
ON ORDERING ELEMENTS FOR A FRONTAL SOLVER

JENNIFER A. SCOTT*

Department for Computation and Information, Atlas Centre, Rutherford Appleton Laboratory, Oxon OX11 0QX, UK

SUMMARY

The e�ciency of the frontal method for the solution of ®nite-element problems depends on the order in
which the elements are assembled. This paper looks at using variants of Sloan's algorithm to reorder the
elements. Both direct and indirect reordering algorithms are considered and are used in combination with
spectral orderings. Numerical experiments are performed on a range of practical problems and, on the basis
of the results, a hybrid Sloan element resequencing algorithm is proposed for use with a frontal algorithm.
Copyright # 1999 John Wiley & Sons, Ltd.

KEY WORDS ordering ®nite elements; frontal method; Sloan algorithm; spectral method

1. INTRODUCTION

In this paper, we are interested in the e�cient use of the frontal method to solve large sparse
systems of linear equations

AX � B �1�
where the n� n matrix A is the sum of nelt ®nite-element matrices

A �
Xnelt
l�1

A
�l� �2�

and the n� nrhs matrix B of right-hand sides is of the form

B �
Xnelt
l�1

B
�l� �3�

Each matrix A(l) has non-zeros in a few rows and columns and corresponds to the matrix from
element l. The frontal method is a variant of Gaussian elimination, the main feature of the
method being that the contributions A(l) from the ®nite elements are assembled one at a time and
the construction of the assembled coe�cient matrix A is avoided by interleaving assembly and
elimination operations. An assembly operation is of the form

aij (aij � a
�l�
ij �4�

CCC 1069±8299/99/050309±16$17.50 Received 6 April 1998
Copyright # 1999 John Wiley & Sons, Ltd. Accepted 18 August 1998

COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING

Commun. Numer. Meth. Engng, 15, 309±323 (1999)

*Correspondence to: J. Scott, Atlas Centre, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, U.K.
E-mail: J. Scott@rl.ac.uk

where a
�l�
ij is the (i, j)th non-zero entry of the element matrix A(l). A variable is fully summed if it is

involved in no further sums of the form (4) and is partially summed if it has appeared in at least
one of the elements assembled so far but is not yet fully summed. The Gaussian elimination
operation

aij (aij ÿ ail �all �ÿ1alj �5�

may be performed once all the terms in the triple product in (5) are fully summed.
Since variables can only be eliminated after they are fully summed, the assembly order will

determine, to a large extent, the order in which the variables are eliminated. At any stage during
the assembly and elimination processes, the fully and partially summed variables are held in main
memory in a frontal matrix. Dense linear algebra operations are performed on the frontal matrix.
For e�ciency, in terms of both storage and arithmetic operations, the elements must be
assembled in an order that keeps the size of the frontal matrix, known as the wavefront, as small
as possible. Of interest is

. the maximum wavefront, since this a�ects the in-core storage needed

. the sum of the wavefronts, known as the pro®le, since this determines the total storage
needed for the matrix factors

. the root-mean-square wavefront, since the work performed when eliminating a variable is
proportional to the square of the current wavefront.

In the past, a number of algorithms for automatically ordering ®nite elements have been
proposed.1±9 Further references are given in Kaveh.10 Du� et al.8 divide element ordering algo-
rithms into direct and indirect algorithms. Direct algorithms order the elements directly while
indirect algorithms use a two-step approach in which the variables are ®rst relabelled and then
used to resequence the elements; the new variable indices are subsequently discarded. Du� et al.
report that both approaches can be used e�ectively, and neither has been found to be consistently
superior to the other.

The Harwell Subroutine Library15 (HSL) code MC438 implements both a direct and an indirect
ordering algorithm, based on the pro®le reduction algorithm of Sloan.7 Several authors have
considered variants of Sloan's algorithm (see, for example, Medeiros et al.11). Motivated by the
®ndings of Kumfert and Pothen,12 we recently looked at a number of ways of improving the
performance and e�ciency of Sloan's algorithm.13 These included implementing the priority
queue as a binary heap and using a hybrid algorithm that combines a spectral ordering (see, for
example, Barnard et al.14) with the Sloan algorithm. This work led to improved codes for pro®le
reduction (the HSL MC60 package together with a driver MC61) being included in the Harwell
Subroutine Library and prompted us to look at revising MC43 in a similar way. The new element
ordering code, which supersedes MC43, is called MC63.

The outline of this paper is as follows. In Section 2, we brie¯y review some of the graphs that
can be associated with a ®nite-element mesh. These graphs are fundamental to our reordering
algorithms. In Section 3, we look at Sloan's algorithm. In Section 4, we discuss using spectral
orderings to resequence elements and introduce a hybrid method that combines using a spectral
ordering with Sloan's algorithm. The design of our new code MC63 is discussed in Section 5.
Numerical experiments on a range of practical problems are reported in Section 6. Results
illustrating the use of MC63with the Harwell Subroutine Library frontal solver MA62 are given in
Section 7, and some concluding comments are made in Section 8.

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

310 J. A. SCOTT

2. FINITE ELEMENT GRAPHS

The element resequencing algorithms that we use in this paper are based on the method of
Sloan.7,16 The method, which has been widely used during the last decade for pro®le reduction,
exploits the close relationship between a matrix A � {aij} of order n with a symmetric sparsity
pattern and its undirected graph with n nodes. Two nodes i and j are neighbours (or are adjacent)
in the graph if and only if aij is non-zero. A ®nite-element mesh is a collection of ®nite elements in
which elements are joined at their common boundaries and vertices. Finite-element nodes may lie
at vertices, along the sides, on the faces, or within the element itself. Associated with each ®nite-
element node is a set of variables corresponding to the freedoms at that node. The ®nite-element
mesh with its degrees of freedom can be transformed into the graph of the assembled ®nite-
element matrix and, for convenience, we call this the variable connectivity graph. The nodes of the
variable connectivity graph are the variables de®ned on the ®nite-element mesh, and the edges are
constructed by making the variables of each element pairwise adjacent.

In many ®nite-element problems, there are a number of freedoms at each node of the ®nite-
element mesh. The nodes of the element clique graph correspond to the ®nite-element nodes, and
two nodes are adjacent if they belong to the same element (see, for example, Kaveh and
Roosta17). Provided the list of variables in each node is recorded, the element clique graph
provides a more compact representation of the ®nite-element problem than the variable
connectivity graph. Further savings can be achieved by recognizing that some ®nite-element
nodes may belong to the same set of elements. This can be exploited through the use of
supervariables. A supervariable is a collection of one or more variables, such that each variable
belongs to the same set of ®nite elements. The ®nite-element mesh can be transformed into a
supervariable connectivity graph, whose nodes are the supervariables and whose edges are formed
by making the supervariables of each ®nite element pairwise adjacent. For problems in which the
number of supervariables is substantially less than the number of variables, Sloan's algorithm is
much more e�cient if supervariables are used. Reid and Scott13 report results that illustrate this.

For ®nite-element problems, Sloan's method may also be applied to the element connectivity
graph, in which the nodes are the ®nite elements. There is more than one way in which the
element connectivity may be de®ned. Bykat2 generates the element connectivity graph by de®ning
two elements to be adjacent to one another whenever they share a common edge and describes his
algorithm in detail for planar triangular elements. This de®nition was generalized by Fenves and
Law6 to problems in k dimensions (k � 1, 2, 3), by de®ning two elements in k dimensions to be
adjacent whenever they possess a common boundary of kÿ 1 dimensions. The resulting graph is
termed the dual graph9 or the natural associate graph.17 The main advantage of the dual graph is
its economy in terms of data storage because the number of edges is generally substantially fewer
than in the variable or supervariable graphs. A disadvantage is that the adjacency of elements
cannot always be completely represented by this de®nition of adjacent elements, since k-
dimensional elements are not necessarily connected through (kÿ 1)-dimensional boundaries. In
addition, adjacent ®nite elements do not necessarily have the same dimensionality. In such
examples, the dual graph may become disconnected, and each component must be numbered
independently. This contributes to the di�culties associated with attempting to implement this
algorithm.

A more convenient way of de®ning element adjacency is to de®ne two elements to be adjacent
whenever they have one or more variables in common. The resulting graph is termed the element
communication graph and has been used by, for example, Du� et al.8 and Paulino et al.9 In the

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 311

literature, this graph has also been called the incidence graph.17 Throughout the remainder of this
paper, the element connectivity graph will refer to the element communication graph.

Other graphs that attempt to embed the connectivity properties of ®nite element problems and
that can be used for deriving pro®le and wavefront reduction algorithms have been proposed (for
example, by Kaveh and Roosta17 and Kaveh10). However, in terms of the quality of element
orderings they produce, they do not appear to o�er any consistent advantage over the super-
variable and element connectivity graphs.

3. SLOAN'S ALGORITHM

In this Section, we give a brief outline of Sloan's algorithm for pro®le reduction and discuss how
the method can be extended for element reordering. Here and elsewhere we assume that the
variable connectivity and the element connectivity graphs are connected. If not, it is straight-
forward to apply the algorithm to each component, and all our software allows for this.

3.1. The basic algorithm

Sloan's algorithm for reordering the nodes of a connected undirected graph has two distinct
phases:

1. selection of start and end nodes
2. node reordering

In the ®rst phase, the start and end nodes are chosen to be the endpoints of a pseudodiameter.
Sloan ®nds a pseudodiameter using a modi®ed version of the Gibbs-Poole-Stockmeyer
algorithm.18 This has recently been improved further by Reid and Scott13 (see also the work of
Souza and Murray19). During the second phase of Sloan's algorithm, the pseudodiameter is used
to guide the reordering. One end s of the pseudodiameter is used as the start node and the other e
is used as the target end node. Sloan ensures that the position of a node in his ordering is not far
from one for which the distance from the target end node is monotonic decreasing. He is able to
improve the pro®le and wavefront by localized reordering. Sloan begins at the start node s and
uses for each node i the priority function

Pi � ÿW1ci �W2d�i;e� �6�
whereW1 andW2 are integer weights, ci (the current degree) is the amount that the wavefront will
increase if node i is numbered next, and d(i, e) is the distance to the target end node. At each
stage, the next node in the ordering is chosen from a list of eligible nodes to maximize Pi . The list
of eligible nodes comprises the neighbours of nodes that have already been numbered and their
neighbours. A node has a high priority if it causes either no increase or only a small increase to
the current wavefront and is at a large distance from the target end node. Thus, a balance is kept
between the aim of keeping the number of nodes in the front small and including nodes that have
been left behind (further away from the target end node than other candidates). At each stage,
Reid and Scott13 give maximum priority to all nodes i with ci � 0.

Following numerical experimentation, Sloan recommends the pair (2, 1) for the weights.
However, the results of Kumfert and Pothen12 and Reid and Scott13 indicate that, for some
problems, there are considerable advantages in using other values. In particular, the choice
(16, 1) can yield much smaller pro®les. To allow the user to experiment with di�erent choices of

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

312 J. A. SCOTT

the weights, the new pro®le reduction code MC60 of Reid and Scott has weights that are input
parameters.

3.2. Sloan's algorithm for indirect element ordering

Sloan's algorithm may be used to reorder elements by applying the method to the variable
connectivity graph and then resequencing the elements in ascending order of their earliest
variable in the new variable order. In most ®nite-element problems, the number of supervariables
(see Section 2) is signi®cantly less than the number of variables. In such cases it is more e�cient to
apply a modi®ed version of the Sloan algorithm to the supervariable connectivity graph. The
modi®cations to the Sloan algorithm take into account the number of variables associated with
each supervariable (see Du� et al.8).

3.3. Sloan's algorithm for direct element ordering

An alternative approach to element reordering is to apply Sloan's algorithm directly to the
element connectivity graph. The main disadvantage of this is that the number of variables in each
element is not taken into consideration. To allow for ®nite-element meshes comprising ®nite
elements with di�erent numbers of freedoms, Du� et al.8 looked at modifying the priority
function in the second phase of the algorithm. An element is said to be `active' if it has been
assembled but has one or more unassembled neighbours. In an attempt to reduce both the
number of elements that are active at each stage of the frontal method and the number of partially
summed variables, Du� et al. de®ne the priority of element i to be

Pi � ÿW1ngaini �W2d�i; e� ÿW3nadji �7�

Here ngaini is the number of variables element i will introduce into the front less the number that
can be eliminated, and nadji is the number of elements adjacent to element i that have not yet been
relabelled. The weights used by Du� et al. in the Harwell Subroutine Library code MC43 are
(10, 5, 1). If assembling element i leads to the elimination of a single variable j, then ngaini � cj ,
where cj is de®ned as in equation (6). In this case, the priority function (7) is Sloan's function with a
third weight to resolve ties. If every element leads to such an elimination, we have another
implementation of the Sloan variable ordering algorithm (with a tie-breaking strategy). In general,
however, this will not be the case and the algorithm is therefore di�erent but closely related.

4. SPECTRAL AND HYBRID SLOAN REORDERING ALGORITHMS

4.1. Spectral reordering

Spectral algorithms have been used in recent years for matrix pro®le and wavefront reduction.
Barnard et al.14 describe a spectral algorithm that associates a Laplacian matrix L with the given
matrix A with a symmetric sparsity pattern.

L � flijg �
ÿ1 if i 6� j and aij 6� 0

0 if i 6� j and aij � 0X
k 6�i
jlikj if i � j

8>><>>: �8�

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 313

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian matrix is
termed a Fiedler vector. The spectral permutation of the variables is computed by sorting the
components of a Fiedler vector into monotonically non-increasing or non-decreasing order.

For unassembled ®nite-element problems, the new variable order can be used to obtain an
element ordering. We refer to this as the indirect spectral element reordering algorithm. Alter-
natively, Paulino et al.9 propose constructing the Laplacian matrix associated with the element
connectivity graph and reordering the elements by sorting the components of a Fiedler vector of
this Laplacian. The results presented by Paulino et al. suggest that the method can be e�ective for
®nite-element problems but comparisons were only reported with the Gibbs±Poole±Stockmeyer
and Gibbs±King algorithms.20 In our numerical experiments (see Section 6), we call this method
the direct spectral element reordering method.

4.2. The hybrid Sloan method

Kumfert and Pothen12 observe that spectral orderings do well in a global sense but are often
poor locally. They therefore propose using the spectral method to ®nd a global ordering that
guides the second phase of Sloan's method. Their results show that this can yield a ®nal ordering
with a much smaller pro®le than using either the spectral method alone or Sloan's method using
the Gibbs±Poole±Stockmeyer pseudodiameter. Further experiments by Reid and Scott13 support
this view, particularly for very large problems. The so-called hybrid Sloan method uses a priority
function in which the distance d(i, e) from the target end node is replaced by pi , the position of
node i in the spectral ordering. Speci®cally, for a graph with n nodes, Reid and Scott13 use the
priority function

Pi � ÿW1ci ÿW2�h=n�pi �9�

where h is the number of level-sets in the level-set structure rooted at the ®rst node. Reid and Scott
recommend computing orderings for the pairs of weights (1, 2) and (16, 1) and choosing the one
with the smallest pro®le. This is the default in the HSL code MC61, which provides a driver for
MC60.

Kumfert and Pothen12 and Reid and Scott13 use the hybrid Sloan method to reorder assembled
matrices. In the present study, we are concerned with unassembled matrices. We can extend the
hybrid method to this class of problems in one of two ways:

1. In the indirect algorithm, use the hybrid method to order the variables. We will refer to this
method as the indirect hybrid algorithm. In practice, for e�ciency, the spectral variable
ordering is mapped to a spectral supervariable ordering and the supervariable connectivity
graph is used.

2. Apply the spectral method to the element connectivity graph. In the second phase of
Sloan's algorithm, replace (7) with the priority function

Pi � ÿW1ngaini ÿW2�h=nelt�pelti ÿW3nadji �10�

where nelt is the number of elements, h is the number of level-sets in the level-set structure
rooted at the start element, and pelti is the position of element i in the direct element
spectral ordering. We will call this the direct hybrid algorithm.

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

314 J. A. SCOTT

We remark that, although in our experiments we only use the spectral orderings in the hybrid
algorithms, any input ordering can be used. Our software is written to allow this.

5. SOFTWARE DESIGN

In this Section we discuss the design of our new package, MC63, for ordering ®nite elements. Our
new subroutines are named according to the naming convention of the Harwell Subroutine
Library.15

There are three entries to MC63:

. MC63I sets default values for the control parameters. It should normally be called once prior
to calling MC63A. The control parameters include stream numbers for diagnostic printing and
parameters that determine whether or not supervariables are to be used and whether the user
wishes to supply a global priority function p � (pi) or pelt � (pelti).

. MC63A reorders the elements. The user chooses whether a direct or an indirect algorithm is
implemented.

. MC63B computes, for a given element order, the maximum wavefront, the pro®le, and the
root-mean-square wavefront. An option exists for checking the input data.

Full details of the calling sequence and the argument lists are given in the Speci®cation
Sheets.21 Note that we work only with the pattern of the matrix. Thus for matrices that are not
positive de®nite, the actual factorization may be more expensive and require more storage than is
indicated by MC63B. We now look in more detail at the reordering routine MC63A.
MC63A accepts lists of variables belonging to the elements and, after performing initial checks

on the user's data, calls MC63B to compute statistics for the natural element order, 1, 2, . . . , nelt.
At this point, MC63Balso checks the element variable lists for out-of-range and duplicated indices.
If such entries are found, they are either removed and the computation continues after issuing a
warning message or terminates, if this has been requested.

If supervariables are wanted, they are constructed using the Harwell Subroutine Library pro®le
reduction package MC60. Otherwise, each variable is treated as a supervariable. The element
variable lists are overwritten by element supervariable lists. A map of variable to supervariable
indices allows the user to later restore the element variable lists, if desired.

For each supervariable, the number of elements involving it is counted. Lists of the elements
associated with the supervariables are then constructed. If the user has selected a direct element
reordering algorithm, the element connectivity graph is constructed from the supervariable lists,
otherwise the supervariable connectivity graph is constructed from the element lists.

In the indirect element reordering algorithm, MC60C is used to reorder the supervariables. The
user may optionally specify a global priority vector whose components pi are used in the priority
function (9). Once the supervariables have been reordered, the elements are resequenced in
ascending order of their earliest supervariable in the new supervariable order. The new super-
variable indices are not preserved.

In the direct element ordering algorithm, the element connectivity graph is relabelled using
either the priority function (7) or (10). If (7) is used, the start and target end nodes (s, e) are
computed using the modi®ed Gibbs±Poole±Stockmeyer algorithm (MGPS) of Reid and Scott.13

Again, MC60 is used for this. To use (10), the user must supply an element global priority
vector pelt.

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 315

Having chosen the start and target end elements, the start element is numbered ®rst and a list
of elements that are eligible to be numbered next is formed. When selecting the element with
highest priority for renumbering next from the list of eligible elements, a simple sequential search
is performed while the list is less than a given threshold and a switch to a binary heap search is
made once the list exceeds this threshold. As in MC60, a threshold of 100 is used. Management of
the list of eligible elements is discussed in detail by Reid and Scott.13

A ®nal call to MC63B (without error checking) computes statistics for the new element order.
We remark that, in MC63, equations (7) and (10) do not de®ne the priority function fully since

we give maximum priority to any element that will introduce no new variables into the front, that
is, to elements i with ngaini � 0.

6. NUMERICAL RESULTS

In this Section, we ®rst describe the 15 problems that we use for testing the element reordering
algorithms discussed in this paper and then present numerical results.

6.1. Test problems

Each of the test problems arises from a real engineering or industrial application. A brief
description of each problem is given in Table I. The number of unassembled element problems
available in the Harwell±Boeing Collection22 is limited and all are small by today's standards.
Consequently, we have only selected two representative problems, cegb3306 and lock3491, from
this Collection. Problem ramage02 was provided by Alison Ramage of the University of
Strathclyde,23 aeac5081 came from Andrew Cli�e of AEA Technology, and cham and tubuwere
from Ron Fowler of the Rutherford Appleton Laboratory. The remaining problems were
supplied by Christian Damhaug of Det Norske Veritas, Norway. For cham and tubu, only lists of

Table I. The test problems

Identi®er
Degrees of
freedom

Number of
super-

variables
Number of
elements Description/discipline

aea5081 5801 1637 800 Double glazing problem
cegb3306 3222 537 791 2.5D framework problem
cham 12,834 12,834 11,070 Part of an engine cylinder
crplat2 18,010 3004 3152 Corrugated plate ®eld
fullb 199,187 33,442 59,738 Full-breadth barge
lock3491 3416 702 684 Cross-cone vehicle structure
opt1 15,449 3802 977 Part of oil production platform
mt1 97,578 17,044 5328 Tubular joint
ramage02 1476 4939 1400 Navier±Stokes and continuity equations
shipsec1 140,874 23,479 41,037 Full-breadth section of ship
srb1 54,924 9154 9240 Space shuttle rocket booster
thread 29,736 8838 2176 Threaded connector
trdheim 22,098 2868 813 Mesh of the Trondheim fjord
tsyl201 20,685 2881 960 Part of oil production platform
tubu 26,573 26,573 23,446 Engine cylinder model

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

316 J. A. SCOTT

supervariables belonging to each element were available, so for these problems the number of
variables is equal to the number of supervariables.

When testing the element ordering algorithms, the elements were input in random order. Our
old code MC43 and the new code MC63 are written in standard Fortran 77, and all the results
presented in this Section were obtained using the EPC (Edinburgh Portable Compilers, Ltd)
Fortran 90 compiler with optimization -O running on a 143 MHz Sun Ultra 1. In our
experiments involving the spectral method, the Fiedler vector was obtained using Chaco 2.0.24

We used the SymmLQ/RQI option, and the input parameters were chosen to be the same as those
used by Kumfert and Pothen.12 Note that we do not include timings for the hybrid methods
because the Chaco package is written in C and the Harwell Subroutine Library does not currently
have a Fortran code for computing the Fiedler vector.

6.2. MC43 vs. MC63

In Tables II and III we compare the performance of the old code MC43 with that of the new
code MC63. Results are given for both the direct and indirect algorithms, using the weights (10, 5,
1) and (2, 1), respectively. In Table II, the maximum and root-mean-square wavefronts are given,
and in Table III, timings are presented. As expected, the codes generally yield orderings of
comparable quality. The di�erences are attributable to the di�erences in the implementations of
the algorithms. For example, the two codes handle supervariables in a slightly di�erent manner.
MC63 takes the numbers of variables in the supervariables into account when calculating the width
of a level-set structure but only MC43 allows for the numbers of variables in the supervariables
when calculating the degrees of the supervariables in the list of potential start nodes. The new
code also uses a slightly di�erent modi®cation of the Gibbs±Pool±Stockmeyer algorithm when
choosing start and end nodes.

Sloan7 observed that the binary heap search is the method of choice when the root-mean-
square wavefront exceeds several hundred nodes, and for smaller problems a simple sequential

Table II. The maximum and root-mean-square wavefronts found by MC43 and MC63

Identi®er

MC43 MC63

Direct Indirect Direct Indirect

aea5081 149 180.7 190 119.1 156 180.2 175 116.5
cegb3306 78 60.3 114 73.9 78 60.4 78 60.3
cham 412 333.0 412 313.1 412 331.1 412 332.9
crplat2 538 376.3 560 328.0 392 292.8 470 358.9
fullb 3130 2170.8 3098 2134.0 3142 2172.3 2826 2021.2
lock3491 209 135.5 181 118.1 203 126.5 266 137.5
opt1 1006 619.9 883 544.1 1006 619.3 804 530.1
mt1 2391 1366.6 2067 1259.8 2895 1546.2 2436 1335.4
ramage02 1452 1289.3 1502 1333.3 1452 1289.3 1472 1328.5
shipsec1 3810 2613.4 4308 2702.5 3840 2629.1 3834 2493.6
srb1 546 320.9 546 318.2 546 320.9 546 318.2
thread 3117 2214.3 3630 2413.2 3117 2214.6 2877 1962.0
trdheim 348 172.4 324 139.1 348 172.4 324 146.3
tsyl201 540 511.2 534 511.2 540 511.2 696 505.3
tubu 638 407.2 863 449.4 630 406.6 848 444.3

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 317

search is faster. The method we use of commencing with code that performs a simple search, and
switches to code that uses a binary heap if the number of eligible nodes exceeds a threshold,
ensures MC63 is as e�cient as MC43on small problems, but is substantially faster on large problems
(see, for example, fullb, shipsec1 and tubu).

6.3. Adjusting the weights

In this Section, we consider the e�ect of adjusting the weights in the priority function. As
already mentioned, Du� et al. recommend the weights (10, 5, 1) but Kumfert and Pothen12

suggest that, for some problems, other values give much better results. In our ®rst test, we
compare W3 � 1 in the direct reordering priority functions (7) and (10) with W3 � 0. The
weights (W1 , W2) are given the values of (10, 5) for the Sloan method and, following Reid and
Scott,13 (5, 10) for the hybrid method. Our ®ndings are presented in Table IV. The results suggest
that for Sloan there can be a slight advantage in using a third weight to resolve ties but, in
general, the di�erence in the root-mean-square wavefront between using W3 � 0 and W3 � 1 is
small (less than 2 per cent). For the hybrid method, the results do not support the use of a third
weight.

We have examined the wavefronts for the direct ordering algorithms for (W1 ,W2) � (5w1 , 5w2)
with (w1 , w2) equal to each of the 13 pairs (1, 64), (1, 32), (1, 16), . . . , (1, 1), (2, 1), . . . , (64, 1) on
all the test matrices. Our ®ndings are shown in Table V. In this Table we show the percentage
increases in the root-mean-square wavefront from the best value when the recommended weights
of (10, 5, 1) for Sloan and (1, 2, 0) for the hybrid Sloan method are used.

We see that, for many problems, the recommended weights give root-mean-square wavefronts
that are within 5 per cent of the minimum value. However, for each method there are a small
number of problems for which weights other than the recommended ones give signi®cant
improvements. A closer look at the results reveals that the weights that give minimum wavefronts
di�er with the problem andmethod. For example, direct Sloan applied to trdheimhas the smallest

Table III. A comparison of CPU times for MC43 and MC63 (Sun Ultra)

Identi®er

MC43 MC63

Direct Indirect Direct Indirect

aea5081 0.50 0.60 0.50 0.60
cegb3306 0.02 0.02 0.02 0.02
cham 1.75 1.34 0.97 0.79
crplat2 0.18 0.18 0.19 0.18
fullb 8.31 5.45 3.88 2.55
lock3491 0.03 0.03 0.03 0.03
mt1 2.05 7.55 1.82 3.61
opt1 0.13 0.32 0.12 0.32
ramage02 0.27 0.75 0.21 0.59
shipsec1 20.6 16.1 7.57 5.72
srb1 1.75 1.91 1.58 1.52
thread 0.45 1.94 0.33 0.83
trdheim 0.08 0.13 0.09 0.13
tsyl201 0.10 0.16 0.11 0.16
tubu 4.41 3.22 2.70 1.62

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

318 J. A. SCOTT

root-mean-square wavefront when (w1 , w2) � (1, 2) but for problem thread, the minimum is
achieved with the pair (1, 8). For thread, each of the methods performs poorly with the recom-
mended weights and does much better with a larger value forW2 . To allow the user to experiment
with di�erent weights, in MC63 the weights are input parameters under the user's control.

6.4. Sloan vs. hybrid Sloan

In Table VI, we present root-mean-square wavefronts for the di�erent algorithms discussed in
this paper. The weights recommended in Section 6.3 are used. For purposes of comparison, we

Table IV. Root-mean-square wavefronts with W3 � 0,1

Identi®er

Sloan Hybrid

W3 � 0 W3 � 1 W3 � 0 W3 � 1

aea5081 117.4 108.2 108.3 108.2
cegb3306 59.8 60.3 65.3 65.3
cham 330.6 331.1 329.6 332.6
crplat2 292.1 292.8 238.0 238.0
fullb 2145.6 2172.3 1879.2 1940.8
lock3491 125.5 126.5 208.0 213.2
mt1 1548.8 1546.2 954.8 960.2
opt1 621.6 619.3 537.5 536.4
ramage02 1289.3 1289.3 1321.9 1358.8
shipsec1 2643.3 2629.1 2133.6 2192.5
srb1 320.9 320.9 344.9 350.0
thread 2224.1 2214.6 1621.8 1860.2
trdheim 172.4 172.4 148.1 149.6
tsyl201 511.2 511.2 511.5 511.6
tubu 411.8 406.6 403.6 408.3

Table V. Percentage increases in the root-mean-square wavefront
above the minimum value when the recommended weights are used

Identi®er

Sloan Hybrid

Direct Indirect Direct Indirect

aea5081 0.4 0.0 0.1 0.1
cegb3306 0.6 0.3 3.9 3.5
cham 0.6 0.0 0.4 3.0
crplat2 0.6 9.5 0.2 0.7
fullb 1.1 0.0 0.0 1.1
lock3491 0.0 10.3 8.5 0.0
mt1 21.1 4.5 0.0 0.0
opt1 11.3 1.4 11.1 0.0
ramage02 2.3 0.1 5.0 16.7
shipsec1 0.3 4.1 0.0 0.7
srb1 0.0 0.0 0.0 0.0
thread 103.7 75.5 50.3 70.1
trdheim 25.3 0.1 2.6 0.0
tsyl201 0.0 0.7 0.0 0.0
tubu 0.0 0.0 4.6 2.4

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 319

include results for the original element order. We note that, in most instances, this order was
thought, by the originator of the problem, to be a `good' element order. In Table VI, we highlight
in bold the smallest root-mean-square wavefront for each problem, and any within 2% of the
smallest. We see that, if the elements are not originally well ordered, both the direct and indirect
spectral algorithms can substantially reduce the root-mean-square wavefront. However, com-
parison of columns 3 and 7 and columns 4 and 8 demonstrate that, in general, it is worthwhile to
use Sloan's method to re®ne the spectral ordering. By looking also at Table V, we observe that
the only problems where the hybrid method gives poorer results than the corresponding spectral
method are those for which the recommended weights give a root-mean-square wavefront that is
far from the minimum. For these problems, the hybrid Sloan method becomes competitive if
other weights are used. For example, if we use the weights (1, 16) in the indirect hybrid algorithm
in place of the recommended values of (1, 2), the root-mean-square wavefront for thread reduces
to 1092.1, and this is smaller than the indirect spectral root-mean-square wavefront. Note that, if
the recommended weights are used, the Sloan and hybrid Sloan algorithms still provide
substantial improvements over the original ordering for this problem.

The hybrid method is primarily intended for very large problems and, on the basis of the
results we have obtained, we see that the hybrid Sloan method can signi®cantly out-perform
Sloan's method for problems with a large number of elements (for example, fullb and
shipsec1). We conclude from our empirical evidence that the user may wish to reorder the ®nite
elements using either a direct or an indirect algorithm and may wish to use a hybrid Sloan
method. MC63 allows each of these options to be selected.

7. ELEMENT ORDERINGS AND FRONTAL SOLVERS

We have looked at using variants of Sloan's algorithm to reorder ®nite elements. Both direct and
indirect reordering algorithms have been considered and used in combination with spectral
orderings. As discussed in the introduction, the main motivation behind this work was the need
for element orderings that are e�cient when used with a frontal solver. In this Section, we present

Table VI. Root-mean-square wavefronts with di�erent algorithms

Identifer
Original
order

Spectral Sloan Hybrid
Direct Indirect Direct Indirect Direct Indirect

aea5081 142.2 129.4 108.2 108.2 116.5 108.2 108.4
cegb3306 245.9 100.4 95.0 60.3 60.5 65.3 64.9
cham 769.0 346.1 353.6 331.1 332.9 329.5 338.9
crplat2 1178.1 257.2 251.7 292.8 358.7 238.0 242.0
fullb 95,181 2009.6 1968.4 2172.3 2021.2 1879.2 1865.7
lock3491 583.0 227.4 128.0 126.5 135.4 208.0 103.7
mt1 8196.3 1191.1 1191.0 1546.2 1335.4 954.8 1017.6
opt1 2067.7 573.7 604.9 619.3 530.1 536.4 557.0
ramage02 1492.3 1335.2 1403.1 1289.3 1328.4 1321.9 1515.6
shipsec1 52,642 2292.5 1750.8 2629.1 2493.6 2133.6 1554.8
srb1 1506.3 380.7 370.8 320.9 318.2 344.9 344.6
thread 4110.2 1334.7 1226.0 2214.6 1962.0 1621.8 1857.5
trdheim 181.9 163.3 156.0 172.4 146.3 148.1 144.8
tsyl201 861.6 530.0 513.6 511.2 505.3 511.5 502.7
tubu 1298.6 470.1 460.9 406.6 447.2 403.6 393.2

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

320 J. A. SCOTT

results of using the MC63 element orderings with a frontal solver. In the Harwell Subroutine
Library we have two frontal codes for real matrices: MA4225 for general unsymmetric problems
and MA6226 for symmetric positive-de®nite systems. Both codes are designed for unassembled
®nite-element matrices, although MA42 does include an option for entering the assembled matrix
row-by-row. The matrix factors may optionally be held in direct access ®les. For e�ciency, Level
3 BLAS kernels are used in the innermost loop of the matrix factorization.

The element ordering schemes we have considered work only with the pattern of the ®nite-
element matrices. They are therefore most useful for positive de®nite matrices. For more general
matrices, the need to preserve numerical stability may lead to the actual factorization being more
expensive and requiring more storage. To illustrate the e�ectiveness of our element ordering
algorithms, in this Section we present results for MA62, using the user-supplied element order and
the MC63 element order. As discussed in Section 5, MC63o�ers both a direct and indirect version of
Sloan's algorithm and a direct and indirect hybrid Sloan algorithm. We saw in Table VI that the
method that gives the smallest root-mean-square wavefront is problem dependent so we have
chosen the best ordering for each problem (obtained using the recommended weights). Default
values are used for all MA62 control parameters.

The experimental results quoted in Table VII were obtained on a single processor of a Cray
J932 using 64-bit ¯oating-point arithmetic, the Cray f90 Fortran compiler (with default options),
and the vendor-supplied BLAS. For each problem, values for the entries of the matrix were
generated using the HSL pseudo-random number generator FA01 and each was made symmetric
and positive de®nite. The times quoted include the i/o overhead for using direct access ®les for the
matrix factors. The storage is the total storage for the factors and includes both real and integer
storage. Since, on the Cray, both integers and reals are stored in 64-bit words, this value is just the
sum of the number of real and the number of integer words needed. The number of ¯oating-point
operations (`ops') counts all operations (�, ÿ, *, /) equally. The `Solve' times are for a single
right-hand side.

Table VII. The results of using MC63 with the frontal solver MA62 (Cray J932)

Identi®er

Factorization time Solve time Number of ops Storage
(seconds) (seconds) (�107) (Kwords)

Before After Before After Before After Before After

aea5081 1.5 1.1 0.09 0.07 12.4 7.5 786 585
cegb3306 0.64 0.45 0.03 0.03 3.1 1.7 232 219
cham 53.9 13.1 0.95 0.46 766.2 152 9689 4472
crplat2 126 11.3 1.7 0.49 1919 113 17,985 4583
fullb NS 5028 NS 35.6 NS 79,695 NS 405,607
lock3491 4.0 0.99 0.11 0.06 51.3 7.2 1123 448
mt1 NS 1118 NS 11.1 NS 17,661 NS 125,694
opt1 54.5 31.6 0.9 0.7 857 437 10,031 7596
ramage02 233 175 2.2 1.8 3812 2852 25,547 21,847
shipsec1 NS 5450 NS 28.7 NS 86,304 NS 333,791
srb1 550 48.9 5.9 1.7 8604 595 65,894 18,058
trdheim 5.7 4.6 0.34 0.32 51.8 36.6 2872 2389
thread 1925 680 7.0 4.5 32,996 11,301 92,048 55,207
tsyl201 98.1 38.3 1.5 1.0 1528 535 17,236 10,654
tubu 122 35.2 1.7 1.1 1858.9 440.0 17,277 10,742

Cases marked NS were not solved.

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 321

The results demonstrate the importance of reordering the elements and illustrate that, for
problems that are not initially well ordered, substantial savings can be achieved by using MC63. We
were not able to run the largest problems without reordering because of the memory and CPU
times they required. Where there is a signi®cant reduction in the root-mean-square wavefront it is
re¯ected in much lower factorization and solve times, operation counts and factor storage,
although we note that the e�ect of using Level 3 BLAS means that the poorer orderings can have
a higher Mega¯op rate so that, for some problems, the ratio of times, before and after ordering, is
not as high as the operation count ratio. Furthermore, MA62 is partly able to o�set the e�ect of a
poor ordering by exploiting zeros within the frontal matrix.26,27 For example, we note that, for
the problem cegb3306, the root-mean-square wavefront is reduced by a factor of 4 (see Table VI)
using MC63 but the saving in factor storage is small. This is because the root-mean-square
wavefront assumes that the frontal matrix is dense but MA62 is able to take some advantage of
zeros in the front.

8. CONCLUSIONS

In this paper, we have looked at using variants of Sloan's algorithm to reorder ®nite elements for
use with a frontal solver. Both direct and indirect versions of the reordering algorithm have been
considered and used in combination with spectral orderings. We found that there can be a
di�erence in the quality of the ordering obtained using the direct or the indirect method, but for a
given problem we do not know a priori whether the direct or indirect method will give the best
reduction in the wavefront. Our results suggest that the hybrid Sloan method is superior to the
spectral method and generally out-performs Sloan for large problems but o�ers no consistent
advantage for smaller problems. The choice of weights in the priority function can also in¯uence
the quality of the ordering.

A disadvantage of the hybrid method is the need to compute a global priority function. The
time taken to compute a spectral ordering is signi®cantly more than that needed to compute start
and end nodes for the Sloan algorithm, and depends upon the algorithm used to compute the
Fiedler vector. For this reason, if the tradeo� between the quality of the ordering and the time
taken for computing the ordering favours fast reordering algorithms, the Sloan algorithm may be
preferred, with the direct method selected if the number of elements is less than the number of
supervariables and the indirect method used otherwise. However, in our experiments with the
frontal method, the time required to compute an element ordering was small compared with that
needed by the matrix factorization and solve steps. For large problems, it may therefore be
worthwhile experimenting with the options o�ered by MC63 before using the frontal solver,
particularly if a number of factorizations are to use the same element ordering.

The code MC63 is available for use under licence and will be included in the next release of the
Harwell Subroutine Library. Anyone interested in using the code should contact the author for
details.

ACKNOWLEDGEMENTS

I would like to thank my colleagues John Reid and Iain Du� at the Rutherford Appleton
Laboratory for their interest and comments on a draft of this paper.

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

322 J. A. SCOTT

REFERENCES

1. J. E. Akin and R. M. Pardue, `Element resequencing for frontal solutions', in Mathematics of Finite
Elements and Applications, J. R. Whiteman (Ed.), Academic Press, 1975.

2. A. Bykat, `A note on an element ordering scheme', Int. j. numer. methods eng., 11, 194±198 (1977).
3. A. Razzaque, `Automatic reduction of frontwidth for ®nite element analysis', Int. j. numer. methods

eng., 15, 1315±1324 (1980).
4. H. L. Pina, `An algorithm for frontwidth reduction', Int. j. numer. methods eng., 17, 1539±1547 (1981).
5. S. W. Sloan andM. F. Randolph, `Automatic element reordering for ®nite-element analysis with frontal

schemes', Int. j. numer. methods eng., 19, 1153±1181 (1983).
6. S. J. Fenves and K. H. Law, `A two-step approach to ®nite element ordering', Int. j. numer. methods

eng., 19, 891±911 (1983).
7. S. W. Sloan, `An algorithm for pro®le and wavefront reduction of sparse matrices', Int. j. numer.

methods eng., 23, 1315±1324 (1986).
8. I. S. Du�, J. K. Reid and J. A. Scott, `The use of pro®le reduction algorithms with a frontal code', Int. j.

numer. methods eng., 28, 2555±2568 (1989).
9. G. H. Paulino, I. F. Menezes, M. Gattass and S. Mukherjee, `Node and element resequencing using the

Laplacian of a ®nite element graph: Part II±implementation and numerical results', Int. j. numer.
methods eng., 37, 1531±1555 (1994).

10. A. Kaveh, Optimal Structural Analysis, Research Studies Press, John Wiley, England, 1997.
11. S. R. P. Medeiros, P. M. Pimenta and P. Goldenberg, `An algorithm for pro®le and wavefront reduction

of sparse matrices with a symmetric structure', Eng. Comput., 10, 257±266 (1993).
12. G. Kumfert and A. Pothen, `Two improved algorithms for envelope and wavefront reduction', BIT, 18,

559±590 (1997).
13. J. K. Reid and J. A. Scott, `Ordering symmetric sparse matrices for small pro®le and wavefront'.

Technical Report RAL-TR-98-016, Rutherford Appleton Laboratory, 1998. To appear in Int. j. numer.
methods eng.

14. S. T. Barnard, A. Pothen and H. Simon, `A spectral algorithm for envelope reduction of sparse
matrices', Numer. Lin. Algebr. Appl., 2, 317±398 (1995).

15. Harwell Subroutine Library, A Catalogue of Subroutines (Release 12). Advanced Computing Depart-
ment, AEA Technology, Harwell Laboratory, Oxfordshire, England, 1995.

16. S. W. Sloan, `A Fortran program for pro®le and wavefront reduction', Int. j. numer. methods eng., 28,
2651±2679 (1989).

17. A. Kaveh and G. R. Roosta, `Comparitive study of ®nite element nodal ordering methods', Eng. Struct.,
20, 86±96 (1997).

18. N. E. Gibbs, W. G. Poole and P. K. Stockmeyer, `An algorithm for reducing the bandwidth and pro®le
of a sparse matrix', SIAM J. Numer. Anal., 13, 236±250 (1976).

19. L. T. Souza and D. W. Murray, `An alternative pseudopheripheral node ®nder for resequencing
schemes', Int. j. numer. methods eng., 36, 3351±3379 (1993).

20. J. G. Lewis, `Implementation of the Gibbs±Poole±Stockmyer and Gibbs±King algorithms', ACM
Trans. Math. Softw., 8, 180±189 (1982).

21. J. A. Scott, `On ordering elements for a frontal solver'. Technical Report RAL-TR-98-031, Rutherford
Appleton Laboratory, 1998.

22. I. S. Du�, R. G. Grimes and J. G. Lewis, `User's guide for the Harwell±Boeing sparse matrix collection
(Release 1)'. Technical Report RAL-TR-92-086, Rutherford Appleton Laboratory, 1992.

23. A. L. Ramage and A. J. Wathen, `Iterative solution techniques for the Navier±Stokes equations'.
Technical Report AM-93-01, School of Mathematics, University of Bristol, 1993.

24. B. Hendrickson and R. Leland, `The Chaco user's guide: Version 2.0'. Technical Report SAND94-2692,
Sandia National Laboratories, Albuquerque, NM, 1995.

25. I. S. Du� and J. A. Scott, `The design of a new frontal code for solving sparse unsymmetric systems',
ACM Trans. Math. Softw., 22(1), 30±45 (1996).

26. I. S. Du� and J. A. Scott, `MA62 Ð a new frontal code for sparse positive-de®nite symmetric systems from
®nite-element applications'. Technical Report RAL-TR-97-012, Rutherland Appleton Laboratory, 1997.

27. K. A. Cli�e, I. S. Du� and J. A. Scott, `Performance issues for frontal schemes on a cache-based high
performance computer'. Technical Report RAL-TR-97-001, Rutherford Appleton Laboratory. 1997.
Int. j. numer. methods eng., 42, 127±143 (1998).

Copyright # 1999 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 15, 309±323 (1999)

ORDERING ELEMENTS FOR A FRONTAL SOLVER 323

