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Summary

This paper focuses on efficiently solving large sparse symmetric indefinite sys-
tems of linear equations in saddle-point form using a fill-reducing ordering
technique with a direct solver. Row and column permutations partition the
saddle-point matrix into a block structure constituting a priori pivots of order
1 and 2. The partitioned matrix is compressed by treating each nonzero block
as a single entry, and a fill-reducing ordering is applied to the corresponding
compressed graph. It is shown that, provided the saddle-point matrix satisfies
certain criteria, a block LDLT factorization can be computed using the resulting
pivot sequence without modification. Numerical results for a range of problems
from practical applications using a modern sparse direct solver are presented to
illustrate the effectiveness of the approach.
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1 INTRODUCTION

Our interest lies in solving large sparse symmetric indefinite systems of equations in saddle-point form

K z = b, K =
[

A BT

B −C

]
, z =

[
x
𝑦

]
, b =

[
𝑓
g

]
, (1)

where the (1,1) block A is an n×n symmetric positive definite (SPD) matrix, the (2,1) block B is an m×n matrix of full row
rank with m < n, the (2,2) block C is an m×m symmetric positive semidefinite (SPSD) matrix (including the case C = 0),
z is the solution vector, and b is given. In this paper, we focus on the case where B can be permuted to the trapezoidal form

PT
r BPc = [B1 B2] , (2)

where B1 is an m × m nonsingular upper triangular matrix, and Pr and Pc are m × m and n × n permutation matrices,
respectively. Define

PK =
[

PT
c

PT
r

]
,

and then premultiplying K by PK and postmultiplying by PT
K , we obtain another system of the form (1), given by

K̃z̃ = b̃, K̃ =
[

PT
c APc PT

c BTPr

PT
r BPc −PT

r CPr

]
, PT

Kz̃ = z, PT
Kb̃ = b. (3)

It is this system that we then solve. For simplicity of notation, we omit the ̃ in our discussion.
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Linear systems of saddle-point type arise in a wide variety of applications throughout computational science and engi-
neering, and their efficient solution has been the study of extensive research. A comprehensive review of the work done
prior to 2005 is given by Benzi et al.,1 and because of the ubiquitous nature of saddle-point systems and the challenges
they pose, new algorithms and results continue to be presented in the literature. Systems of the form (1) that also satisfy
(2) occur in a number of important practical applications. Such systems include the class of  matrices, where C = 0 and
each column of B has at most two entries, and if there are two entries, they sum to zero. Such a B is sometimes called a
gradient matrix.2 Many of these matrices are related to topological network problems. For example, application of Kirch-
hoff's current law and Ohm's resistor law to a resistor network leads to a saddle-point matrix of the form (1) with B being
a reduced node–arc incidence matrix with each column containing at most two nonzero entries {−1, 1} (see Section 2.1
below). Another source is a water distribution pipe network analysis in which B is again a node–arc incidence matrix.
Such network systems are nonlinear and are solved by using the Newton iteration method; see the work of Elhay et al.3
These need a fast and robust linear solver because a saddle-point system has to be solved at each iteration. Other problems
coming from practical applications that satisfy (2) are included in The University of Florida Sparse Matrix Collection4;
we employ some of these in our numerical experiments (see Section 5).

The most common direct solution method for solving sparse symmetric indefinite linear systems involves factorizing
K into the form

K = LDLT ,

where D is a diagonal matrix with 1 × 1 and 2 × 2 blocks, and L is a sparse unit lower triangular matrix. In practice, a
more general factorization of the form

PTSKSP = LDLT

is computed, where S is a diagonal scaling matrix and P is a permutation matrix (or, more generally, a product of permu-
tation matrices) that holds the pivot sequence (elimination order). It is the choice of S and P that determines the sparsity
of L, as well as the accuracy and stability of the numerical factorization.

Before the factorization commences, P is normally computed using one of the many available fill-reducing ordering
algorithms (a variant of nested dissection5 or minimum degree6-8 is most usually employed). These make the implicit
assumption that the diagonal entries of K are present. An analyze phase uses the chosen pivot sequence to set up data
structures for the subsequent factorization. A key difference between a sparse direct solver for SPD systems and one for
symmetric indefinite systems is that the former can choose P on the basis of the sparsity pattern of K and then use it
without change during the factorization, whereas the latter may need to modify it to incorporate pivoting to ensure that
the factorization exists and to maintain numerical stability. In particular, for a saddle-point matrix with C = 0, following
a fill-reducing ordering, variables corresponding to the (2, 2) block may be chosen as pivot candidates before the diagonal
entry has filled in. In this case, either the pivot must be delayed until later in the factorization or a suitable partner
for use as a 2 × 2 pivot must be sought. A nonzero pivot candidate may also have to be delayed if it is small compared
with the other entries in its column. Delaying a pivot leads to P being modified. Not only does modifying P contribute
significantly to the complexity of the development of a sparse indefinite solver, it also adds overheads in terms of both
time and memory requirements when the solver is run. These overheads occur in the search for a suitable pivot at each
stage of the factorization and then in the handling of candidate pivots that are found to be unsuitable. Furthermore,
pivoting means there is less scope for achieving parallelism and hence a reduction in performance when compared with
the positive definite case (see the study of Hogg9 for recent work on this for solving symmetric indefinite sparse linear
systems on modern CPU/GPU architectures).

Our interest is in finding a permutation P such that PSKSPT can be factorized stably without the need for numerical
pivoting and without modifying the entries of K while still limiting the number of entries in the factor L. This problem
has been considered for  matrices by Tůma10 and de Niet et al.2 For general saddle-point problems, Bridson11 split the
nodes of the adjacency graph of K into two disjoint sets: A-nodes that correspond to the diagonal entries of K and C-nodes
corresponding to the remaining diagonal entries. He then modified a sparsity-preserving ordering so that a C-node is
ordered only after all its A-node neighbors have been ordered. Using this so-called constraint ordering, provided A is
semidefinite and B is of full row rank, the LDLT factorization can be shown to exist. Moreover, the pivots associated
with the A-nodes are guaranteed to be positive, and those associated with C-nodes are guaranteed to be negative. By
rescaling, L ← L|D|1/2 and D ← sign(D) = diag(±1), the diagonal matrix is fully determined in advance by the structure
of the problem, independent of the numerical values. This constrained ordering allows a Cholesky factorization code
to be modified to perform the factorization of the indefinite K without numerical pivoting. Experiments reported by
Hogg et al.12 demonstrate that, compared with using a nested dissection ordering and modifying it during the factorization
to maintain stability, the constrained ordering leads to a significantly denser factor L, and the flop counts to compute it
are greater.

In the recent years, there has been considerable interest in using matching-based orderings (MBOs) to obtain order-
ings (and scalings) for sparse matrices. For unsymmetric matrices, maximum weighted matching algorithms are used to
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move large entries onto the diagonal. The idea is that these will potentially provide stable candidate pivots, and the num-
ber of delayed pivots during the subsequent factorization will be reduced. In the symmetric case, symmetry needs to be
preserved, but a symmetric permutation leaves the diagonal unchanged. Thus, the aim for a general symmetric matrix

K = {ki j} is to permute a large off-diagonal entry ki j close to the diagonal so that the 2 × 2 block
[

kii ki𝑗
ki𝑗 k𝑗𝑗

]
is potentially

a good 2 × 2 candidate pivot. Duff et al.13 noticed that the cycle structure of the permutation associated with the unsym-
metric maximum weighted matching  can be exploited to obtain such a permutation Ps. This has been explored further
by Duff et al.14 and, among others, Hagemann et al.15 and Schenk et al.16,17

A maximum weighted matching  is first computed. Any diagonal entries that are in the matching are immediately
considered as potential 1 × 1 pivots and are held in a set 1. A set 2 of potential 2 × 2 pivots is then built by expressing
the computed permutation in terms of its component cycles. A cycle of length 1 corresponds to an entry kii in the matching.
A cycle of length 2 corresponds to two nodes i and j, where ki j and kji are both in the matching. r potential 2 × 2 pivots can
be extracted from even cycles of length 2r or from odd cycles of length 2k+ 1. To combine the resulting permutation with
a fill-reducing ordering, the adjacency graph of PT

s KPs is compressed and an ordering is applied to the compressed graph.
In the compression step, the union of the sparsity structure of the two rows and columns corresponding to a potential
2 × 2 pivot is built and used as the structure of a single row and column in the compressed matrix. A fill-reducing ordering
is applied to the (weighted) compressed graph, and the resulting permutation is expanded to a permutation Pf for the
original matrix. The final permutation is the product P = PfPs.

Hogg et al.12 reported on the use of MBOs for solving tough general indefinite systems and extended their use to
rank-deficient problems.18 They found that while MBOs can substantially reduce the number of delayed pivots, it may
still be necessary to perform some numerical pivoting. Moreover, computing an MBO can add a significant computational
cost, and because the values of the entries of the matrix are used in its computation, if a sequence of problems with the
same sparsity pattern needs to be factorized, the pivot order may have to be recomputed for each problem.

The main aim of this paper is to obtain a fill-reducing permutation P by exploiting the structure and properties of
B so that PSKSPT can be factorized without modifications to the pivot sequence. To achieve this, B is permuted to the
trapezoidal form (2). This form is used to obtain a block saddle-point matrix with m 2 × 2 blocks and (n − m)1 × 1
blocks on the diagonal. In a previous work, Lungten et al19,20 used this form and took it as their pivot sequence m 2 × 2
pivots followed by (n − m)1 × 1 pivots. They proved that when C = 0 and subject to the matrix B1 having large diagonal
entries, the resulting factorization is stable. Furthermore, they showed that the work needed to compute L using this
sequence can be limited by exploiting the fact that some of the blocks are unchanged during the factorization. However,
a key disadvantage is that there can be substantially more fill-in in L compared with standard fill-reducing orderings that
ignore the block structure, resulting in higher memory requirements and greater solve times (see the work of Lungten21

and Section 5 below). In this paper, we propose a new approach that aims to improve the earlier work by treating each
nonzero block of the block saddle-point matrix as a single entry to determine a compressed adjacency graph and then by
applying a fill-reducing ordering to the compressed graph. The application of a fill-reducing ordering mixes up the order
of the 1 × 1 and 2 × 2 pivots and leads to less fill. We show that Schur complement updates of this mixed pivot sequence
exist provided that B1 is nonsingular; this allows us to prove the existence of the factorization without modifications to
the pivot sequence.

The outline of the rest of this paper is as follows. In Section 2, we consider permuting the matrix B to trapezoidal
form, looking first at reduced node–arc incidence matrices and then more general matrices. Our new ordering algorithm,
which we call Block Approximate Minimum Degree (BAMD), is presented in Section 3, and in Section 4, we prove that
by using the BAMD pivot sequence, the LDLT factorization exists. Numerical results are presented in Section 5. These
include comparisons in terms of fill and the backward error with an MBO. Finally, in Section 6, some concluding remarks
are given.

2 PERMUTATION OF B TO TRAPEZOIDAL FORM

2.1 Reduced node–arc incidence matrices
We first consider the saddle-point systems that arise in the network analysis of electronic circuits and water distribution
pipe networks. In such systems, the matrix B is a reduced node–arc incidence matrix. Consider a connected directed graph
(or network) (V , E) with m + 1 nodes V = {𝜂0, 𝜂1, … , 𝜂m} and n arcs (or edges) E = {𝜉1, 𝜉2, … , 𝜉n}. The node–arc
incidence matrix of  is an (m + 1) × n matrix B̂ with entries

b̂i𝑗 =
⎧⎪⎨⎪⎩

1 if 𝜂i is the initial node of arc 𝜉𝑗

−1 if 𝜂i is the terminal node of arc 𝜉𝑗

0 otherwise.
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Thus, the rows of B̂ correspond to nodes and the columns to arcs.
Saddle-point systems arising from network problems are made consistent by grounding a node, say, 𝜂0, and by removing

the corresponding row of the node–arc incidence matrix. The resulting m × n matrix B is a reduced node–arc incidence
matrix. The columns that had entries in row 𝜂0 have only one entry, whereas all other columns have exactly two entries
(one of which is 1 and the other is −1). Starting from the ground node, a breadth-first search type algorithm to permute B
to upper trapezoidal form is developed by Lungten et al.22 This technique is based on connected star subgraphs and aims
to obtain an upper triangular matrix B1 such that B−1

1 is sparse. A star graph of order k is a tree with k nodes such that
one node (referred to as the central node) is of degree k − 1, and the remaining k − 1 nodes are of degree 1; these k − 1
nodes are neighbors of the central node. A modified version of algorithm 2 in the work of Lungten et al.22 is presented in
Algorithm 1 (see also algorithm 3.2.2 in the thesis of Lungten21). Here (and elsewhere), ei is the ith unit vector, and Pr(i)
and Pc(i) denote the ith columns of the permutation matrices Pr and Pc, respectively. The graph (V , E) associated with
an m×n reduced node–arc incidence matrix B can contain q (1 ≤ q ≤ m−1) star subgraphs connected to each other. The
first star subgraph of (V , E) is the one with the central node 𝜂c = 𝜂0 that is grounded; k is initialized to 1. A neighbor
𝜂ik of 𝜂c and the corresponding arc 𝜉𝑗k = (𝜂c, 𝜂ik ) are determined, and the corresponding columns ik and jk are permuted
with column k of the permutation matrices Pr and Pc, respectively. 𝜂ik is then appended to the set W, and 𝜉𝑗k is removed
from E and k is incremented. The process is repeated for any remaining neighbors of 𝜂c. One of the neighbors of the first
central node is selected as the central node of the second star subgraph; q points to next central node, and the algorithm
continues with this new central node (no search is needed to find the next central node).

It is of interest to note that in the work of Lungten et al.,22 the permutation focuses only on obtaining an upper triangular
B1 (the remaining n−m columns in B2 are ordered randomly), Algorithm 1 additionally obtains B2 with a banded structure.
This is illustrated by the example in Figure 1.

2.2 More general matrices
We now consider more general matrices B. We could employ a sparse QR algorithm to transform B to trapezoidal form
as in the work of Schilder.23 However, our interest is transforming B using permutations so that the number of entries in
the matrix K̃ given by (3) is the same as in the original K (1) (using a QR factorization to transform K can lead to a dense
(1, 1) and/or a dense (2, 2) block).

Given the m × n sparse matrix B = [bij], we associate a bipartite graph B(Vr ∪ Vc,E) in which the node sets Vr =
{row1, row2, … , rowm} and Vc = {col1, col2, … , coln} correspond to the rows and columns of B; there is a directed edge
𝜉 ∶ rowi → colj of weight bij whenever bij ≠ 0. An edge subset  ⊆ E is called a matching if no two edges in  are
incident to the same node. In matrix terms, a matching corresponds to a set of nonzero entries with no two in the same
row or column. A node is matched if there is an edge in the matching incident on the node. The cardinality of a matching
is the number of edges in it. A maximum matching is a matching of maximum cardinality. If B is of full row rank and
m < n, the maximum cardinality is m. Let Vmr and Vmc denote the row and column node sets corresponding to a maximum
matching, respectively.
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FIGURE 1 Example illustrating two different permutations of a reduced node–arc incidence matrix to upper trapezoidal form. (a) Original
reduced node–arc incidence matrix B of order 60 × 100. (b) Trapezoidal form obtained using algorithm 2 in the work of Lungten et al.22

(c) Trapezoidal form with banded B2 obtained using Algorithm 1

To permute B, we use a simple minimum degree technique based on the following degree-one principle.
The degree-one principle
Let B(Vr ∪ Vc,E) be the bipartite graph of an m × n (m < n) sparse matrix B of full row rank. B can be permuted to

trapezoidal form if, for k = 1, … ,n − 1, the bipartite graph of B(k) has at least one node jk ∈ Vc of degree one, where
B(1) = B, and B(k+1) is the (m − k) × (n − k) matrix obtained by removing column jk and the corresponding row from B(k).

Consider the 6 × 8 matrix B in Figure 2a and its associated bipartite graph B in Figure 2b. The first column
node with degree one is j1 = 2; it is matched with the row node i1 = 4. Deleting j1 and i1 removes edges

(a) (b)

(c)

FIGURE 2 Permutation based on the degree-one principle. (a) B is matrix of dimensions 6 × 8 of full rank. (b) B is the bipartite graph.
The thick edge lines connect the matched row and column nodes (corresponding to the circled nonzero entries in B). (c) The trapezoidal
form with a 6 × 6 upper triangular matrix B1 and a 6 × 2 rectangular matrix B2, where Pr = [e4 e6 e1 e5 e2 e3] and Pc = [e2 e3 e4 e5 e1 e6 e7 e8] are
the row and column permutation matrices, respectively
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{(4, 2), (4, 3), (4, 5), (4, 6), (4, 8)}. Column node j2 = 3 now has degree one. It is matched with the row node i2 = 6. Repeat-
ing the process gives a matching  = {(4, 1), (6, 3), (1, 4), (5, 5), (2, 1), (3, 6)} together with row and column matched node
sets Vmr = {4, 6, 1, 5, 2, 3} and Vmc = {2, 3, 4, 5, 1, 6}. Using the ordered sets Vmr and Vmc∪(Vc ∖Vmc), permutation matrices
Pr and Pc of order m and n, respectively, can be defined to obtain the trapezoidal form in Figure 2c.

The steps are summarized in Algorithm 2. Here, for rowi ∈ Vr, N(rowi) denotes the set of column nodes colk ∈ Vc that
are neighbors of rowi (i.e., the edges (rowi, colk) ∈ E), and for colj ∈ Vc, deg(colj) is the number of row nodes rowi ∈ Vr
for which (rowi, colj) ∈ E. The algorithm continues until either E = 𝜙 or all columns of the reduced matrix have degree
greater than 1. If this happens after k steps, the permuted matrix is of the form

PT
r BPc =

[
B11 B12

B22

]
, (4)

where B11 is k × k upper triangular, B12 is k × (n − k), and the (m − k) × (n − k) block B22 has columns of degree greater
than one. A QR decomposition of B22 can be used to complete the transformation of B to trapezoidal form.

Remark 1. In practice, rather than finding a single column of degree 1 at each step, all the columns of degree 1 are
found at once, and the updates to the degrees are then done after all such columns and their matched rows have been
removed.

Remark 2. An advantage of Algorithm 1 compared with Algorithm 2 is that, for the former, B−1
1 is sparse. Note also

that Algorithm 1 has to look for a ground node 𝜂0 to use as the first central node only once; having found this node, the
algorithm proceeds without having to search the remaining nodes looking for a new central node. The disadvantage
of Algorithm 1 is that it is only applicable to reduced node–arc matrices.

3 BAMD ORDERING

Having permuted B so that B1 is upper triangular, the permuted saddle-point matrix can be written as

K =
⎡⎢⎢⎣

A11 A12 BT
1

A21 A22 BT
2

B1 B2 −C

⎤⎥⎥⎦ , (5)

where A = [A11 A12; A21 A22] with A12 = AT
21, and B = [B1 B2]. Let A = [aij], B = [bij], and C = [cij]. If we now define a

permutation matrix P of order n + m by

P = [e1 en+1 e2 en+2 · · · em en+m em+1 · · · en] ,

where ei is the ith unit vector of length n + m, then applying P to K, we obtain the block structure

PTKP = [Ki𝑗],
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where Kij is either a 2 × 2, 2 × 1, 1 × 2 or 1 × 1 block given by

Ki𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
aii bii

bii −cii

]
, 1 ≤ i = 𝑗 ≤ m;

[
ai𝑗 b𝑗i

0 −ci𝑗

]
, 1 ≤ 𝑗 < i ≤ m;[

ai𝑗 0
bi𝑗 ci𝑗

]
, 1 ≤ i < 𝑗 ≤ m;

[
ai𝑗

bi𝑗

]
, 1 ≤ i ≤ m < 𝑗 ≤ n;

[ai𝑗 b𝑗i], 1 ≤ 𝑗 ≤ m < i ≤ n; [aii], m < i, 𝑗 ≤ n.

(6)

There are exactly m 2 × 2 and (n−m) 1 × 1 diagonal blocks Kii that form “a priori” pivots. Lungten et al.19,20 showed that
in the important and special case that B1 is nonsingular and upper triangular and C = 0, using this pivot sequence results
in a stable factorization provided that the entries of B1 satisfy the following condition:

|bkk| ≥ {|bk𝑗|, 𝑗 = k + 1, … ,n}, for k = 1, … ,m. (7)

If B is a node–arc incidence or gradient matrix, then (7) is clearly satisfied. Lungten et al. also showed that some of the
blocks Kij remain unchanged within the L factor, limiting the work needed to compute the factorization.

The key disadvantage of employing this pivot sequence in which all m 2 × 2 pivots precede the 1 × 1 pivots is that it can
lead to significantly more fill-in in the factors than is necessary. To reduce the fill, we need to combine the preselection of
pivot blocks with a fill-reducing ordering. We can do this as for the MBOs that we described in the Introduction. That is,
we compress the adjacency graph of PKPT by considering each block as a single entity and merging the sparsity patterns
of the rows and columns belonging to a 2 × 2 diagonal block; a fill-reducing ordering is then applied to the compressed
graph. When an approximate minimum degree (AMD) ordering6 is used on the compressed graph, we refer to this as
BAMD ordering.

We observe that when ordering the compressed graph, we do not employ a weighting when a row of the compressed
graph corresponds to two rows of the original matrix. In their work on MBOs, Hogg et al.12 found that this offered little
advantage.

4 EXISTENCE OF THE FACTORIZATION

To prove the existence of the factorization, we use the following well-known result.

Lemma 1. Partition an n × n SPD matrix A into the block form

A =
[

A11 A12
A21 A22

]
,

where A11 is m × m (1 ≤ m < n), A21 = AT
12 is n − m × m, and A22 is n − m × n − m. Then, the Schur complement

S = A22 − A21A−1
11 A12 is SPD.

Recall that the a priori pivot sequence comprises 2 × 2 pivots formed by taking rows and columns of A11, B1, and C,
and 1 × 1 pivots that are the elements of A22; the fill-reducing ordering of the compressed graph permutes the order of
these pivots. At each stage of the factorization, all the remaining pivots must be updated. Each updated 2 × 2 pivot has
one of the following forms: [

𝛼 𝛽
𝛽 −𝛾

]
,

[
𝛼 𝛽
𝛽 0

]
, or

[
𝛼 0
0 −𝛾

]
, (8)

where, if B1 is nonsingular and triangular, 𝛼, 𝛽, and 𝛾 , which are from the Schur complement updates of A, B, and C,
respectively, are nonzero. This is a result of the following theorem, which shows that a 2 × 2 pivot updated by the Schur
complement of a 1 × 1 pivot is nonsingular and vice versa.

Theorem 1. Let K be the (n + m) × (n + m) saddle-point matrix (5), where the m × n matrix B = [B1B2] is of full rank
with B1 being an m×m nonsingular matrix; the n× n SPD matrix A is partitioned conformally and C is an m×m SPSD
matrix (including C = 0). Let K be permuted as follows:
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Then, the Schur complement Sindef of the symmetric indefinite matrix
[

A11 BT
1

B1 −C

]
and the Schur complement SSPD of

the SPD matrix A22 are nonsingular.

Proof. From Lemma 1, the Schur complements

S1 = A22 − A21A−1
11 A12 and S2 = A11 − A12A−1

22 A21

are SPD. Now, let

SA11 = C + B1A−1
11 BT

1 . (9)

Because C is SPSD, A is SPD, and B1 is nonsingular, SA11 is SPD and thus nonsingular. Therefore,

Sindef = A22 −
[

A21 BT
2
] [ A11 BT

1
B1 −C

]−1 [ A12
B2

]
= A22 −

[
A21 BT

2
] [ A−1

11 − A−1
11 BT

1 S−1
A11

B1A−1
11 A−1

11 BT
1 S−1

A11

S−1
A11

B1A−1
11 −S−1

A11

][
A12
B2

]
= A22 − A21A−1

11 A12 + A21A−1
11 BT

1 S−1
A11

B1A−1
11 A12 − A21A−1

11 BT
1 S−1

A11
B2

− BT
2 S−1

A11
B1A−1

11 A12 + BT
2 S−1

A11
B2.

i.e.,

Sindef = S1 +
(

A21A−1
11 BT

1 − BT
2
)

S−1
A11

(
B1A−1

11 A12 − B2
)
. (10)

The right-hand side of (10) is the sum of SPD and SPSD matrices, and hence, Sindef is SPD and nonsingular.
The Schur complement of A22 is

SSPD =
[

A11 BT
1

B1 −C

]
−
[

A12
B2

]
A−1

22
[

A21 BT
2
]
=
[

S2 B̂T

B̂ −Ĉ

]
,

where B̂ = B1 − B2A−1
22 A21 and Ĉ = C + B2A−1

22 BT
2 . The Schur complement of S2 is

SC = −Ĉ − B̂S−1
2 B̂T = − (C + G) ,

where G = B2A−1
22 BT

2 + B̂S−1
2 B̂T . We need to show that SC is nonsingular. It suffices to show that SC is negative definite

by showing that G is SPD. Define a block permutation matrix P of order n by

P =
[

0 Im
In−m 0

]
.

It is easy to see that G = BP(PTAP)−1PTBT, which is SPD.

Remark 3. Theorem 1 proves that if B1 is nonsingular, then the factorization of the permuted saddle-point system
using the BAMD pivot sequence exists. If an ordering such as the matching-based MC64 ordering24 is applied to B
alone, it is possible to obtain a B1 with large entries on the diagonal. However, such orderings do not guarantee that B1
is nonsingular, and consequently, the LDLT factorization may not exist without modifications to the pivot sequence.
We have performed numerical experimentation that confirms this.

Remark 4. If C is SPD, the requirement that B1 is nonsingular is not needed to prove the existence of the Schur
complements Sindef and SSPD.
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TABLE 1 Test problems

Identifier n m nz(K) C
c-55 19,121 13,659 403,450 −𝛿Im
c-58 22,461 15,134 552,551 −𝛿Im
c-62 25,158 16,573 559,341 −𝛿Im
c-70 39,302 29,622 658,986 −𝛿Im
c-72 47,950 36,114 707,546 −𝛿Im
c-73 86,417 83,005 1,279,274 −𝛿Im
c-big 201,877 143,364 2,340,859 −𝛿Im

tuma1 13,360 9,607 87,760 0
tuma2 7,514 5,477 49,365 0
mario001 23,130 15,304 204,912 0
mario002 234,128 155,746 2,097,566 0
helm3d01 30,060 2,166 428,444 0
k1_san 46,954 20,804 559,774 0
d_pretok 129,160 53,569 1,641,666 0
S3D-15 11,520 4,095 122,298 0
S3D-18 19,494 6,858 208,158 0
S3D-24 45,000 15,624 484,044 0
S3D-32 104,544 35,936 1,130,772 0
RNB6 21,208 13,167 106,034 0
RNC1 58,054 36,392 290,264 0
RNC3 12,222 7,631 61,104 0
RNC4 7,459 4,656 37,289 0
RNC6 16,551 19,775 82,749 0
WN6 8,584 8,392 42,916 0
WN7 14,830 12,523 74,130 0
WN8 19,647 17,971 98,205 0

Note. n and m denote the order of A and C (see (1)), and nz(K)
is the number of entries in K.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical results to illustrate the effectiveness of our proposed ordering algorithm BAMD for
solving sparse saddle-point systems (1). Our test matrices are listed in Table 1. They all satisfy n + m > 12, 000, and in
each case, the (2, 1) block B can be permuted to the trapezoidal form (2). The problems come from a range of application
areas. The c-xx problems are interior-point optimization matrices and are taken from the University of Florida Sparse
Matrix Collection.4 For these examples, C = −𝛿Im, where 𝛿 = 10−8; for all other examples, C = 0. The problems tuma1
to d_pretok are finite element models and are also from the University of Florida Sparse Matrix Collection.4 The S3D-xx
examples are generated using finite difference methods for Stokes equation in three dimensions2; the RNxx examples are
from industrial resistor network analysis25; and the WNx examples are water distribution pipe networks.3

The numerical experiments are performed on a MacBook Pro Retina, 64-bit OS X EI Capitan with a 2.6 GHz Intel
Core i5 using MATLAB R2016a (9.0.0.341360). The right-hand-side vector b is computed so that the exact solution is
z = [1, … , 1]T. In the following, the scaled residual 𝜖rb is given by

𝜖rb = ||Kz − b||||K||||z|| + ||b|| ,
with the infinity norm. The computed solution is only accepted if 𝜖rb is less than tol = 10−13; where necessary, up to 20
steps of iterative refinement are performed. If 𝜖rb remains greater than tol after iterative refinement, then we record a
failure. We define the fill ratio to be

𝑓 ill(L) = nz(L)∕nz(KL),

where nz(KL) and nz(L) denote the number of entries in the lower triangular part of K and in L, respectively. Although
not explicitly reported here, we also always check the forward errors of our computed solutions.

We use the MATLAB interface to the state-of-the-art sparse direct solver HSL_MA97.26,27 HSL_MA97 implements a
multifrontal algorithm and, for indefinite systems, employs threshold partial pivoting to ensure that all entries of L satisfy
lij < u−1, where the threshold parameter u ∈ [0, 0.5] is under the control of the user (the default setting is 0.01). If u is
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FIGURE 3 Sparsity of the factor for the matching-based ordering (MBO) and BAMD orderings for case (i) (default u)

chosen to be small, then the number of pivots that are delayed during the factorization will generally be small, minimizing
the fill-in in L (i.e., the chosen pivot sequence is used with little or no modification), but for a general fill-reducing pivot
sequence, the factorization is potentially unstable. Increasing u gives a greater guarantee of stability but at the possible cost
of increased fill-in in L. Note that it is important that the entries of K are well scaled before the factorization commences.
HSL_MA97 offers a number of scaling options; in our experiments, we use the MC64 scaling.
HSL_MA97 includes a number of ordering options. Our interest is comparing our proposed BAMD ordering algorithm

with the MBO offered by HSL_MA97. In particular, we employ the MBO with AMD on the compressed graph (the MAT-
LAB interface setting is control.ordering = 7). We report on two cases: (i) default settings (u = 0.01) and (ii)
threshold u = 0.0. With the latter setting, numerical pivoting is “switched off”, and pivots are only delayed if they are
(approximately) zero.

Sparsity results and the scaled residuals for the MBO and BAMD orderings for case (i) are reported in Figures 3 and 4.
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FIGURE 4 Relative backward errors 𝜖rb for the matching-based ordering (MBO) and BAMD orderings for case (i) (default u)
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FIGURE 5 Sparsity of the factor for the matching-based ordering (MBO) and BAMD orderings for case (ii) (u = 0.0)

It can be observed that the fill ratio for the two orderings is similar, with the BAMD resulting in less fill for the c-xx
examples. In each instance, a single step of iterative refinement is sufficient to reduce the scaled residual to be less than
tol, confirming that the default setting for the threshold pivoting parameter u leads to stable factorizations for our test
examples.

Analogous results for case (ii) are shown in Figures 5 and 6, where an ordering leads to a failure, and no result is plotted.
Again, for all the problems, BAMD requires at most one step of iterative refinement to achieve the requested accuracy.
However, for MBO, there are four failures (problems mario001, mario002, k1_san, and d_pretok). These results confirm
that while using an MBO limits the need for numerical pivoting, pivoting is still needed for some “tough” practical cases.
However, using a BAMD guarantees the existence of the LDLT factorization without pivoting. Furthermore, the level of
fill it produces is comparable (or less) with that for MBO. We conclude that BAMD can offer an attractive ordering for
saddle-point systems for which B is permuted to trapezoidal form.

c-
55

c-
58

c-
62

c-
70

c-
72

c-
73

c-
bi

g
tu

m
a1

tu
m

a2
m

ar
io

00
1

m
ar

io
00

2
he

lm
3d

01
k1

_s
an

d_
pr

et
ok

S
3D

-1
5

S
3D

-1
8

S
3D

-2
4

S
3D

-3
2

R
N

B
6

R
N

C
1

R
N

C
3

R
N

C
4

R
N

C
5

W
N

6
W

N
7

W
N

810
-17

10
-16

10
-15

10
-14

10
-13

MBO
BAMD

FIGURE 6 Relative backward errors 𝜖rb for the matching-based ordering (MBO) and BAMD orderings for case (ii) (u = 0.0)
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TABLE 2 Sparsity of the factor for the 2F1 and BAMD orderings

Identifier 2F1 BAMD
n m nz(K) nz(L) fill(L) nz(L) fill(L)

c-55 19,121 13,659 403,450 71,117,712 326 7,177,301 33
c-58 22,461 15,134 552,551 112,668,327 382 3,564,490 12
tuma1 13,360 9,607 87,760 6,684,202 132 1,368,774 27
mario002 234,128 155,746 2,097,566 675,010,515 579 13,788,854 12
S3D-15 11,520 4,095 122,298 59,741,873 893 4,426,057 66
RNB6 21,208 13,167 106,034 174,348,828 2,740 310,044 4.9
RNC4 7,459 4,656 37,289 16,911,441 756 127,938 5.7
WN6 8,584 8,392 42,916 1,627,607 63 112,118 4.4

Note. nz() denotes the number of entries in the matrix, and fill(L) is the fill ratio.

We remark that we have performed tests on problems of the form (1) from the University of Florida Sparse Matrix
Collection for which B cannot be permuted to trapezoidal form. In this case, we used the sparse QR algorithm and then
ran the BAMD ordering. We compared our results with employing the MBO ordering, using default u and u = 0.0.
We found similar levels of fill in the factors for both orderings, and there were no failures. We conclude that the sparse
QR algorithm can be used to extend the applicability of the BAMD ordering (but it adds to the total computational cost).

Finally, we compare the BAMD ordering with that of Lungten et al19,20 in which all m 2 × 2 pivots precede the 1 × 1
pivots; we refer to this as the 2F1 ordering. Results are presented in Table 2 for a subset of our test problems. We are unable
to run the 2F1 ordering on some of the larger examples because of insufficient memory. The results clearly demonstrate
that requiring that all the 2 × 2 pivots are used first is too restrictive as it leads to unacceptable fill-in in the factors.

6 CONCLUDING REMARKS

In the recent years, driven by the need to develop direct solvers for efficiently solving sparse indefinite symmetric linear
systems on modern parallel computing platforms, there has been an interest in the development of new ordering strate-
gies that can choose a pivot sequence before the factorization commences and that can then be used with minimal (or,
ideally, without) modification during the factorization (see, e.g., other works9,15,28, 29). Because data movement can be
more expensive than numerical operations, it can be advantageous to perform more operations (and possibly allow more
fill-in in the factor) than are performed by a traditional serial code. MBOs have been developed that limit the changes
needed to the pivot sequence while leading to more fill. However, as our results confirm, such orderings do not remove
the need for pivoting. Furthermore, they are computed using the numerical values of the matrix entries, and so, if more
than one matrix with the same (or almost the same) sparsity pattern is to be factorized, MBOs have the disadvantage of
potentially needing to be recomputed for each example.

In this paper, we have focused on a new fill-reducing ordering algorithm that can be used to solve symmetric indefinite
saddle-point systems without the need for pivoting during the numerical factorization. The ordering is computed using
only the sparsity structure. We have considered a class of saddle-point matrices in which the (2, 1) block B can be permuted
to trapezoidal form B = [B1,B2], where B1 is a nonsingular triangular matrix. We have discussed permuting B so that B1
is upper triangular, but our proposed ordering is also applicable if B1 is lower triangular. Using the diagonal entries of B1,
the rows and columns of the saddle-point matrix are partitioned into a block structure constituting a priori pivots of order
1 and 2. The partitioned matrix is compressed, and a fill-reducing ordering is applied to the resulting graph. Based on this
strategy, we have shown that a block LDLT factorization can be computed without having to modify the preselected pivot
sequence. In our experiments, we reported on using AMD applied to the compressed graph; in some cases, the fill-in in
L may be reduced by employing other orderings (in particular, a nested dissection ordering could be used).

Finally, we remark that Scott et al.30 recently found that, for symmetric indefinite saddle-point systems, preordering the
matrix using an MBO and then computing its incomplete factorization resulted in a higher quality preconditioner than
preordering with a minimum degree or nested dissection ordering. A possible future investigation is to look at whether
the preconditioner quality can be further improved using our proposed new ordering strategy. Another future direction
is to look at other ways of preordering B to try and extend the applicability of our approach to more general saddle-
point systems.
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