts than for the corresponding unconstrained ordering and is thus unlikely to
be competitive in practice.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:15

Table VI.
Number of perturbed pivots (nptrb) and number of solves performed during refinement (nitr) for static
pivoting approaches (with u = 0.01). * indicates required accuracy not achieved. (F) indicates FGMRES
was required to achieve requested accuracy.

nptrb nitr
Matching Matching

Ordering: METIS Matching Restrict METIS Matching Restrict
TSOPF/TSOPF FS b162 c1 2026 0 0 4 1 1
TSOPF/TSOPF FS b39 c7 5846 0 0 6 1 1
GHS indef/ncvxqp1 1309 9 7 2 1 1
QY/case39 7154 0 0 11 1 1
GHS indef/stokes128 4988 5 5 * (F) 16 (F) 16
GHS indef/cvxqp3 2833 2 2 8 1 1
TSOPF/TSOPF FS b162 c3 6226 0 0 5 1 1
TSOPF/TSOPF FS b39 c19 14489 0 0 6 1 1
GHS indef/cont-201 18384 0 0 (F) 24 1 1
TSOPF/TSOPF FS b162 c4 8549 0 0 4 1 1
GHS indef/bratu3d 6341 0 0 4 0 0
TSOPF/TSOPF FS b39 c30 23895 0 0 11 1 1
GHS indef/darcy003 19865 293 189 18 2 *
TSOPF/TSOPF FS b300 5622 0 0 8 1 1
TSOPF/TSOPF FS b300 c1 5630 0 0 10 1 1
GHS indef/cont-300 38908 0 0 (F) 52 1 1
GHS indef/ncvxqp5 2718 0 0 (F) 40 1 1
GHS indef/turon m 9018 196 171 (F) 76 1 *
GHS indef/d pretok 8632 551 403 (F) 60 1 *
GHS indef/ncvxqp3 7958 24 19 * 2 *
TSOPF/TSOPF FS b300 c2 11634 0 0 9 1 1
GHS indef/ncvxqp7 13741 7 7 64 1 1
TSOPF/TSOPF FS b300 c3 16056 0 0 (F) 40 1 1

Table VII.
Results for the constrained ordering with pivot threshold
u = 0.0. The ratios of the number of entries in L and flop
counts to those predicted for the METIS ordering is given
together with the number of refinement solves.

Identifier nz(L) nflop nitr
GHS indef/cvxqp3 3.51 9.91 22
GHS indef/cont-201 1.74 2.75 1
GHS indef/darcy003 3.08 11.78 0
GHS indef/cont-300 1.79 2.89 1
GHS indef/turon m 3.89 11.26 0
GHS indef/d pretok 3.93 11.23 0

4.5. Sparse Direct Solver Timings

So far, we have concentrated on looking at how different strategies impact the number
of delayed pivots and the factor size and flop count. In this section, we illustrate how
they affect computation time. Here we use Version 2.1.0 of the recent multifrontal
solver HSL MA97. HSL MA97 is used rather than HSL MA77 because the latter is an out-of-
core solver and as such its solve phase is comparatively expensive; there are also other
overheads associated with the out-of-core design that result in it being slower than
HSL MA97. Furthermore, HSL MA97 is a parallel code. Figure 1 reports complete solution
times (which include the time for scaling, ordering and refinement) for HSL MA97 run

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:16 J. D. Hogg and J. A. Scott

Table VIII.
HSL MA97 statistics for some problems that are not in our set of tough problems. Results for METIS ordering
used with no scaling, METIS ordering used with HSL MC64 scaling, and the matching-based MC80 ordering with
HSL MC64 scaling. The number of delayed pivots and ratios of the actual number of factor entries and flops against
the predicted number of entries and flops for the METIS ordering are given.

Delayed pivots nz(L) nflop Time (seconds)
None MC64 MC80 None MC64 MC80 None MC64 MC80 None MC64 MC80

GHS indef/copter2 87 86 56 1.00 1.00 1.68 1.00 1.00 2.40 1.22 1.38 2.01
Chen/pkustk11 58 57 53 1.00 1.00 1.92 1.00 1.00 3.02 3.17 5.71 8.76
Pothen/onera dual 160 137 85 1.00 1.00 1.61 1.00 1.00 2.39 0.91 0.98 1.22
Schenk IBMNA/c-62 135154 594 0 4.11 1.01 1.37 12.1 1.02 1.49 28.3 2.25 8.38
Schenk IBMNA/c-64 23361 809 0 2.72 1.01 1.34 27.8 1.05 1.85 1.97 1.47 1.08
GHS indef/boyd2 27077 0 0 30.5 1.00 1.00 19106 1.00 1.00 57.9 47.3 37.6

on 8 processors with its default settings with the METIS ordering and the matching
ordering; the problems are in the same order as in Table I. Times are wall-clock times
in seconds. For the matching ordering, we omit results for u = 10−8 because we found
that they are very close to those for the default u = 0.01. We see that, although the
matching-based ordering produces denser factors and requires more flops, for many
problems it gives the best time. As it also produces few delayed pivots, this would
appear to be an attractive approach. Observe that the large number of solves required
for some problems for the METIS ordering with u = 10−8 can add a significant overhead
(for example, GHS indef/bratu3d and GHS indef/cont-300).

Finally, we briefly consider problems that are less numerically challenging and that
are outside our tough test set. The problems are again taken from the University of
Florida Sparse Matrix Collection; they are all symmetric indefinite and, for those that
are supplied as pattern only, we generate random values in the range [0, 1] for the
nonzero entries. In Table VIII, we present HSL MA97 results for the METIS ordering
with no scaling (denoted by “None”), the METIS ordering with HSL MC64 scaling (de-
noted by “MC64”), and the matching-based ordering with HSL MC64 scaling (denoted by
“MC80”). The times are complete solution times. The first three problems are included
because they do not require scaling; they illustrate the overhead involved in scaling and
in employing a matching-based ordering. The final three problems are chosen because,
without scaling, they experience a large number of delayed pivots but scaling using MC64
is sufficient to eliminate most of these. For two of these problems, Schenk IBMNA/c-62
and Schenk IBMNA/c-64, the matching-based ordering results in significantly more
entries in the factor and a higher flop count, leading to a slower solution time. In-
terestingly, for problem GHS indef/boyd2, the matching-based ordering is of the same
quality as the METIS ordering but the solution time is actually less for the former.
Closer examination shows that, for this example, most of the time is used by METIS
and, in MC80, METIS is applied to a (smaller) compressed graph, thereby reducing its
runtime.

5. SUMMARY OF FINDINGS

For many problems from a wide range of applications, if a nested dissection or minimum
degree ordering is used with a sparse indefinite solver and the solver is run with its
default settings, few pivots will be delayed. A good scaling further limits the number of
delayed pivots. This study has concentrated solely on the problems where the standard
approach of threshold partial pivoting leads to a large number of delays: we have
reviewed techniques designed to overcome this issue and we have employed a set
of hard-to-solve symmetric indefinite systems to examine how well these techniques

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:17

perform in practice. Our key findings (which are only for these tough problems and
assume the system has been prescaled) are the following.

—Using a small pivot threshold parameter with the METIS ordering has a limited
effect on the number of delays and, in some cases, FGMRES (which requires a large
number of solves) may be needed to recover accuracy.

—For many problems, the MA47 ordering results in fewer delayed pivots than the METIS
ordering but is less efficient (much denser factors and higher flop counts).

—Static pivoting leads to no delays but, when it is combined with threshold partial
pivoting and a nested dissection ordering, a large number of solves can be needed
to recover accuracy and, in a few cases, we were not able to achieve the requested
accuracy using FGMRES. Furthermore, knowledge of the inertia may be lost.

—The constrained ordering of Bridson without pivoting is limited to saddle-point prob-
lems and requires the (1, 1) block to be semi-definite. If this is satisfied, the fill-in
and flop counts are generally significantly greater than for the unconstrained METIS
ordering.

—Matching-based orderings can substantially reduce the number of delayed pivots.
In many cases, the computed factors are sparser and flop counts are less than for
METIS. Furthermore, these orderings can be successfully used with a small pivot
threshold or with static pivoting.

—Although for many examples restrictive pivoting combined with the matching-based
ordering works well, it is not robust.

Thus to limit delayed pivots, our general recommendation is that a matching-based
ordering should be used. This option is now built into HSL MA97; a matching-based
ordering may also be precomputed using HSL MC80 and then passed into other direct
solvers, such as HSL MA77. If the inertia is not required, incorporating static pivoting
removes all delays and, when combined with the matching-based ordering, in our
tests gave the required accuracy after refinement. We emphasize, however, that the
matching-based approach is only recommended for tough problems such as those we
have reported on in this study. As illustrated in Table VIII, if standard threshold
partial pivoting gives no delays, scaling may be unnecessary and using a matching-
based ordering is not desirable as it can be expensive to compute and may result in
denser factors and higher flop counts. For other problems, scaling may be sufficient
to reduce the number of delays and, again, a matching-based ordering is then not
necessary.

ACKNOWLEDGMENTS

Our thanks go to our colleague Iain Duff for commenting on a draft of this article. We are also grateful to
the three anonymous referees for carefully reading and commenting on our manuscript.

REFERENCES

AMESTOY, P. R., DAVIS, T. A., AND DUFF, I. S. 1996. An approximate minimum degree ordering algorithm. SIAM
J. Matrix Anal. Appl. 17, 886–905.

AMESTOY, P. R., DUFF, I. S., L’EXCELLENT, J.-Y., AND KOSTER, J. 1999. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 1, 15–41.

ARIOLI, M. AND DUFF, I. S. 2009. Using FGMRES to obtain backward stability in mixed-precision. Electron.
Trans. Numer. Anal. 33, 31–44.

ASHCRAFT, C., GRIMES, R. G., AND LEWIS, J. G. 1999. Accurate Symmetric Indefinite Linear Equation Solvers.
SIAM J. Matrix Anal. Appl. 20, 2, 513–561.

BRIDSON, R. 2007. An ordering method for the direct solution of saddle-point matrices. Preprint http://www.cs.
ubc.ca/∼rbridson/kktdirect/.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

4:18 J. D. Hogg and J. A. Scott

BUNCH, J. R. AND KAUFMAN, L. 1977. Some stable methods for calculating inertia and solving symmetric linear
systems. Math. Comp. 31, 163–179.

DAVIS, T. A. AND HU, Y. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw.
38, 1. Article 1.

DE NIET, A. C. AND WUBS, F. W. 2009. Numerically stable LDLT -factorization of F-type saddle point matrices.
IMA J. Numer. Anal. 29, 208–234.

DUFF, I. S. 2004. MA57—A new code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Softw. 30, 118–154.

DUFF, I. S. AND GILBERT, J. R. 2002. Maximum-weighted matchingand block pivoting for symmetric indefinite
systems. In Abstract Book of Householder Symposium XV, 73–75.

DUFF, I. S., GOULD, N. I. M., REID, J. K., SCOTT, J. A., AND TURNER, K. 1991. Factorization of sparse symmetric
indefinite matrices. IMA J. Numer. Anal. 11, 181–2044.

DUFF, I. S. AND KOSTER, J. 2001. On algorithms for permuting large entries to the diagonal of a sparse matrix.
SIAM J. Matrix Anal. Appl. 22, 4, 973–996.

DUFF, I. S. AND PRALET, S. 2005. Strategies for scaling and pivoting for sparse symmetric indefinite problems.
SIAM J. Matrix Anal. Appl. 27, 313–340.

DUFF, I. S. AND PRALET, S. 2007. Towards a stable mixed pivoting strategy for the sequential and parallel
solution of sparse symmetric indefinite systems. SIAM J. Matrix Anal. Appl. 29, 1007–1024.

DUFF, I. S. AND REID, J. K. 1983. The multifrontal solution of indefinite sparse symmetric linear systems. ACM
Trans. Math. Softw. 9, 302–325.

DUFF, I. S. AND REID, J. K. 1992. MA27: A set of Fortran subroutines for solving sparse symmetric sets of
linear equations. Tech. rep. R-10533. Computer Science and Systems Division, AERE.

DUFF, I. S. AND REID, J. K. 1996. Exploiting zeros on the diagonal in the direct solution of indefinite sparse
symmetric linear systems. ACM Trans. Math. Softw. 22, 227–257.

FOURER, R. AND MEHROTRA, S. 1993. Solving symmetric indefinite systems in an interior-point method for
linear programming. Math. Program. 62, 15–39.

GEORGE, A. 1973. Nested dissection of a regular finite-element mesh. SIAM J. Numer. Anal. 10, 345–363.
GILL, P. E., SAUNDERS, M. A., AND SHINNERL, J. R. 1996. On the stability of Cholesky factorization for symmetric

quasidefinite systems. SIAM J. Matrix Anal. Appl. 17, 35–46.
GUPTA, A. 2000. WSMP: Watson Sparse Matrix Package (Part-I: Direct solution of symmetric sparse sys-

tems). Tech. rep. RC 21886, IBM T. J. Watson Research Center, Yorktown Heights, NY. http://www.cs.
umn.edu/∼agupta/wsmp.

HAGEMANN, M. AND SCHENK, O. 2006. Weighted matchings for preconditioning symmetric indefinite linear
systems. SIAM J. Sci. Comput. 28, 403–420.

HOGG, J. D., REID, J. K., AND SCOTT, J. A. 2010. Design of a multicore sparse Cholesky factorization using
DAGs. SIAM J. Sci. Comput. 32, 3627–3649.

HOGG, J. D. AND SCOTT, J. A. 2008. The effects of scalings on the performance of a sparse symmetric indefinite
solver. Tech. rep. RAL-TR-2008-007, Rutherford Appleton Laboratory.

HOGG, J. D. AND SCOTT, J. A. 2010a. A fast and robust mixed precision solver for the solution of sparse
symmetric linear systems. ACM Trans. Math. Softw. 37. Article 17.

HOGG, J. D. AND SCOTT, J. A. 2010b. An indefinite sparse direct solver for large problems on multicore machines.
Tech. rep. RAL-TR-2010-011, Rutherford Appleton Laboratory.

HOGG, J. D. AND SCOTT, J. A. 2010c. A note on the solve phase of a multicore solver. Tech. rep. RAL-TR-2010-007,
Rutherford Appleton Laboratory.

HOGG, J. D. AND SCOTT, J. A. 2011. HSL MA97: a bit-compatible multifrontal code for sparse symmetric
systems. Tech. rep. RAL-TR-2011-024, Rutherford Appleton Laboratory.

HOGG, J. D. AND SCOTT, J. A. 2012a. New parallel sparse direct solvers for engineering applications. Tech. rep.
RAL-P-2012-001, Rutherford Appleton Laboratory.

HOGG, J. D. AND SCOTT, J. A. 2012b. A study of pivoting strategies for tough sparse indefinite systems. Tech.
rep. RAL-TR-2012-009, Rutherford Appleton Laboratory.

HSL. 2013. A collection of Fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk/.
KARYPIS, G. AND KUMAR, V. 1998. METIS: A software package for partitioning unstructured graphs, par-

titioning meshes and computing fill-reducing orderings of sparse matrices - Version 4.0. http://www-
users.cs.umn.edu/∼karypis/metis/.

LI, X. S. AND DEMMEL, J. W. 1998. Making sparse Gaussian elimination scalable by static pivoting. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing. IEEE, 1–17.

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

Pivoting Strategies for Tough Sparse Indefinite Systems 4:19

LIU, J. W. H. 1985. Modification of the Minimum-Degree algorithm by multiple elimination. ACM Trans.
Math. Softw. 11, 2, 141–153.

MUMPS. 2011. MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. (2011). http://graal.ens-
lyon.fr/MUMPS/.

REID, J. K. AND SCOTT, J. A. 2008. An efficient out-of-core sparse symmetric indefinite direct solver. Tech. rep.
RAL-TR-2008-024, Rutherford Appleton Laboratory.

REID, J. K. AND SCOTT, J. A. 2009. An out-of-core sparse Cholesky solver. ACM Trans. Math. Softw. 36, 2.
Article 9.

REID, J. K. AND SCOTT, J. A. 2011. Partial Factorization of a Dense Symmetric Indefinite Matrix. ACM Trans.
Math. Softw. 38. Article 10.

SAAD, Y. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469.
SCHENK, O. AND GÄRTNER, K. 2004. Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO.

J. Future Generation Comput. Syst. 20, 475–487.
SCHENK, O. AND GÄRTNER, K. 2006. On fast factorization pivoting methods for symmetric indefinite systems.

Electron. Trans. Numer. Anal. 23, 158–179.
SCHENK, O., WÄACHTER, A., AND HAGEMANN, M. 2007. Matching-based preprocessing algorithms to the solution

of saddle-point problems in large-scale non-convex interior-point optimization. Comput. Optim. Appl.
36, 321–341.

SCOTT, J. A. 2009. A note on a simple constrained ordering for saddle-point systems. Tech. rep. RALTR-2009-
007, Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK.

TŮMA, M. 2002. A note on the LDLT decomposition of matrices from saddle-point problems. SIAM J. Matrix
Anal. Appl. 23, 903–925.

TINNEY, W. F. AND WALKER, J. W. 1967. Direct solutions of sparse network equations by optimally ordered
triangular factorization. Proc. IEEE 55, 1801–1809.

WÄCHTER, A. AND BIEGLER, L. T. 2006. On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math. Program. 106, 1, 25–57.

Received August 2012; revised February 2013; accepted April 2013

ACM Transactions on Mathematical Software, Vol. 40, No. 1, Article 4, Publication date: September 2013.

