
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl., 6, 189–211 (1999)

A New Row Ordering Strategy for Frontal Solvers

Jennifer A. Scott∗

Department for Computation and Information, Atlas Centre, Rutherford Appleton Laboratory,
Oxon OX11 0QX, UK

The frontal method is a variant of Gaussian elimination that has been widely used since the mid 1970s. In the
innermost loop of the computation the method exploits dense linear algebra kernels, which are straightforward
to vectorize and parallelize. This makes the method attractive for modern computer architectures. However,
unless the matrix can be ordered so that the front is never very large, frontal methods can require many more
floating-point operations for factorization than other approaches. We are interested in matrices that have
a highly asymmetric structure. We use the idea of a row graph of an unsymmetric matrix combined with
a variant of Sloan’s profile reduction algorithm to reorder the rows. We also look at applying the spectral
method to the row graph. Numerical experiments performed on a range of practical problems illustrate that
our proposed MSRO and hybrid MSRO row ordering algorithms yield substantial reductions in the front sizes
and, when used with a frontal solver, significantly enhance its performance both in terms of the factorization
time and storage requirements. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS ordering rows; frontal method; row graphs; sparse unsymmetric matrices

1. Introduction

The frontal method is a technique for the direct solution of linear systems

Ax = b (1.1)

where then×n matrixA is large and sparse. Although the method was originally developed
for the solution of finite element problems in whichA is a sum of elemental matrices [15,16],
it can be used to solve any general linear system of equations [8,9]. In this paper, we are
concerned with using the frontal method for unsymmetric non-element problems; in a
separate paper [24] we discuss ordering strategies for element problems.

∗ Correspondence to J. A. Scott, Department for Computation and Information, Atlas Centre, Rutherford
Appleton Laboratory, Oxon OX11 0QX, UK.

CCC 1070–5325/99/030189–23 $17.50 Received 19 September 1998
Copyright © 1999 John Wiley & Sons, Ltd. Revised 25 February 1999

190 J. A. Scott

The frontal method is a variant of Gaussian elimination that involves computing the
decomposition of a permutation ofA

PAQ = LU

whereL is unit lower triangular andU is upper triangular. A key feature of the method is
that, at each stage of the computation, only a subset of the rows and columns ofA needs to
be held in main memory, in a matrix termed thefrontal matrix. The rows ofA are assembled
into the frontal matrix in turn. Columnl is defined as beingfully summedonce the last row
with an entry in columnl has been assembled. A column ispartially summedif it has an
entry in at least one of the rows assembled so far but is not yet fully summed. Once a column
is fully summed, partial pivoting is performed to choose a pivot from that column.

At each stage, the frontal matrixF is a rectangular matrix. The number of rows in
the frontal matrix is therow front sizeand the number of columns thecolumn front size.
Assuming there arek fully summed columns (withk ≥ 1) and assuming the rows ofF have
been permuted so that the pivots lie in positions(1, 1), (2, 2), ..., (k, k), the frontal matrix
can be written in the form

F = (
F1 F2

)
, F1 =

(
F11
F21

)
, F2 =

(
F12
F22

)
(1.2)

whereF11 is of orderk × k. The columns ofF1 are fully summed while those ofF2 are
partially summed. IfF12 is of orderk × m andF21 is of orderl × k, the row and column
front sizes arek + l andk +m, respectively.F11 is factorized asL11U11. ThenF12 andF21
are updated as

F̂21 = F21U
−1
11 and F̂12 = L−1

11 F12 (1.3)

and then the Schur complement

F22 − F̂21F̂12 (1.4)

is formed. Finally, the factorsL11 andU11, as well asF̂12 and F̂21, are stored as parts
of L andU , before further rows from the original matrix are assembled with the Schur
complement to form another frontal matrix.

The power of frontal schemes comes from the fact that they are able to solve quite large
problems with modest amounts of main memory and the fact that they are able to perform the
numerical factorization using dense linear algebra kernels, in particular the Level 3 Basic
Linear Algebra Subprograms (BLAS) [7] may be used. For example, the BLAS routine
GEMMwith interior dimensionk can be used to form the Schur complement (1.4).

Since a variable can only be eliminated after its column is fully summed, the order in
which the rows are assembled will determine both how long a variable remains in the front
and the order in which the variables are eliminated. For efficiency, in terms of both storage
and arithmetic operations, the rows need to be assembled in an order that keeps both the
row and column front sizes as small as possible. Iff rowi andf coli denote the row and
column front sizes before theith elimination, we are interested in

• the maximum row and column front sizes

f rowmax = max
1≤i≤n

f rowi and f colmax = max
1≤i≤n

f coli (1.5)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 191

since these determine the amount of main memory needed,
• the root-mean-square row and column front sizes

f rowrms =
√√√√1

n

n∑
i=1

f rowi
2 and f colrms =

√√√√1

n

n∑
i=1

f coli
2 (1.6)

since these provide a measure of the average row and column front sizes,
• the average size of the frontal matrix

favg = 1

n

n∑
i=1

(f rowi ∗ f coli) (1.7)

A prediction of the number of floating-point operations that must be performed can be
obtained from (1.7) (assuming zeros within the frontal matrix are not exploited).

Because reordering aims to reduce the length of time each variable is in the front, we
introduce the concept of the lifetime of a variable. For a given ordering, the lifetimeLif ei

of variablei is defined to belasti − f irsti , wheref irsti andlasti are the assembly step
when variablei enters and leaves the front, respectively. That is,

Lif ei = { max
1≤k,l≤n

|l − k| : aki 6= 0 andali 6= 0} (1.8)

A useful measure is the sum of the lifetimes: a small value for the sum of the lifetimes
indicates we have a good row ordering.

We observe that, ifA has a full row, the maximum row and column front sizes will ben,
irrespective of the order in which the rows ofA are assembled. Similarly, ifA has one or
more rows that are almost full, the maximum front sizes will be large. Clearly, the frontal
method is not a good choice for such systems.

Throughout this study, we shall be concerned with matrices that have a highly asymmetric
structure. For matrices with a symmetric structure, the rows can be successfully ordered
using a profile reduction algorithm such as that of Sloan [25] and Reid and Scott [20]. For
matrices with an almost symmetric pattern, good orderings can generally be obtained by
applying a profile reduction algorithm to the sparsity pattern ofA+AT. Results illustrating
this are given in [23]. We shall also only consider orderings for use with a frontal method on
a single processor. Different ordering strategies are required when implementing a frontal
algorithm in parallel. This is discussed, for example, by Camarda [2] and, for element
problems, by Scott [21], and remains a subject for further investigation.

The outline of this paper is as follows. In Section 2, we recall some basic concepts from
graph theory and, in particular, introduce the idea of the row graph of an unsymmetric
matrix. We also explain the Cuthill–McKee and Sloan algorithms for reordering the nodes
of an undirected graph. Our new reordering algorithms are introduced in Section 3. We
look at applying Cuthill–McKee and variants of Sloan’s algorithm to the row graph ofA,
and also introduce a hybrid algorithm that uses the spectral algorithm, again applied to the
row graph. Extensive numerical results illustrating the effectiveness of our new algorithms
are presented in Sections 4 and 5. In Section 6, we use the new algorithms with the frontal
solverMA42. Finally, some concluding remarks are made in Section 7.

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

192 J. A. Scott

2. Graphs and matrix reordering

2.1. Basic definitions

Before looking at row ordering algorithms, it is convenient to recall some basic concepts
from graph theory.

A graphG is defined to be a pair(V , E), whereV is a finite set ofnodes(or vertices)
v1, v2, ..., vn, andE is a finite set ofedges, where an edge is a pair(vi, vj) of distinct
nodes ofV . If no distinction is made between(vi, vj) and(vj , vi) the graph isundirected,
otherwise it is adirected graphordigraph. A labelling(orordering) of a graphG = (V , E)

with n nodes is a bijection of{1, 2, ..., n} ontoV . The integeri (1 ≤ i ≤ n) assigned to a
node inV by a labelling is called thelabel (or number) of that node. Two nodesvi andvj

in V are said to beadjacent(or neighbours) if (vi, vj) ∈ E. Thedegreeof a nodevi ∈ V is
defined to be the number of nodes inV which are adjacent tovi , and theadjacency listfor
vi is the list of these adjacent nodes. Apath of length kin G is an ordered set of distinct
nodes(vi1, vi2, ..., vik+1) where(vij , vij+1) ∈ E for 1 ≤ j ≤ k. Two nodes areconnected
if there is a path joining them. An undirected graphG is connectedif each pair of distinct
nodes is connected. Otherwise,G is disconnected and consists of two or morecomponents.
In our discussion of row ordering algorithms, we will assume that the graphG is connected.
If not, it is straightforward to apply the algorithms to each component ofG.

We now establish the well-known relationship between graphs and matrices. A labelled
graphG(A) with n nodes can be associated with any square matrixA = {aij } of ordern.
Two nodesi andj (i 6= j) are adjacent in the graph if and only ifaij is non-zero. IfA has a
symmetric sparsity pattern,G(A) is undirected, otherwiseG(A) is a digraph. The graph of
a symmetric matrix is unchanged if a symmetric permutation is performed on the matrix;
only the labelling of its nodes changes.

For unsymmetric matrices, one possibility for developing row ordering algorithms is to
use a bipartite graph. Thebipartite graphof A consists of two distinct sets ofn nodesR
andC, each set being labelled 1, 2, ..., n, together withE edges joining nodes inR to those
in C. There is an edge betweeni ∈ R andj ∈ C if and only if aij is nonzero. Here,|E|
is the total number of entries inA. The bipartite graph has been used with some success
by, for example, Coon [4] and Coon and Stadtherr [5]. However, reordering techniques for
undirected graphs have been the subject of much research and, if possible, we would like to
be able to exploit some of these techniques. This motivates us to consider in this paper using
row graphs. Row graphs were first introduced by Mayoh [19] and were used to permute
matrices to singly bordered block diagonal form. Therow graphGR of A is defined to
be the undirected graph of the symmetric matrixB = A ∗ AT, where∗ denotes matrix
multiplication without taking cancellations into account (so that, if an entry inB is zero as a
result of numerical cancellation, it is considered as a non-zero entry and the corresponding
edge is included in the row graph). The nodes ofGR are the rows ofA and two rowsi and
j (i 6= j) are adjacent if and only if there is at least one columnk of A for which aik and
ajk are both non-zero. Row permutations ofA correspond to relabelling the nodes of the
row graph.

From our discussion in Section 1, it is clear that for the frontal method to be efficient
the rows ofA should be ordered so that the matrix has a variable band form, with the band
as narrow as possible. Since we plan to exploit ordering techniques for undirected graphs,
in the following subsections we briefly outline two algorithms for bandwidth and profile
reduction of symmetric matrices, namely, the reverse Cuthill–McKee algorithm and the

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 193

Sloan algorithm. In Section 3, we consider using these algorithms to reorder the nodes of
the row graphGR to produce row orderings that are appropriate for use with a frontal solver.

2.2. The reverse Cuthill–McKee algorithm

The reverse Cuthill–McKee algorithm is primarily aimed at reducing thebandwidthB of a
symmetrically structured matrix where

B = max
(i,j)∈E

(i + 1 − j) (2.1)

The algorithm divides the nodesV = {1, 2, ..., n} into level sets. Alevel structure rooted
at a node ris defined as the partitioning ofV into levelsl1(r), l2(r), ..., lh(r) such that

1. l1(r) = {r} and
2. for i > 1, li (r) is the set of all nodes that are adjacent to nodes inli−1(r) but are not in

l1(r), l2(r), ..., li−1(r).

Cuthill–McKee orders within each level setli (r) by ordering first nodes that are neighbours
of the first node inli−1(r), then those that are neighbours of the second node inli−1(r), and
so on. The reverse Cuthill–McKee algorithm reverses the order found by Cuthill–McKee.
This does not reduce the bandwidth further but can yield worthwhile reductions in the profile
[18], where theprofile P is defined to be

P =
n∑

i=1

max
j

{i + 1 − j : (i, j) ∈ E} (2.2)

The rootr of the level structure is usually chosen to one of the ends of a pseudo-diameter
of G. Thedistancebetween nodesi andj in aG is denoted byd(i, j), and is defined to be
the number of edges on the shortest path connecting them. ThediameterD(G) of G is the
maximum distance between any pair of nodes. That is,

D(G) = max{d(i, j) : i, j ∈ V } (2.3)

A pseudo-diameterδ(G) is defined by any pair of nodesi andj in G for which d(i, j) is
close toD(G). A pseudo-diameter may be found efficiently using a modified version of the
Gibbs–Poole–Stockmeyer algorithm [13] (see [20,26]).

2.3. The Sloan algorithm

The Sloan algorithm is designed to reduce the profile (2.2) of a symmetrically structured
matrix. It has two distinct phases:

1. selection of a start node and a target end node;
2. node reordering.

In phase 1, a pseudo-diameter ofG is computed. One ends of the pseudo-diameter is
taken to be thestartnode and the othere is used as thetarget end node. In the second phase
of the algorithm, the pseudo-diameter is used to guide the reordering. Sloan ensures that
the position of a node in his ordering is not far from one for which the distance from the
target end node is monotonic decreasing. Sloan defines a node to beactiveif it is adjacent

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

194 J. A. Scott

to a node that has already been renumbered but has not itself been renumbered. He aims to
reduce the profile by reducing the number of nodes that are active at each stage and he does
this by localized reordering. Sloan begins at the start nodes and uses the priority function

Pi = −W1cdegi + W2d(i, e) (2.4)

for nodei, whereW1 andW2 are positive integer weights,cdegi (the current degree) is
the number of nodes that will become active if nodei is numbered next, andd(i, e) is
the distance to the target end node. At each stage, the next node in the ordering is chosen
from a list of eligible nodes to maximizePi . Theeligible nodesare defined to be those that
are active together with their neighbours. A node has a high priority if it causes either no
increase or only a small increase in the number of active nodes and is at a large distance
from the target end nodee. Thus, a balance is kept between the aim of keeping the number
of active nodes small and including nodes that have been left behind (further away frome

than other candidates).

3. New row ordering algorithms

We now address the problem we are interested in, that is, the reordering of the rows of an
unsymmetric matrixA for use with a frontal solver.

3.1. The RCMRO algorithm

As mentioned earlier, if the matrixA has a variable band structure, the row and column
front sizes in the frontal method will be small. Recall that the row graphGR of A is the
undirected graph ofB = A ∗ AT. If we apply the reverse Cuthill–McKee algorithm to
GR the bandwidth ofB will, in general, be reduced, and thus,A will also have a small
bandwidth. Our first idea is, therefore, to generate a row ordering for the frontal method by
applying reverse Cuthill–McKee directly toGR. We will call this algorithm the RCMRO
algorithm.

3.2. The SRO algorithm

In place of the reverse Cuthill–McKee algorithm, we can apply Sloan’s algorithm toGR.
The nodes ofGR are the rows ofA. Therefore, the first phase of the algorithm finds two
rows ofA that are at maximum (or almost maximum) distance apart. One of these rows,
the start row, is chosen as the first row to be ordered (labelled), that is, the first row that will
be assembled during the frontal method. At the start of the second phase of the algorithm,
the current degree of each row is equal to its degree. In the row graph, the degree of rowi

is the number of rowsj for which there is at least one column with entries in both rowsi

andj . AssumingA is not structurally singular, the degree of rowi, degi , is at leastl − 1
wherel is the number of entries in rowi and, in general,degi > l. Once the first row has
been ordered, its neighbours become active and the current degree of each neighbour is
decreased by one. The next candidate row for labelling will be an active row (at a distance
of one from the start row) or a row that is itself adjacent to an active row (at a distance of
two from the start row), and which causes either no increase or only a small increase in
the number of active rows. There will be no increase in the number of active rows if the

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 195

candidate row brings no new columns into the front and therefore causes no increase in the
column front size.

The algorithm proceeds in this way, at each stage aiming to keep the number of active
rows small whilst favouring rows that are at a small distance from the first row. We will
refer to this scheme as the SRO algorithm.

3.2.1. Example
We now illustrate the SRO method using the matrix with the sparsity pattern given in
Figure 1. The neighbours of each row are listed in Table 1. Initiallycdegi is the number of
neighbours of rowi. We will use weights(W1, W2) = (2, 1). For the matrix in Figure 1,
the lifetimes are given in Table 1 and the sum of the lifetimes is 22. We observe that the
minimum possible value for the sum of the lifetimes isnz, the number of entries inA,
which for example this is 15. The start and target end rows(s, e) are chosen to be(4, 6)

(d(4, 6) = 3 andd(i, j) ≤ 3, i, j = 1, 2, ..., 6), and the initial priorities are then computed
(Table 1). Row 4 is ordered first. Its neighbour, row 2, then becomes active and its priority
increases byW1 to -4. At this stage, the list of eligible rows comprises row 2 and its
unnumbered neighbours, rows 1, 3, 5. Of these, row 2 has the highest priority and is ordered
next. The priorities of rows 1, 3, 5 are updated, resulting in the matrix of Figure 2 (rows
with the priority given as—have been reordered). The remaining unnumbered rows are all
now active and the one with the highest priority is row 1. On assembling row 1, the priority
of its unnumbered neighbours, rows 3 and 5, increases byW1. Both rows 3 and 5 now have
priority -3 and the order in which they are assembled is arbitrary. Assuming row 5 is ordered
first, we obtain the final reordered matrix given in Figure 4. The sum of the lifetimes for
the reordered matrix is 18.

1 2 3 4 5 6
1 x x x
2 x x x
3 x x x x
4 x
5 x x x
6 x

Figure 1. The original matrix.

Table 1. Lists of neighbours and initial priorities for SRO method

Row i Neighbours Lif ei cdegi d(i, 6) Pi

1 2, 3, 5 3 3 1 -5
2 1, 3, 4, 5 3 4 2 -6
3 1, 2, 5, 6 3 4 1 -7
4 2 5 1 3 1
5 1, 2, 3, 6 4 4 1 -7
6 3, 5 4 2 0 -4

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

196 J. A. Scott

1 2 3 4 5 6 Priority

4 x −
2 x x x −
1 x x x -3
3 x x x x -5
5 x x x -5
6 x -4

Figure 2. Partially ordered matrix

1 2 3 4 5 6 Priority

4 x −
2 x x x −
1 x x x −
3 x x x x -3
5 x x x -3
6 x -4

Figure 3. Partially ordered matrix

1 2 3 4 5 6
4 x

2 x x x

1 x x x

5 x x x

3 x x x x

6 x

Figure 4. Final reordered matrix

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 197

3.3. The MSRO algorithm

The SRO algorithm attempts to reduce the number of rows that are active during the frontal
method. Since a row is defined to be active if it is adjacent to a row that has already been
assembled, a row is active if some of its columns are partially summed. Therefore, we
indirectly reduce the number of columns in the front by reducing the number of rows that
are active. In an attempt to reduce directly both the row and column front sizes, our second
method again uses the first phase of Sloan’s algorithm applied to the row graph to obtain
start and target end rows and then uses a modified priority function

Pi = −W1rcgaini + W2d(i, e) (3.1)

Herercgaini = rgaini + cgaini , wherergaini andcgaini are the increases to the row
and column front sizes resulting from assembling rowi next. Assembling a row into the
frontal matrix causes the row front size to either increase by one, to remain the same, or
to decrease. The row front size increases by one if no columns become fully summed, it
remains the same if a single column becomes fully summed, and it decreases if more than
one column becomes fully summed. The increase in the column front size is the difference
between the number of column indices that appear in the front for the first time and the
number that become fully summed. If this difference is negative, the column front size
decreases. Hence, ifsi is the number of columns that become fully summed when rowi is
assembled,

rgaini = 1 − si (3.2)

and

cgaini = newci − si (3.3)

wherenewci is the number of new column indices in the front. It follows that

rcgaini = 1 + newci − 2si (3.4)

and a row has a high priority if it brings a small number of new columns into the front
and results in a large number of columns becoming fully summed. We call this method the
MSRO algorithm.

3.3.1. Example
We now illustrate the MSRO method, again using the matrix given in Figure 1 and weights
(W1, W2) = (2, 1). The start and target end rows(s, e) are chosen to be(4, 6) and the initial
priorities are given in Table 2. Note that initiallyrcgaini is just one more than the number
of entries in rowi.

As in the SRO method, row 4 is ordered first, followed by row 2. Row 2 brings columns
4 and 5 into the front. Since row 1 has an entry in column 4, its priority increases byW1.
The priority of rows 3 and 5 is also increased byW1 and, because row 5 has entries in both
columns 4 and 5, its priority increases by 2∗ W1, resulting in the matrix of Figure 5.

Row 5 has the highest priority and is ordered next, bringing column 6 into the front. The
priorities of rows 3 and 6, which have entries in column 6, are increased, giving the matrix
in Figure 6.

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

198 J. A. Scott

Table 2. Initial priorities for MSRO method

Row i rcgaini d(i, 6) Pi

1 4 1 -7
2 4 2 -6
3 5 1 -9
4 2 3 -1
5 4 1 -7
6 2 0 -4

1 2 3 4 5 6 Priority

4 x −
2 x x x −
1 x x x -5
3 x x x x -7
5 x x x -3
6 x -4

Figure 5. Partially ordered matrix

1 2 3 4 5 6 Priority

4 x −
2 x x x −
5 x x x −
1 x x x -5
3 x x x x -5
6 x -2

Figure 6. Partially ordered matrix

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 199

1 2 3 4 5 6
4 x

2 x x x

5 x x x

6 x

3 x x x x

1 x x x

Figure 7. Final reordered matrix

We now order row 6. The priority of row 3 then increases so that it is ordered ahead of
row 1. The final reordered matrix is given in Figure 7. The sum of the lifetimes for the
reordered matrix is 16.

3.4. Spectral ordering algorithms

Spectral algorithms have been used in recent years for matrix profile and wavefront re-
duction. Barnard, Pothen and Simon [1] described a spectral algorithm that associates a
Laplacian matrixL with a given matrixS = {sij } with a symmetric sparsity pattern,

L = {lij } =

−1 if i 6= j and sij 6= 0
0 if i 6= j and sij = 0∑

i 6=j |lij | if i = j.

(3.5)

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian matrix
is termed aFiedler vector. The spectral permutation of the nodes of the undirected graph
G(S) is computed by sorting the components of a Fiedler vector into monotonically non-
increasing or non-decreasing order.

For matricesA with an unsymmetric sparsity pattern, we can apply the spectral method
to the symmetric matrixB = A ∗ AT, whose undirected graph is the row graphGR of A.
The spectral permutation of the nodes of this graph yields a row ordering and we shall try
using this with the frontal method. In our numerical experiments (see Section 4), we call
this method thespectral row reorderingalgorithm.

3.5. A hybrid method

When ordering symmetrically structured matrices for a small profile, Kumfert and Pothen
[17] observed that spectral orderings do well in a global sense but are often poor locally.
They therefore proposed using the spectral method to find a global ordering that guides the
second phase of Sloan’s method. Their results show that this can yield a final ordering with a
much smaller profile than using either the spectral method alone or Sloan’s method using the
Gibbs–Poole–Stockmeyer pseudo-diameter. Further experiments by Reid and Scott [20,24]
support this view, particularly for very large problems. The so-calledhybrid methoduses a
priority function in which the distanced(i, e) from the target end node is replaced bypi ,
the position of nodei in the spectral ordering. Specifically, for a graph withn nodes, in

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

200 J. A. Scott

place of the priority function (2.4), Reid and Scott used the priority function

Pi = −W1cdegi − W2(h/n)pi (3.6)

wherecdegi is again the current degree of nodei andh is the number of level-sets in the
level set structure rooted at the start node. The normalization of the second term results in
the factor forW2 varying up toh, as in (3.1). Without normalization, the second term would
have a much larger influence.

In the present study, we are concerned with obtaining row orderings for unsymmetric
matricesA for use with a frontal algorithm. We can extend the hybrid method to this class
of problems by applying it to the row graph ofA. We will consider two versions of the
hybrid row orderingalgorithm. Both will computepi by applying the spectral algorithm to
B = A∗AT. The first will then use the priority function (3.6) and the second will generalise
(3.1) and use the priority function

Pi = −W1rcgaini − W2(h/n)pi (3.7)

In our numerical experiments, we will call the resulting methods the hybrid SRO and hybrid
MSRO algorithms.

We remark that, in the hybrid row ordering algorithms any input ordering can be used
in place of the spectral ordering. However, in our numerical experiments we use only the
spectral ordering. In future work we plan to look at using other input orderings.

4. Numerical results

In this section, we first describe the problems that we use for testing the row ordering
algorithms discussed in this paper and then present numerical results.

Table 3. The test problems

Number of
Identifier Order entries Description/discipline

bayer04 20 545 159 082 Chemical process simulation
bayer09 3 083 21 216 Chemical process simulation
bp1600 1 600 4 841 Basis matrix from LP problem
extr1 2 837 11 407 Dynamic simulation problem
gre1107 1 107 5 664 Simulation studies in computer systems
hydr1 5 308 23 752 Dynamic simulation problem
lhr07c 7 337 156 508 Light hydrocarbon recovery
lhr14c 14 270 307 858 Light hydrocarbon recovery
meg1 2 904 58 142 Chemical process simulation
onetone2 36 057 227 628 Harmonic balance method, one-tone
orani678 2 529 90 158 Economic model
rdist1 4 134 94 408 Reactive distillation problem
west2021 2 021 7 353 Chemical engineering

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 201

4.1. Test problems

Each of the test problems arises from a real engineering or industrial application. A brief
description of each problem is given in Table 3. The problems are all taken from either the
Harwell–Boeing collection [10] or the University of Florida Sparse Matrix Collection [6].
Note that all the test matrices have a highly asymmetric structure, with a symmetry index
of less than 0.2.

The test codes are written in standard Fortran 77, and all the results presented in this
section were obtained using the EPC (Edinburgh Portable Compilers, Ltd.) Fortran 90
compiler with optimization-O running on a 143 MHz Sun Ultra 1. In the experiments
involving the spectral method, the Fielder vector of the row graph is obtained using Chaco
2.0 [27].

4.2. Performance of the new algorithms

We first compare the performance of the new row ordering algorithms that were introduced
in Section 3. For the SRO and MSRO algorithms (and hybrid versions), we use the weights
(W1, W2) equal to each of the 13 pairs(1, 64), (1, 32), (1, 16), ...,(1, 1), (2, 1), ...,(64, 1)

and select the best result (we illustrate the sensitivity of the algorithms to the choice of the
weights in the next subsection). In Table 4, the average front sizefavg ∗ 102 is given. We
highlight in bold the smallest values for each problem (and any that are within five per cent
of the smallest). For comparison, we include the original ordering (although it should be
noted that the original ordering may not be particularly significant, since this is just the
order in which the data were supplied when they were included in the sparse matrix test
set). Our results show that, in general, the smallest average front size is obtained using the
hybrid MSRO algorithm. We now discuss our findings in more detail.

For a significant proportion of the test examples, the orderings obtained using the RCMRO
algorithm are a significant improvement on the original ordering. But, in each case, the SRO
ordering is better than the RCMRO ordering and, in general, MSRO produces an ordering

Table 4. The average front size (favg ∗ 102) for the new row ordering algorithms. The smallest
values are highlighted

Hybrid Hybrid
Identifier Original RCMRO SRO MSRO Spectral SRO MSRO

bayer04 1 909 5 505 1 993 515 120 122 72
bayer09 248 65 43 21 14 17 12
bp1600 147 474 522 157 86 178 90
extr1 49 17 6 4 4 5 3
gre1107 386 190 153 81 100 122 59
hydr1 310 64 23 10 6 6 3
lhr07c 521 218 166 62 90 95 48
lhr14c 1 076 1 030 717 153 145 154 117
meg1 11 823 4 687 1 298 1 949 1 784 1 438 1 014
onetone2 1 131 51 041 5 843 864 1 782 1 683 648
orani678 6 193 9 719 5 431 5 828 1 659 5 049 2 265
rdist1 146 42 29 17 23 25 17
west2021 179 172 20 6 16 11 4

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

202 J. A. Scott

Table 5. The maximum number of entries in a row and the length of the pseudo diameter of the
row graph

Identifier Max. entries in a row Pseudo-diameter

bayer04 33 43
bayer09 34 30
bp1600 304 7
extr1 10 57
gre1107 7 13
hydr1 14 54
lhr07c 63 49
lhr14c 63 41
meg1 411 7
onetone2 33 23
orani678 1 110 6
rdist1 81 54
west2021 12 15

with a smaller average front size than SRO: MSRO is only outperformed by SRO for
problemsorani678 andmeg1. This shows that, although worthwhile reductions in the
front sizes can be achieved by applying an existing bandwidth or profile reduction algorithm
to the row graph ofA, the more sophisticated approach that modifies the priority function
in an attempt to limit both the row and column front sizes has greater success.

By comparing the results for the spectral ordering with those of the original ordering,
we see that, in general, applying a spectral method to the row graph ofA also substantially
reduces the average front size. A comparison of the SRO and hybrid SRO results shows
that combining a spectral ordering with the SRO method improves the SRO ordering but
the hybrid SRO ordering is often poorer than the spectral ordering. However, the hybrid
MSRO orderings outperform both the MSRO and the spectral orderings.

To try and get an insight into when the MSRO and hybrid MSRO algorithms perform
well, we consider the pseudo-diameters of the matrices. In Table 5, for each test problem
we give the maximum number of entries in a row of the matrix together with the length
of the pseudo-diameter of the row graph. We see that there are three problems,bp1600 ,
meg1 andorani678 , that have at least one row with a large number of entries. This in
turn results in a short pseudo-diameter. The problems with a short pseudo-diameter are
those for which the MSRO algorithm performs least well. On the basis of our experiments,
we conclude that the MSRO performs well if the pseudo-diameter of the associated row
graph is sufficiently long and, in general, this will be the case ifA has no rows with a large
proportion of non-zero entries.

For the problems with a short pseudo-diameter, the hybrid MSRO algorithm substantially
reduces the average front size compared with the MSRO algorithm. Ifd(s, e) is small, the
priority function (3.1) will be insensitive to theW2 term and the local heuristic of the row
and column front size gain will largely determine the row ordering. It would appear that
the spectral ordering of the interior nodes of the row graph is important and can provide a
better guide than the pseudo-diameter for the second phase of the MSRO algorithm.

The results presented in this section suggest that, of the new row ordering algorithms
introduced in this paper, the hybrid MSRO algorithm yields the best results. For each test

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 203

problem, this method gives large reductions in the average front size. A disadvantage is that
the spectral ordering for the row graph must be computed. This calculation can be relatively
expensive. We do not include detailed timings for the hybrid methods because our codes are
written in Fortran while the Chaco package is written in C. Furthermore, the Chaco package
performs a large amount of data checking that would not necessarily be required if we were
to incorporate code for computing the spectral ordering within our row reordering software
package. To give an indication of the time required to compute the spectral ordering, for
problemlhr14c , Chaco took 25 seconds and, using the spectral ordering as input data,
the hybrid MSRO algorithm required 5 seconds. Computing the spectral ordering may,
therefore, be the most expensive part of the reordering algorithm. If this cost is prohibitive,
the MSRO algorithm should be used. The importance of the cost of reordering the rows is
discussed further in Section 6.

4.3. Adjusting the weights

In this section, we consider the effect of adjusting the weights in the priority function for
the MSRO and hybrid MSRO algorithms. For his profile reduction algorithm for symmetric
matrices, Sloan [25] recommended using the weights(2, 1) but Kumfert and Pothen [17]
found that, for some problems, other values (in particular,(16, 1)) gave much better results.
We want to consider how sensitive the MSRO and hybrid MSRO ordering algorithms are to
the choice of the weights. We have examined the front sizes with(W1, W2) equal to each of
the 13 pairs(1, 64), (1, 32), (1, 16), ...,(1, 1), (2, 1), ...,(64, 1) on all the test matrices. In
Tables 6 and 7 we present results for a subset of our test problems. The problems we have
selected illustrate the different behaviour we observed. In the tables, percentage increases
from the best value offavg are given.

We observe that the choice of weights can make a significant difference to the performance
of the algorithms. However, even a poor choice of weights can give large improvements on
the original ordering. For both methods there are problems for whichfavg rises rapidly for
large values ofW1/W2. Following Kumfert and Pothen [17], we call these class 2 problems

Table 6. Percentage increases in average front size above the minimum value for the MSRO
algorithm

Weights orani678 extr1 bayer09 west2021 bayer04 lhr07c gre1107

(1, 64) 10.0 41.6 18.9 186.9 202.3 72.1 47.7
(1, 32) 12.6 41.6 17.5 186.9 205.2 70.8 47.7
(1, 16) 6.8 41.6 17.2 186.9 174.6 67.7 47.7
(1, 8) 3.9 39.5 13.9 118.8 110.8 68.1 48.1
(1, 4) 4.4 12.6 1.5 81.1 73.7 64.6 40.0
(1, 2) 0.0 1.4 0.0 35.9 72.5 122.8 20.6
(1, 1) 4.7 0.0 10.9 24.7 69.9 9.3 1.6
(2, 1) 10.7 11.1 35.4 0.0 8.2 7.0 0.0
(4, 1) 10.7 66.9 76.7 266.4 6.5 5.8 1.5
(8, 1) 10.7 329.0 101.7 795.9 16.5 0.0 1.5
(16, 1) 10.7 918.8 97.5 756.0 5.3 0.0 1.5
(32, 1) 10.7 918.8 94.2 756.0 0.0 0.0 1.5
(64, 1) 10.7 918.8 94.2 756.0 0.0 0.0 1.5

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

204 J. A. Scott

Table 7. Percentage increases in average front size above the minimum value for the hybrid
MSRO algorithm

Weights orani678 extr1 bayer09 west2021 bayer04 lhr07c gre1107

(1, 64) 0.0 34.0 37.6 205.8 36.9 81.5 66.1
(1, 32) 67.2 26.3 32.7 166.7 23.6 78.6 61.6
(1, 16) 73.7 15.7 24.1 102.0 10.7 74.6 53.2
(1, 8) 76.0 6.3 12.0 50.9 3.4 69.7 4001
(1, 4) 41.2 1.9 7.3 21.0 0.0 70.8 24.9
(1, 2) 91.0 0.0 0.0 12.5 0.5 84.1 12.6
(1, 1) 227.1 2.1 9.1 0.0 4.1 96.2 5.3
(2, 1) 373.0 2.7 3.6 11.6 43.1 70.7 0.7
(4, 1) 173.8 3.4 21.0 14.2 191.2 7.6 0.0
(8, 1) 173.8 11.8 15.0 13.1 426.3 6.6 0.0
(16, 1) 173.8 38.7 29.2 13.3 427.2 0.0 0.0
(32, 1) 173.8 58.4 27.1 13.3 435.8 0.0 0.0
(64, 1) 173.8 712.0 27.1 13.3 435.8 0.0 0.0

Table 8. Percentage increases in average front size above the minimum value when the
recommended weights are used

Identifier MSRO Hybrid MSRO

bayer04 0.0 0.5
bayer09 46.4 0.0
bp1600 18.0 1.2
extr1 11.3 0.0
gre1107 0.0 0.0
hydr1 0.0 4.7
lhr07c 0.0 0.0
lhr14c 0.0 17.5
meg1 43.9 9.6
onetone2 0.0 0.0
orani678 10.7 0.0
rdist1 0.0 12.2

and the rest class 1 problems. However, we note that a problem may be a class 1 problem
for the MSRO method and a class 2 problem for the hybrid method. This is illustrated by
bayer04 . For class 1 problems, it may be important to choose a large value forW1/W2.
For class 2 problems, for the MSRO algorithm, the weights(1, 1) or (2, 1) are generally
reasonable choices. Since we do not know beforehand to which class a problem belongs,
for the MSRO algorithm we recommend trying the weights(2, 1) and(32, 1) and selecting
the better result. For the hybrid algorithm, we recommend the weights(1, 2) and(32, 1),
unless the matrix has a short pseudo-diameter. In this case, the best results are achieved
with a large value ofW2, so that the ordering more closely follows the spectral ordering. We
thus make a further recommendation that, if the row graph has a short pseudo-diameter, the
hybrid method should use the weights (1, 64). In Table 8, we show the percentage increases
in favg from the best value when the recommended weights are used.

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 205

5. Comparisons with other row ordering algorithms

So far, we have presented results for the new row ordering algorithms introduced in this paper
and, on the basis of these results, we recommend the MSRO or hybrid MSRO algorithms.
In this section, we compare the performance of these new algorithms with two existing row
ordering algorithms that are designed for unsymmetric matrices for use with frontal solvers.

The restricted minimum column degree (RMCD) algorithm was recently discussed by
Camarda [2]. This algorithm uses the concept of a net. Anetis defined to be a columnl and
all the rowsi such thatail is non-zero. This concept is useful because, when a net has been
assembled, columnl is fully summed and an elimination can be performed. At each stage
of reordering, the degree of a columnl is the number of non-zero entriesail in the rows of
A that have not yet been reordered. The RMCD algorithm stores the degree of each column
and, at each stage, chooses the column of minimum degree and assembles all the rows in
the net corresponding to the chosen column into the frontal matrix. The column degrees are
then updated before the next column is selected. Rapid determination of the column with
minimum degree is achieved through the use of linked lists. When the degree of a column
is updated, the column is placed at the head of the linked list of columns of that degree.
Thus, partially summed columns are given priority.

The RMCD algorithm is a local heuristic ordering: at each stage it chooses the column
of minimum degree without reference to effects on later stages. An alternative is to use
an approach based on global heuristics, such as the recursive graph partitioning algorithm
introduced by Coon [4] and Coon and Stadtherr [5] and modified by Camarda [2]. The goal
of these algorithms is to find a partitioning of the bipartite graph ofA such that the number
of nets cut by the partition is minimized. The new minimum net cut (NMNC) algorithm of
Camarda is more expensive to implement than the simple RMCD algorithm but the results
presented in [2] show that it can yield better orderings.

We have performed numerical experiments using both the RMCD and NMNC algorithms.
Our findings are presented in Table 9. We see that the performance of the RMCD algorithm
can vary greatly between problems and, although more consistent, the NMNC algorithm
generally is only able to achieve modest reductions in the size of the frontal matrix. In none
of the test examples did NMNC produce the smallest average front size. In most cases, the
MSRO and hybrid MSRO algorithms perform much better than RCMD: there are only three
problems,bp1600 , meg1andorani678 , for which RMCD gives the best results. These
are the problems that have small pseudo-diameters (see Table 5), and we have already seen
that the MSRO algorithms perform relatively poorly on these problems.

6. Row orderings and frontal solvers

We have developed new algorithms for reordering the rows of unsymmetric matrices for
small front sizes. As discussed in the introduction, the main motivation behind this work is
the need for row orderings to improve the efficiency of frontal solvers. In this section, we
present results that illustrate the effects of using the MSRO row orderings with a frontal
solver.

In the Harwell Subroutine Library [14], theMA42 package of Duff and Scott [11] is
a frontal solver for general unsymmetric problems. The code was primarily designed for
unassembled finite-element matrices, but also includes an option for entering the assembled
matrix row-by-row, and this is the option we use in our experiments.MA42uses reverse

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

206 J. A. Scott

Table 9. The average front size (favg ∗ 102) for the different reordering algorithms. The smallest
values are highlighted

Hybrid
Identifier Original RMCD NMNC MSRO MSRO

bayer04 1 909 4 162 1 682 515 72
bayer09 248 152 229 21 12
bp1600 147 56 86 157 90
extr1 49 486 34 4 3
gre1107 386 124 364 81 59
hydr1 311 231 197 10 3
lhr07c 521 2 180 150 62 48
lhr14c 1 076 7 645 266 153 117
meg1 11 823 461 3 094 1 949 1 014
onetone2 1 131 141 510 1 001 864 648
orani678 6 193 616 8 959 5 828 2 265
rdist1 146 1 252 20 17 17
west2021 179 28 151 6 4

communication to obtain information from the user. The structure of the problem is first
provided by the user by calling a subroutine for each row ofA. The primary reason for
these calls is to establish when variables are fully summed and eligible for elimination.
A set of calls to another subroutine enables estimates to be made for the size of the files
required to hold the factors and for the maximum row and column front sizes. In these
symbolic phases, only the integer indexing information for the rows is used. The numerical
factorization is then performed with the user required to call a further subroutine for each
row. The information from the earlier symbolic phases is used to control the pivot selection
and elimination within the current frontal matrix. Optionally, forward elimination can be
performed on a set of right-hand side vectors, in which case a final back-substitution phase
yields appropriate solutions. Subsequent right-hand sides can be solved using the matrix
factors and a single subroutine call. The code optionally uses direct access files for the
matrix factors. This keeps the main memory storage requirements to a minimum. This
option is used in our experiments and theMA42timings we present in the following tables
include the input/output overhead for using direct access files. The ‘In core’ storage quoted
is the storage required for the frontal matrix. In addition, an integer array of lengthn is
required. The ‘Factor’ storage is the sum of the number of real and the number of integer
words needed to hold the matrix factors. In our experiments, we use a minimum pivot block
size of 16 and we use a version ofMA42that attempts to exploit zeros within the front (see
[22] for details).

In our tests withMA42, for each problem where values for the entries of the matrix are
not supplied, values are generated using the HSL pseudo-random number generatorFA01.
The number of floating-point operations (‘ops’) counts all operations (+,-,*,/) equally. The
‘Analyse+Factorize’ times include all the time to reorder the matrix, perform the symbolic
factorization and factorize the matrixA. The ‘Fast Factorize’ time is that needed for sub-
sequent factorizations of a matrix with the same sparsity pattern asA. The ‘Solve’ times
quoted are for a single right-hand sideb and do not include the time required to perform

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 207

iterative refinement. The experimental results given in Table 10 were obtained on a Sun
Ultra 1, and those quoted in Table 11 were obtained on a single processor of a CRAY J932
using 64-bit floating-point arithmetic and the vendor-supplied BLAS. The CRAY Fortran
compiler f90 was used, with default options.

Results are presented for the original ordering, the MSRO ordering, and the hybrid MSRO
ordering, using the values for the weights recommended in Section 4.3. In addition, because
the RMCD algorithm performed well on problemsbp1600 , meg1 andorani678 , for
these problems we include results for the RMCD ordering. The timings for the hybrid algo-
rithm do not include the time required to generate the spectral ordering. Consequently, the
‘Analyse+factorize’ times for the hybrid algorithm are smaller than those for the MSRO
algorithm. The difference between the ‘Analyse+Factorize’ time and the ‘Fast Factorize’
time for the original ordering is the time required byMA42 to perform the symbolic fac-
torization. Since the symbolic factorization time is independent of the row order, we can
deduce the time taken to reorder the matrix. We see that for the MSRO and hybrid MSRO
algorithms, the symbolic factorization time is small compared with the reordering and ‘Fast
Factorize’ times. We observe that it is much more expensive to reorder the matrix on the
CRAY. This is because of slow integer arithmetic on the CRAY. However, as the ordering
routine is separate from the frontal solver, if the reordering time is important to the user, the
matrix can be reordered on one machine and the row order then passed to the CRAY for the
factorization and solve phases. In many practical applications, the number of factorizations
of matrices with the same structure but different numerical values is likely to be large. In
this case, the cost of a single matrix reordering will be an insignificant part of the total cost
and it is worthwhile spending extra time getting an improved ordering.

The results demonstrate the importance of reordering the rows and illustrate that we are
able to achieve substantial savings in the factorization and solve times, the operation count,
the in-core storage, and the factor storage. We note that the effect of using level 3 BLAS
means that the poorer orderings can have a higher Megaflop rate so that, for some problems
(particularly on the CRAY), the ratio of times, before and after ordering, is not as high as
the operation count ratio. Furthermore,MA42is able to partially offset the effect of a poor
ordering by exploiting zeros within the frontal matrix (see also [3,12]).

7. Conclusions

In this paper, we have looked at the problem of reordering the rows of a general unsymmetric
matrix A for use with a frontal solver. We have used the row graph ofA and applied
reverse Cuthill–McKee and variants of Sloan’s algorithm to this graph. We have found that
the SRO algorithm that applies Sloan’s algorithm directly to the row graph outperforms
Cuthill–McKee but generally does not perform as well as the MSRO algorithm, which uses
a modified priority function that attempts to directly limit the growth in the row and column
front sizes at each assembly step. The MSRO algorithm works well on a wide range of
problems and in general produces orderings that are much better than those obtained by
the existing RMCD and NMNC ordering algorithms. The only problems we have found on
which it works less well are those for which the row graph has a short pseudo-diameter.

We have also looked at applying the spectral method to the row graph. Our results suggest
that the hybrid MSRO method is superior to the spectral method and outperforms MSRO. A
possible disadvantage of the hybrid method is the need to compute a global priority function.
The time taken to compute a spectral ordering is greater than that needed to compute the

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

208 J. A. Scott

Table 10. The results of reordering the rows for the frontal solverMA42using the MSRO and
hybrid MSRO algorithms. (Sun Ultra)

CPU time (seconds)
Storage (Kwords)

Analyse+ Fast Factor ops
Identifier Ordering Factorize Factorize Solve (× 106) In core Factor

bayer04 Original 22.7 22.1 0.94 288.2 419 3 257
MSRO 18.1 13.3 0.98 269.4 178 3 206
Hybrid 10.1 5.9 0.72 123.8 32 2 333

bayer09 Original 1.20 0.96 0.10 13.2 73 273
MSRO 1.16 0.48 0.07 5.9 16 193
Hybrid 0.96 0.37 0.06 4.6 6 180

bp1600 Original 0.28 0.20 0.04 2.0 47 61
MSRO 0.34 0.24 0.03 3.4 81 73
Hybrid 0.30 0.19 0.02 2.8 54 65
RMCD 0.29 0.26 0.03 2.5 29 75

extr1 Original 0.53 0.48 0.06 3.7 14 159
MSRO 0.54 0.30 0.05 2.7 2 135
Hybrid 0.52 0.34 0.05 2.5 2 132

gre1107 Original 1.30 1.23 0.08 37.5 84 293
MSRO 0.64 0.50 0.05 10.4 24 161
Hybrid 0.71 0.62 0.05 9.9 18 162

hydr1 Original 1.8 1.60 0.13 12.5 57 392
MSRO 1.3 0.71 0.11 7.6 6 308
Hybrid 1.1 0.67 0.09 5.5 3 271

lhr07c Original 12.0 11.7 0.44 125.5 146 1 401
MSRO 8.7 3.8 0.28 57.6 41 1 005
Hybrid 7.7 3.5 0.32 48.7 22 936

lhr14c Original 24.5 23.9 0.80 235.7 276 2 719
MSRO 19.0 9.2 0.58 149.3 67 2 198
Hybrid 17.0 8.2 0.56 128.8 94 2 040

meg1 Original 27.9 27.7 0.50 579.5 2921 1 623
MSRO 14.1 11.5 0.28 273.9 824 1 114
Hybrid 12.0 10.5 0.33 246.2 189 1 226
RMCD 2.4 2.3 0.17 16.6 202 575

onetone2 Original 50.6 49.5 2.65 683.8 238 7 572
MSRO 46.4 40.8 2.46 826.8 209 6 755
Hybrid 65.1 60.2 3.25 1757.4 145 9 834

orani678 Original 28.9 28.6 0.59 892.2 1605 2 284
MSRO 28.2 11.2 0.26 125.0 2117 808
Hybrid 21.9 12.4 0.37 298.0 747 1 255
RMCD 4.1 3.9 0.22 84.2 368 771

rdist1 Original 4.7 4.6 0.27 90.3 30 1 050
MSRO 2.7 1.2 0.14 15.4 4 405
Hybrid 2.7 1.3 0.12 17.8 7 429

west2021 Original 0.60 0.45 0.05 3.8 62 131
MSRO 0.40 0.19 0.04 1.3 3 80
Hybrid 0.39 0.23 0.04 1.3 2 81

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 209

Table 11. The results of reordering the rows for the frontal solverMA42using the MSRO and
the hybrid MSO algorithms. (CRAY J932)

CPU Time (seconds)

Identifier Ordering Analyse+ Factorize Fast Factorize Solve

bayer04 Original 11.2 9.8 0.47
MSRO 36.2 7.9 0.46
Hybrid 26.3 6.0 0.42

bayer09 Original 1.2 0.99 0.08
MSRO 3.9 0.74 0.07
Hybrid 3.3 0.71 0.07

bp1600 Original 0.33 0.27 0.02
MSRO 0.76 0.26 0.02
Hybrid 0.59 0.24 0.02
RCMD 0.55 0.25 0.02

extr1 Original 0.87 0.69 0.04
MSRO 1.52 0.60 0.03
Hybrid 1.30 0.58 0.03

gre1107 Original 0.70 0.62 0.02
MSRO 0.84 0.38 0.01
Hybrid 0.72 0.37 0.01

hydr1 Original 1.9 1.6 0.06
MSRO 3.9 1.2 0.06
Hybrid 2.7 1.1 0.06

lhr07c Original 4.3 3.6 0.11
MSRO 33.9 2.7 0.09
Hybrid 25.3 2.6 0.08

lhr14c Original 9.1 7.6 0.20
MSRO 65.9 5.6 0.17
Hybrid 50.3 5.4 0.16

meg1 Original 9.0 8.7 0.09
MSRO 19.6 3.3 0.06
Hybrid 11.9 3.1 0.07
RMCD 2.2 1.6 0.05

onetone2 Original 21.3 18.9 0.67
MSRO 43.4 17.9 0.62
Hybrid 44.6 23.5 0.75

orani678 Original 8.5 8.1 0.13
MSRO 127.1 3.4 0.06
Hybrid 70.9 3.3 0.08
RMCD 2.6 1.8 0.07

rdist1 Original 2.7 2.2 0.06
MSRO 9.8 1.3 0.04
Hybrid 8.8 1.3 0.04

west2021 Original 0.71 0.58 0.019
MSRO 1.37 0.41 0.017
Hybrid 0.96 0.41 0.017

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

210 J. A. Scott

pseudo-diameter that provides start and end nodes for the MSRO algorithm. For this reason,
if the trade-off between the quality of the ordering and the time taken for computing the
ordering favours fast reordering algorithms, the MSRO algorithm may be preferred. In our
experiments with the frontal method, we observed that the cost of computing a row ordering
can significantly increase the time taken to perform the analyse phase, but the savings in
the factorization and solve times, as well as in the main memory requirements and factor
storage, achieved through using an efficient ordering can justify the ordering cost. This is
particularly true if a series of matrices with the same sparsity pattern are to be factorized
since the row ordering needs only to be performed once.

Acknowledgements

I would like to thank Kyle Camarda for sending me a copy of his code that implements the NMNC algorithm.
This code was used to obtain the NMNC results included in Table 9. I am also grateful to my colleagues Iain
Duff and John Reid for their interest in this work and for commenting on a draft of this paper.

REFERENCES

1. S. Barnard, A. Pothen and H. Simon. A spectral algorithm for envelope reduction of sparse
matrices.Numer. Lin. Alg. Appl., 2, 317–198, 1995.

2. K. Camarda.Ordering strategies for sparse matrices in chemical process simulation. PhD
thesis, University of Illinois at Urbana-Champaign, 1997.

3. K. Cliffe, I. Duff and J. Scott. Performance issues for frontal schemes on a cache-based high
performance computer.Int. J. Numer. Methods in Engng., 42, 127–143, 1998.

4. A. Coon. Orderings and direct methods for coarse granular parallel solutions in equation-
based flowsheeting. PhD thesis, University of Illinois, 1990.

5. A. Coon and M. Stadtherr. Generalized block-triangular matrix orderings for parallel compu-
tation in process flowsheeting.Comput. Chem. Eng., 96, 787–805, 1995.

6. T. Davis. University of Florida Sparse Matrix Collection.NA Digest, 97(23), 1997.
7. J. Dongarra, J. DuCroz, I. Duff and S. Hammarling. A set of level 3 basic linear algebra

subprograms.ACM Trans. Math. Soft., 16(1), 1–17, 1990.
8. I. Duff. MA32—a package for solving sparse unsymmetric systems using the frontal method.

Report AERE R10079, Her Majesty’s Stationery Office, London, 1981.
9. I. Duff. Design features of a frontal code for solving sparse unsymmetric linear systems

out-of-core.SIAM J. Sci. Stat. Comput., 5, 270–280, 1984.
10. I. Duff, R. Grimes and J. Lewis. Users’ guide for the Harwell-Boeing sparse matrix collection

(release I). Technical Report RAL-TR-92-086, Rutherford Appleton Laboratory, 1992.
11. I. Duff and J. Scott. The design of a new frontal code for solving sparse unsymmetric systems.

ACM Trans. Math. Soft., 22(1), 30–45, 1996.
12. I. Duff and J. Scott. MA62—a new frontal code for sparse positive-definite symmetric systems

from finite-element applications. Technical Report RAL-TR-97-012, Rutherford Appleton
Laboratory, 1997.

13. N. Gibbs, W. Poole and P. Stockmeyer. An algorithm for reducing the bandwidth and profile
of a sparse matrix.SIAM J. Numer. Anal., 13, 236–250, 1976.

14. Harwell Subroutine Library.A Catalogue of Subroutines (Release 12). Advanced Computing
Department, AEA Technology, Harwell Laboratory, Oxfordshire, England, 1996.

15. P. Hood. Frontal solution program for unsymmetric matrices.Int. J Numer. Methods in Engng.,
10, 379–400, 1976.

16. B. Irons. A frontal solution program for finite-element analysis.Int. J Numer. Methods in
Engng., 2, 5–32, 1970.

17. G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront reduction.
BIT, 18, 559–590, 1997.

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

A new row ordering strategy for frontal solvers 211

18. J. Liu and A. Sherman. Comparative analysis of the Cuthill–McKee and the reverse Cuthill–
McKee ordering algorithms for sparse matrices.SIAM J. Numer. Anal., 13, 198–213, 1976.

19. B. Mayoh. A graph technique for inverting certain matrices.Math. Comput., 19, 644–646,
1965.

20. J. Reid and J. Scott. Ordering symmetric sparse matrices for small profile and wavefront.
Technical Report RAL-TR-98-016, Rutherford Appleton Laboratory, 1998. Tp appear inInt.
J. Numer. Methods in Engng.

21. J. Scott. Element resequencing for use with a multiple front algorithm.Int. J. Numer. Methods
in Engng., 39, 3999–4020, 1996.

22. J. Scott. Exploiting zeros in frontal solvers. Technical Report RAL-TR-98-041, Rutherford
Appleton Laboratory, 1997.

23. J. Scott. A new row ordering strategy for frontal solvers. Technical Report RAL-TR-98-056,
Rutherford Appleton Laboratory, 1998.

24. J. Scott. On ordering elements for a frontal solver. Technical Report RAL-TR-98-031, Ruther-
ford Appleton Laboratory, 1998. To appear inComm. numer. methods eng.

25. S. Sloan. An algorithm for profile and wavefront reduction of sparse matrices.Int. J. Numer.
Methods in Engng., 23, 1315–1324, 1986.

26. S. Sloan. A Fortran program for profile and wavefront reduction.Int. J. Numer. Methods in
Engng., 28, 2651–2679, 1989.

27. B. Hendrickson and R. Leland. The Chaco user’s guide: version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1995.

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 189–211 (1999)

