
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng 2006; 22:1015–1029
Published online 27 April 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.870

A frontal solver for the 21st century

Jennifer A. Scott∗;†

Computational Science and Engineering Department; Atlas Centre; Rutherford Appleton Laboratory;
Didcot; Oxon OX11 0QX; U.K.

SUMMARY

In recent years there have been a number of important developments in frontal algorithms for solving
the large sparse linear systems of equations that arise from �nite-element problems. We report on the
design of a new fully portable and e�cient frontal solver for large-scale real and complex unsymmetric
linear systems from �nite-element problems that incorporates these developments. The new package
o�ers both a �exible reverse communication interface and a simple to use all-in-one interface, which
is designed to make the package more accessible to new users. Other key features include automatic
element ordering using a state-of-the-art hybrid multilevel spectral algorithm, minimal main memory
requirements, the use of high-level BLAS, and facilities to allow the solver to be used as part of a
parallel multiple front solver. The performance of the new solver, which is written in Fortran 95, is
illustrated using a range of problems from practical applications. The solver is available as package
HSL MA42 ELEMENT within the HSL mathematical software library and, for element problems, supersedes
the well-known MA42 package. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: large sparse linear systems; �nite elements; frontal method; out-of-core; Fortran 95

1. INTRODUCTION

We are interested in the e�cient solution of large sparse linear systems of equations

AX =B (1)

where the system matrix A is of order n× n, B is an n× nrhs (nrhs¿1) matrix of right-hand
sides and X is the n× nrhs solution matrix. Such systems arise in many areas of computa-
tional science and engineering; our interest is in systems (1) that arise from �nite-element

∗Correspondence to: Jennifer A. Scott, Computational Science and Engineering Department, Atlas Centre, Rutherford
Appleton Laboratory, Didcot, Oxon OX11 0QX, U.K.

†E-mail: j.a.scott@rl.ac.uk

Contract=grant sponsor: EPSRC; contract=grant number: GR=S42170

Received 19 October 2005
Revised 17 February 2006

Copyright ? 2006 John Wiley & Sons, Ltd. Accepted 24 February 2006

1016 J. A. SCOTT

applications. In this case, A is an elemental matrix, that is, A can be written as the sum

A=
nelt∑
k=1
A(k) (2)

where each matrix A(k) has nonzeros in a small number of rows and columns and corresponds
to the matrix from element k. In practice, each A(k) is held in packed form as a small dense
matrix, called an element matrix, of order equal to the number of nodes in element k times
the number of degrees of freedom per node. A list of the global indices of the variables
associated with element k, which identi�es where the entries in A(k) belong in A, must also
be held. Each A(k) is symmetrically structured (the list of variables is both a list of column
indices and a list of row indices) but, in the general case, is numerically unsymmetric. Note
that the element matrices in general contain boundary conditions.
One possible method for solving systems of this form is the frontal method. Frontal schemes

have their origins in the early 1970s with the work of Irons [1]. At the time, there was a
need to solve �nite-element problems that were too large for the system matrix and the matrix
factors to be held in main memory, so that existing direct methods could not be used. The
frontal method was therefore designed to be a robust direct method that required only a small
amount of main memory (that is, the main memory needed was small compared with the
order n of the linear system). Today computers and their memories are much larger but so
too are the problems that computational scientists and engineers wish to solve. Thus methods
that require only limited main memory remain attractive.
The frontal method is a variant of Gaussian elimination and involves the matrix factorization

A=PLUQ (3)

where P and Q are permutation matrices, and L and U are lower and upper triangular matrices,
respectively. The solution process is completed by performing the forward elimination

PLY =B (4)

followed by the back substitution

UQX =Y (5)

The key feature of the method is that the contributions A(k) from the �nite elements are
assembled one at a time and the storage of the entire assembled coe�cient matrix A is
avoided by interleaving assembly and elimination operations. This allows the computation to
be performed using a frontal matrix that at each stage may be expressed in the form(

FT FR

FC FU

)
(6)

where the rows and columns of the r× r matrix FT are fully summed, that is, there are no
other entries in these rows and columns in the overall matrix, while the rows and columns of
the s× s matrix FU are not yet fully summed. Assuming a suitable element assembly order
is chosen, r�s and the frontsize r + s is much less than n, the order of A. Provided stable
pivots can be chosen from FT , the factorization FT =LTUT is computed. Then FC and FR are

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1017

updated as
FC← FCU−1

T (7)

FR← L−1
T FR (8)

and then Schur complement
FU ←FU − FCFR (9)

is formed. At the next stage, another element matrix is assembled with this Schur complement
to form another frontal matrix. As the rows and columns of the matrix factors are generated,
they are written to bu�ers (work arrays), which are held in main memory. This frees up
space in the frontal matrix, which can then be reused for further incoming elements. If a
bu�er becomes full, its contents are held out of core, that is, they are written to a direct
access �le. The data in these �les is read back into main memory (one record at a time)
during the forward elimination and back substitution phases.
Since the original work of Irons, the frontal method has been developed and generalized by

a number of authors, including References [2–5]. The frontal solver MA42 of Du� and Scott
[6, 7] for real unsymmetric systems and its counterpart ME42 for complex systems have been
part of the mathematical software library HSL [8] for a decade. The codes have been widely
used to solve problems from a variety of di�erent application areas including �uid �ow,
structural analysis, and chemical process engineering. As well as being used by academics in
the U.K. and elsewhere, they have been incorporated into a number of commercial products.
They have also been used in the development of parallel frontal solvers for HSL. However, in
recent years there has been further research into frontal algorithms that has led to important
performance improvements in terms of both computational time and storage requirements
(for example, References [9, 10]). Moreover, the older codes were written in Fortran 77, which
does not o�er many of the features of Fortran 95 that enable more user-friendly solvers to
be developed. With the high-quality Fortran 95 compilers becoming more widely available
(including the freely available gf95 compiler at g95.sourceforge.net), we have become
interested in using Fortran 95 for the development of solvers for HSL. We therefore felt it
was time to write a new frontal solver for the 21st century. The new Fortran 95 code, which
is designed exclusively for the e�cient solution of large-scale unsymmetric �nite-element
problems, is called HSL MA42 ELEMENT. We end this section by listing the key features of
HSL MA42 ELEMENT, a number of which will be discussed further in later sections, as indicated.

• Two user interfaces are o�ered: a �exible reverse communication interface and a simpler
all-in-one interface that is designed to appeal in particular to inexperienced users
(see Section 2).

• Versions are included within the one package for factorizing and solving both real
and complex systems. Once the matrix factors have been computed they can also be used
to solve transpose systems ATX =B (and, in the complex case, complex conjugate
systems AHX =B).

• Through the use of control parameters and optional arguments, a wide range of options
is available to the user. Key parameters and options are discussed in Sections 2.3 and
2.4 and full details are given in the user documentation.

• A number of state-of-the-art element ordering algorithms are incorporated within the
package (see Section 5).

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

1018 J. A. SCOTT

• The code automatically switches to holding the matrix factors out of core if there is
insu�cient main memory. During the factorization, data is put into explicitly held bu�ers,
which are written to direct access �les once they are full. The length of the records in
each of the direct access �les (which is equal to length of the associated bu�er) is chosen
either automatically by the code or by the user. Further details are given in Section 2.3.

• High level BLAS [11] are used for performing the dense linear algebra operations (8) and
(9), and for performing the forward elimination and back substitution operations. E�cient
use is made of level 3 BLAS by imposing a minimum pivot block size
(see Section 3).

• To try and avoid unnecessary operations with zeros, the code follows the work of
Scott [10] and exploits zeros in the frontal matrix (see Section 4).

• A number of features are o�ered that allow the code to be used within an implementation
of the multiple front algorithm; this is discussed in Section 6.

Finally, we note that the naming convention adopted within HSL is for all Fortran 90 or
95 packages to have a name starting with HSL (which distinguishes them from the Fortran
77 codes). For convenience, throughout the remainder of this paper, we abbreviate the full
name HSL MA42 ELEMENT of our new frontal solver to MA42 ELEMENT.

2. USER INTERFACE

In common with other sparse direct methods, the frontal method can be split into a number
of distinct phases as follows:

1. An ordering phase that determines a suitable order for assembling the elements. For
e�ciency in terms of both storage and arithmetic operations, it is essential that the
elements are assembled in an order that keeps the size of the frontal matrix small. That
is, once a variable has entered the front, it needs to become fully summed as quickly as
possible.

2. An analyse phase that takes the index lists for each of the elements in turn and determines
a potential pivot sequence based on the sparsity pattern alone.

3. A factorization phase that uses the pivot sequence (modi�ed if necessary to maintain
numerical stability) to factorize the matrix.

4. A solve phase that performs forward elimination followed by back substitution using the
stored factors.

MA42 ELEMENT o�ers the user two di�erent interfaces: a reverse communication interface
that requires separate calls to each of the di�erent phases and a simpler (but slightly less
�exible) all-in-one interface. Both make use of control parameters. These are parameters
that, as their name implies, control the action within the package. They are given default
values by a call to the initialization routine MA42 ELEMENT START. The defaults have been
chosen on the basis of our numerical experiments on a range of problems and computer
platforms and are likely to be appropriate for most users. However, for maximum �exi-
bility, these parameters may be reset by the user after the call to MA42 ELEMENT START.
The controls include parameters that determine the level of diagnostic printing, the choice
of element ordering algorithm, the pivoting, and the action taken if A is found to be

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1019

singular (see Section 2.4). Full details of all the control parameters are provided in the user
documentation.
In the remainder of this section, we describe the two interfaces and then look at the greater

�exibility that is o�ered by the reverse communication interface.

2.1. Reverse communication

The key idea of the reverse communication interface is to keep main memory requirements
for the matrix data to a minimum by requiring the user to supply the element matrices one
at a time as they are needed. This gives the user maximum freedom as to how the element
matrices are held; if convenient, the user may choose to generate the element data only as
it is required. The ordering and analyse phases are optionally combined and, if the right-
hand sides B are available in unassembled form, that is, B=

∑nelt
k=1 B

(k), they may be passed
with the element matrices A(k) to the factorization phase. In this case, forward elimination is
performed at the same time as the matrix factorization and, once the factorization is complete,
back substitution is performed to complete the solution.
There are three main routines that comprise the reverse communication interface:

MA42 ELEMENT ANALYSE: must be called for each element in turn to specify which variables
are associated with it. The calls may be made in any order. An element assembly order may
be supplied by the user, otherwise an ordering is automatically generated. This is discussed
further in Section 5. The output from the �nal call to MA42 ELEMENT ANALYSE is the element
assembly order for the factorization phase. In addition, the analyse phase determines when
each variable becomes fully summed (that is, it determines a tentative pivot sequence) and
computes estimates of the maximum frontsize and of the storage required for the matrix
factors.

MA42 ELEMENT FACTORIZE: must be called for each element to specify the entries of A(k)

and, optionally, B(k). The calls must be made in the order determined by the analyse phase (no
calls may be made until the analyse phase is complete). Data from MA42 ELEMENT ANALYSE is
used to factorize the matrix and, if B(k) are speci�ed, the equations AX =B with right-hand
side(s) B=

∑nelt
k=1 B

(k) are solved after the call for the last element. Note that more than one
�nite-element problem having elements with the same variable lists (but di�erent numerical
values) may be factorized and solved following a single set of calls to MA42 ELEMENT ANALYSE.
This is useful, for example, when solving the linear systems that result from using an iterative
method (such as Newton’s method) to solve a nonlinear problem; a sequence of problems with
the matrix A having the same element structure and sparsity pattern but di�erent numerical
values must be solved.

MA42 ELEMENT SOLVE: uses the computed factors to rapidly solve either further
systems of the form AX =B or systems of the form ATX =B (or AHX =B, where AH is the
complex conjugate transpose of A), with the right-hand side vectors B input in
assembled form. Any number of calls to MA42 ELEMENT SOLVE may follow the �nal call to
MA42 ELEMENT FACTORIZE.

In addition to the above routines, MA42 ELEMENT RESIDUAL may be called for each ele-
ment after the �nal call to MA42 ELEMENT FACTORIZE, or after a call to MA42 ELEMENT SOLVE,
to compute the residual matrix RES=B − AX (or RES=B − ATX or RES=B − AHX).
This routine also optionally computes an upper bound on the in�nity norm of the system

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

1020 J. A. SCOTT

matrix (it is an upper bound because the absolute values of the element entries are taken
before they are summed). Denoting this bound by ‖A‖b;∞, the user can compute the scaled
residuals

‖resj‖∞
‖A‖b;∞‖xj‖∞ + ‖bj‖∞ (10)

where bj is the jth right-hand side and xj and resj are the corresponding solution and residual
vector, respectively. If the user decides that the computed residual is unacceptably large,
iterative re�nement can be performed by recalling MA42 ELEMENT SOLVE with the right-hand
side set to RES.

2.2. All-in-one interface

MA42 ELEMENT also o�ers a simpler all-in-one interface. This involves no reverse commu-
nication. Instead, the user makes a single call to routine MA42 ELEMENT AFS to perform the
analyse, factorize, and (optionally) solve phases. MA42 ELEMENT SOLVE may be called to solve
for further right-hand sides or to solve transpose (or complex conjugate transpose) systems.
When calling MA42 ELEMENT AFS, the user supplies the lists of the variables for all the

elements in a single integer array. The entries of the element matrices may be supplied using
either an array or a direct access �le (with a further array or �le for element right-hand
sides). Using �les reduces the main memory requirements and will generally be needed for
large problems (without this option, the important advantage that frontal solvers have of
needing only a small amount of main memory is lost). Each record in the element data �le
must contain the entries for a single element matrix, with the elements held in the same order
as in the array of element variable lists. Direct access (and not sequential) �les are needed so
that, during the factorization, the code can read the elements in the assembly order generated
by the automatic element ordering algorithm.

2.3. Factorize options and �exibility

As well as o�ering the user greater �exibility in how to store or generate the element
data, MA42 ELEMENT FACTORIZE includes a number of options that are not available in the
all-in-one interface. In particular, there are options to supply the lengths of the bu�ers (work
arrays) used by the factorization and the maximum order of the frontal matrix. The latter must
be at least as large as the estimate returned by the analyse phase. Because a dense matrix of
order the maximum frontsize is needed, if memory restrictions are likely to be an issue, the
user should not choose a maximum frontsize that is very large compared with the analyse esti-
mate; a value larger than the analyse estimate is recommended to allow for possible increases
to the frontsize because of delayed pivots. The analyse phase assumes that whenever there are
at least pivot size fully summed variables, they can be eliminated (pivot size is a control
parameter that is discussed further in Section 3). During the factorization, a potential pivot
can only be used if it satis�es a numerical stability test. Speci�cally, a fully summed entry
of the frontal matrix is only considered suitable for use as a pivot if it is of absolute value at
least as large as alpha times the entry of largest absolute value in its column. The threshold
parameter alpha (0¡alpha¡1) is a control parameter with a default value of 0.01. If a
potential pivot does not satisfy this condition, it is delayed and will be retested after further
element assemblies. Values of alpha close to zero will generally result in a faster factorization

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1021

with fewer entries in the factors but values close to 1 are more likely to result in a stable
factorization; the default of 0.01 is a compromise between stability and sparsity. If the user
does not supply the maximum frontsize when calling MA42 ELEMENT FACTORIZE, a maximum
frontsize of 110% of the estimate from the analyse phase is used. Should a user have prior
knowledge of his or her problem and know that a large number of pivots will be delayed,
causing the maximum frontsize to increase substantially beyond that predicted by the analyse
phase, the user can overwrite the automatically selected maximum frontsize with his or her
own choice.
The earlier Fortran 77 code MA42 was unable to continue if the user-supplied frontsize

was not large enough but using Fortran 95 allows MA42 ELEMENT FACTORIZE to continue the
computation by allocating a new larger frontal matrix. The action taken when the frontsize is
too small depends upon the control parameter front multiple. If this is less than or equal
to 1, the computation terminates with an error message as soon as the frontsize is found
to be too small. The user may then increase the maximum frontsize and restart the factor-
ization (there is no need to repeat the analyse phase). If front multiple is greater than 1
(the default is 1.1), the computation will attempt to continue. In this case, the contents of the
internal arrays of size that depends on the maximum frontsize are written to scratch �les, the
arrays are deallocated and then reallocated with sizes su�cient to continue the computation.
The data in the �les is read back into these arrays, the scratch �les are closed (and thus
deleted), and the computation continues. Note, however, that the computation cannot continue
if there is insu�cient in-core memory to perform the reallocation. In this case, a suitable
error �ag is returned to the user. Note also that increasing the size of internal arrays will
add to the factorization cost and may be done more than once during the factorization of a
particular problem. At the end of the factorization details of the maximum frontsize used is
returned to the user. If the user intends to factorize more than one matrix having the same
sparsity pattern, for e�ciency advantage should be taken of this maximum frontsize when
calling MA42 ELEMENT FACTORIZE for subsequent matrices.
Three direct-access �les are optionally used by MA42 ELEMENT: one for the UQ factor (which

is held with the corresponding right-hand sides), one for the PL factor, and one for the row
and column indices of the variables in the factors. One of the complications of using MA42
was that the user had to provide data on both the sizes of the bu�ers to be used and the
amount of storage required by the factors. Clearly, for a new problem or application area,
this could be di�cult. Estimates of the factor storage needed based on the assumption that
no pivots are not delayed was returned by the analyse phase but, if numerical considerations
caused a number of pivots to be delayed, the factorization could terminate before completion
and would have to be completely restarted with increased parameter values. A key design
aim of MA42 ELEMENT was to simplify the use of direct access �les and minimize the input
required from the user. For the all-in-one interface the user is not asked for any input relating
to the bu�ers and �les. In this case, bu�er lengths of 216 are used. For large problems, �les
will be required to hold the factors. The code chooses appropriate units on which to open
�les and these �les are given the status SCRATCH. At the end of the computation, these �les
are closed (and hence lost). The only way the user will be aware that �les have been used
will be through the receipt of a warning �ag.
However, this simple use of bu�ers and �les may not be suitable for all users. In particular,

the user may wish to use named direct access �les that can be saved at the end of the
computation for possible further solves in the future. The reverse communication interface

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

1022 J. A. SCOTT

to MA42 ELEMENT o�ers a number of options aimed at more experienced users. The user can
choose to supply the bu�er lengths; if these are su�ciently large, using �les may be avoided.
The user’s choice will normally depend upon the problem size and memory available. If the
user does not supply bu�er lengths then default values of 216 are again used. The user may
also optionally supply the names of the direct access �les. If names are supplied, at the end
of the computation the �les are closed but not deleted.
We note that the L factor only needs to be stored during the factorization if the user wishes

to call MA42 ELEMENT SOLVE after the �nal call to MA42 ELEMENT FACTORIZE (or after a call to
MA42 ELEMENT AFS). Not storing the L factor will clearly result in a substantial storage saving.

2.4. Coping with singular matrices

In some application areas, the system matrix A may be singular (or nearly singular).
MA42 ELEMENT has two control parameters, lsingular and small, which are useful in this
situation. lsingular is a logical scalar that controls the action is the matrix A is found to be
singular. By default, lsingular= :true: and if A is found to be singular, a warning is issued
and the computation continues. Components of the solution vector that correspond to zero
pivots are set to zero. Otherwise, if lsingular= :false:, the computation terminates with an
error message immediately singularity is detected. small controls how small the pivots are
allowed to become before they are treated as zero and A is declared singular. Speci�cally, if
the entry of largest absolute value in any column of the reduced matrix at any stage of the
factorization is found to less than or equal to small, A is singular. The default is small=0 but
by choosing a non-zero value, the user is able to control whether the computation terminates
when A is found to be nearly singular.

3. MINIMUM PIVOT BLOCK

At each stage of the elimination process, once pivots have been chosen, it is essential to the
overall e�ciency of the frontal solver that the Schur complement (9) is formed as e�ciently
as possible. The frontal matrix is held as a dense matrix and so dense linear algebra kernels
(in particular, the BLAS) may be used. If the frontal solver picks a single pivot at a time then
it is only possible to use Level 2 BLAS but if r¿1 pivots are chosen, FR may be updated
using the Level 3 BLAS routine TRSM and then the Schur complement (9) computed using
the Level 3 BLAS routine GEMM with interior dimension r. Our experience has been that, for
some problems (notably those with only one variable per �nite-element node), r can be small
and there is then little advantage gained by using Level 3 BLAS. This prompted Cli�e et al.
[9] to look at enhancing the use of the BLAS by delaying updating the frontal matrix until the
number of pivot candidates is at least some prescribed minimum, say pivot size. Suppose,
at some stage, that the number of fully summed variables is k, then the maximum number
of pivots which we can choose is k. If k¡pivot size and not all the elements have been
assembled, we do not look for pivots but assemble another element into the frontal matrix
until the number of fully summed variables is at least pivot size.
In MA42 ELEMENT, the minimum pivot block size pivot size is a control parameter with

default value 16. The best value to use is both problem and machine dependent. Increasing
the minimum pivot block size in general increases the number of �oating-point operations

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1023

and real storage requirements but reduces integer storage and, most importantly, can reduce
the CPU time required by both the factorization and solve phases. Results illustrating this
are given in Reference [9]. We note that pivot size is used in both the analyse and the
factorize phases. In particular, the estimates of the maximum frontsize and factor storage
returned by MA42 ELEMENT ANALYSE are dependent on pivot size. Since the analyse phase is
much less expensive than the factorization phase (especially as element reordering only needs
to be performed on the �rst run of the analyse phase for a particular problem), the user can
investigate the e�ect of varying pivot size before factorizing the matrix.

4. ZEROS IN THE FRONT

During the factorization, the frontal matrix may contain some zero entries. Treating the frontal
matrix as a dense matrix results in unnecessary operations being performed with these zeros
and potentially a large number of explicit zeros being stored in the factors. Because Level 3
BLAS are used to perform the factorization operations, the cost of the operations with zeros
may not be prohibitive but if the frontal matrix contains a signi�cant number of zeros, Scott
[10] found that it can be advantageous to exploit these zeros. To see how this can be done,
suppose the frontal matrix has been permuted to the form (6) and that k is the number of fully
summed variables. By performing further row and column permutations, the frontal matrix
can be expressed in the form

F =

⎛
⎜⎜⎝
FT FR1 01

FC1 FUT FUR

02 FUC FUU

⎞
⎟⎟⎠ (11)

where 01 and 02 are zero matrices of order k × k1 and k2× k, respectively. Assuming the
current frontal matrix is of order l× l, k1 and k2 satisfy 06k16l− k and 06k26l− k.
In place of (7), (8) and (9), we now need only perform the updates

FC1←FC1U−1
T (12)

FR1←L−1
T FR1 (13)

and

FUT ←FUT − FC1FR1 (14)

When writing to the bu�ers, FR1 and FC1 , rather than FR and FC , are stored, resulting in
savings in both the real and integer factor storage.
If more than one pivot is chosen, the updated matrices FR1 and FC1 may still contain some

zeros. However, experiments reported in Reference [10] indicated that, in general, the number
of zeros remaining in the factors is small (typically less than 10% of the total number of
entries in the factors). We do not, therefore, attempt to exploit zeros within FR1 and FC1 .

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

1024 J. A. SCOTT

5. ELEMENT ORDERING

The e�ciency of the frontal method, in terms of both storage and arithmetic operations, is
dependent upon assembling the elements in an order that keeps the size of the frontal matrix,
known as the wavefront, as small as possible. In other words, the elements need to be ordered
so that partially summed variables become fully summed as soon as possible. MA42 ELEMENT
o�ers a number of element ordering routines within the package, but also allows the user
to supply his or her own ordering. Allowing the user to specify an ordering is particularly
important if a number of matrices with the same (or similar) sparsity patterns are to be
factorized. In this case, the reordering (which may add a signi�cant CPU overhead to the
analyse phase) need only be performed for the �rst matrix.
In a recent article, Scott [12] reported on the use of multilevel element ordering algo-

rithms and compared their performance with a number of variants of Sloan’s algorithm [13].
Scott considered both direct and indirect versions of the multilevel algorithm (an algorithm
is referred to as a direct algorithm if it orders the elements directly and as an indirect algo-
rithm if the variables are �rst resequenced and the new variable numbers then used to reorder
the elements). Scott also used these variants in combination with spectral orderings to give
the so-called hybrid orderings. Numerical experimentation on a range of large problems from
practical applications showed that, in general, the best orderings are obtained using the indirect
hybrid spectral-Sloan algorithm and so this has been chosen as the default element ordering
algorithm within MA42 ELEMENT. The multilevel Fiedler code HSL MC73 of Hu and Scott [14]
is called to compute the spectral ordering and then a modi�ed version of MC63 is used to
obtain the hybrid ordering (MC63 is an HSL package that o�ers an e�cient implementation
of a version of Sloan’s algorithm; it is described in Reference [15]).
Because Sloan orderings can be computed cheaply using MC63 and because they are

generally of a similar quality to the hybrid spectral-Sloan orderings for relatively small prob-
lems, MA42 ELEMENT includes an option to reorder using MC63. An option is also available
for computing both the direct and indirect orderings; the better ordering (in terms of the root
mean squared wavefront) is then automatically selected and returned from the analyse phase.
How much time the user wishes to spend on element ordering will generally depend either
on whether memory restrictions make it important that the maximum frontsize is as small
as possible or on the number of matrices with the same (or similar) sparsity patterns that
are to be factorized. Clearly, if a large number of factorizations (or large number of solves
following a factorization) are to be performed, it may well be worthwhile to experiment with
a number of di�erent ordering algorithms so that sparse factors are computed as rapidly as
possible; MA42 ELEMENT has been designed to make this straightforward for the user.

6. FEATURES DESIGNED FOR A MULTIPLE FRONT ALGORITHM

One of the main de�ciencies of the frontal solution scheme is that there is little scope for
parallelism other than that which can be obtained within the high-level BLAS. One way of
attempting to overcome this is to extend the basic frontal algorithm to use multiple fronts.
While MA42 ELEMENT is not a multiple front code, it has been designed to include a number
of options that will allow it to be used in a straightforward way within a multiple front code.
These are discussed brie�y in this section.

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1025

In a multiple front approach, the underlying �nite-element domain � is �rst partitioned
into non-overlapping subdomains �i. This is equivalent to ordering the matrix A to doubly
bordered block diagonal form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 C1

A22 C2

. . .
...

ANN CN

C̃1 C̃2 · · · C̃N
N∑
i=1
Ei

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

where the diagonal blocks Aii are ni× ni and the border blocks Ci and C̃i are ni× l and l× ni,
respectively, with l�ni. A partial frontal decomposition is performed on each of the matrices(

Aii Ci

C̃i Ei

)
(16)

This can be done in parallel. At the end of the assembly and elimination processes for
each subdomain �i, there will remain 16li6l interface variables. These variables cannot be
eliminated since they are shared by more than one subdomain. Variables that have not been
eliminated within the subdomain because of e�ciency or stability considerations will also
remain. These variables are added to the border and l is increased. If Fi holds the frontal
matrix that remains when all possible eliminations on subdomain �i have been performed,
once each of the subdomains has been dealt with, formally, we have

A=P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1

L2

. . .
...

LN

L̃1 L̃2 · · · L̃N I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1 Ũ 1

U2 Ũ 2

. . .
...

UN ŨN

· · · F

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q (17)

where P and Q are permutation matrices and the l× l matrix F is a sum of the Fi’s and
is termed the interface matrix. It may also be factorized using the frontal method. Once
the interface variables have been computed, the rest of the block back substitution can be
performed in parallel.
When applying a frontal solver to a subdomain, elimination of the interface variables (which

are not fully summed within the subdomain) must be prevented. A simple way of doing this is
by introducing an extra element for each subdomain that contains only the interface variables
for that subdomain. The extra element, which is called a guard element (see References
[7, 16]), is passed as the last element to the analyse phase but is not passed to the factorize

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

1026 J. A. SCOTT

phase. Since the factorize phase is not called for the guard element, variables in the guard
element (that is, the interface variables) do not become fully summed but remain in the
front after the assembly and elimination operations for the �nal element in �i are complete.
Thus if MA42 ELEMENT is to be used as part of a multiple front solver it needs to o�er a
means of extracting the remaining frontal matrix Fi from its internal structures. To do this,
we have included within the package a separate subroutine MA42 ELEMENT PARTIAL, which
may be called by the user after one or more elements has been passed to the factorization
phase to preserve the partial factorization. It writes the data remaining in the bu�ers to the
direct access �les and saves the data remaining in the frontal matrix and corresponding frontal
right-hand side matrix in arrays that are held in main memory. In addition, we have included
within routine MA42 ELEMENT SOLVE options for performing the forward eliminations and back-
substitutions on separate calls. This feature is needed by the solve phase of the multiple front
algorithm.

7. NUMERICAL EXPERIMENTS

In this section, we report on using MA42 ELEMENT to solve a number of problems from practical
applications. Comparisons are made with MA42. The test problems are listed in Table I. They
range in size from fewer than 1000 elements to more than 70 000 elements with almost 225 000
degrees of freedom. If only the sparsity pattern is available, numerical values for the matrix
entries are generated using the HSL pseudo-random number generator FA14. Our experiments
are performed on a single Xeon 3:06 GHz processor of a Dell Precision Workstation 650

Table I. The test problems.

Identi�er n nelt Description=discipline

cham∗ 12 834 11 070 Part of an engine cylinder
crplat2∗ 18 010 3152 Corrugated plate �eld
fcondp2∗ 201 822 35 836 Oil production platform
fullb∗ 199 187 59 738 Full-breadth barge
halfb∗ 224 617 70 211 Half-breadth barge
inv-ext-2∗ 78 142 7193 Fluid �ow
mt1∗ 97 578 5328 Tubular joint
opt1∗ 15 449 977 Part of condeep cylinder
ship 001 34 920 3431 Ship structure—predesign
ship 003 121 728 45 464 Ship structure—production
shipsec1∗ 140 874 41 037 Section of a ship
shipsec5 179 860 52 272 Section of a ship
shipsec8 114 919 32 580 Section of a ship
srb1∗ 54 924 9240 Space shuttle rocket booster
thread∗ 29 736 2176 Threaded connector
trdheim∗ 22 098 813 CFD simulation; mesh of Trondheim fjord
troll∗ 213 453 41 084 Structural analysis
tsyl201∗ 20 685 960 Part of condeep cylinder
tubu∗ 26 573 23 446 Engine cylinder model
x104 108 384 26 019 Beam joint

n and nelt denote the number of variables and elements, respectively.
∗Only pattern available.

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1027

Table II. Timings (in seconds) for MA42 and MA42 ELEMENT.

Analyse Factorize Solve

MA42 MA42 MA42
Identi�er MA42 ELEMENT MA42 ELEMENT MA42 ELEMENT

cham 0.09 0.20 8.9 (2.9) 2.8 0.38 0.23
crplat2 0.01 0.03 4.9 (3.9) 2.3 0.33 0.24
fcondp2 0.24 0.39 3299 (1695) 692 36.3 21.6
fullb 0.50 0.51 1806 (1065) 783 28.8 25.9
halfb 0.52 0.52 1345 (714) 507 26.0 19.5
inv-ext-2 0.25 0.55 1152 (1016) 448 15.9 9.8
mt1 0.10 0.22 243 (233) 172 6.4 6.1
opt1 0.02 0.07 7.6 (7.1) 7.8 0.40 0.41
ship 001 0.06 0.10 16 (17) 13 0.86 0.84
ship 003 0.37 0.35 1279 (1261) 399 13.0 9.2
shipsec1 0.34 0.34 1916 (1089) 342 23.9 11.1
shipsec5 0.44 0.43 3361 (4472) 1311 25.6 19.2
shipsec8 0.34 0.29 4684 (6522) 1680 21.8 15.1
srb1 0.05 0.08 14 (11) 11 0.99 0.97
thread 0.06 0.22 170 (147) 53 2.9 1.6
trdheim 0.02 0.03 1.0 (1.0) 0.9 0.23 0.12
troll 0.39 0.73 8060 (5257) 3408 62 47
tsyl201 0.01 0.03 9.2 (9.1) 13 0.54 0.58
tubu 0.27 0.42 29 (10) 10 0.90 0.61
x104 0.08 0.20 1453 (1651) 1031 9.1 7.1

with 4 GBytes of RAM under the Fedora Core 1 Linux operating system. The NAG Fortran
95 compiler is used with the compiler optimization �ag -O. All reported timings are CPU
times, measured using the Fortran 95 routine cpu time and are given in seconds. In all
our tests, the scaled residual (10) was computed; in each case, this was found to be less
than 10−12.

MA42 (Version 1.0.0) is run with all its control parameters set to their default values.
Note that this means that the minimum pivot block size is 1 and zeros in the front are not
exploited. The �nite elements are preordered for MA42 using MC63 (both the indirect and
direct algorithms are run and the best one selected). The time needed by MC63 to reorder
the elements is added to the time for the analyse phase of MA42. The bu�ers sizes are cho-
sen to be the same as those used by MA42 ELEMENT (that is, 216). MA42 ELEMENT is also run
with its default control parameters. CPU timings for the analyse, factorize, and solve phases
(for a single right-hand side) are reported in Table II. We see that the analyse phase of
MA42 ELEMENT is more expensive than that of MA42. This is because it implements the hybrid
spectral-Sloan algorithm, which is more expensive than the Sloan algorithms used by MC63
(see Reference [12]). However, for large problems, the analyse cost is clearly a very small
proportion of the total cost. In almost every example, the factorization and solve times are
signi�cantly less for the new code. The reasons for this are the better ordering, the use of
a minimum pivot block greater than 1, and the exploitation of zeros in the front (although
closer examination reveals that, once we have a good ordering, the reductions achieved by
exploiting zeros in the front are small compared with the total factorization time). We remark

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

1028 J. A. SCOTT

Table III. Timings (in seconds), the number of entries in the factors (× 106) and �op counts (× 109)
for MA42 ELEMENT for di�erent pivot block sizes.

AFS times Entries in factors Flops

Identi�er 1 16 32 1 16 32 1 16 32

cham 9.7 3.2 3.1 8.3 8.5 8.7 3 3 3
crplat2 2.8 2.5 2.8 8.5 8.7 9.0 2 2 2
fcondp2 1098 714 777 607 610 613 1147 1155 1165
fullb 1271 810 899 705 712 718 1313 1330 1347
halfb 906 527 594 586 592 599 813 826 840
inv-ext-2 720 459 450 306 306 307 756 759 762
mt1 221 179 189 216 216 318 267 268 272
opt1 11 8.3 8.0 15 15 15 9 9 10
ship 001 18 14 15 31 31 32 14 15 15
ship 003 684 408 382 307 319 327 438 452 465
shipsec1 612 354 404 374 378 381 561 568 577
shipsec5 1323 1331 1279 502 501 502 744 744 742
shipsec8 1754 1695 1753 423 423 422 853 844 844
srb1 14 12 14 34 35 36 11 12 12
thread 60 55 54 620 623 627 72 72 74
trdheim 0.9 1.0 1.1 4.4 4.4 4.7 0.6 0.6 0.7
troll 6352 3381 3242 1339 1342 1346 5500 5518 5540
tsyl201 10 10 10 21 21 21 11 11 11
tubu 37 10 10 22 22 23 10 11 11
x104 792 1039 984 239 253 248 368 430 408

that since its �rst inclusion within HSL, additional options have been made available in MA42.
These include options for a pivot block of greater than 1 and for exploiting zeros in the front.
Factorization times for MA42 with a pivot block of 16 and exploiting zeros in the front are
given in parentheses in the MA42 factorize column of Table II. It is clear that, with these op-
tions, the performance of MA42 can be signi�cantly enhanced (for example, fcondp2, fullb,
and troll), but for some problems (including shipsec5 and shipsec8), the performance is
worse and, in general, MA42 ELEMENT is still considerably faster.
In Table III, we compare running MA42 ELEMENT with a minimum pivot block pivot size

of 1 with using pivot size=16 and 32. The reported times are for analyse plus factorize
plus solve for one right-hand side (AFS). The ‘�op’ counts are the number of �oating-point
operations in the inner-most loop of the factorization. For many problems, including halfb,
shipsec1 and troll, there are substantial savings in time if pivot size is greater than 1.
The increases in the number of entries in the factors and the number of �ops are generally
small (typically less than 3%). On our test machine there is no consistent advantage is using
pivot size=32 rather than 16; for some problems, 32 gives the faster time while for others
the converse is true. Based on our �ndings and the previous results reported in Reference
[9], 16 has been selected as the default within MA42 ELEMENT. We note that the only problem
that is signi�cantly slower using pivot size¿1 is x104. For this problem, many pivots are
delayed and, in this case, using a larger pivot block leads to a signi�cant increase in the
maximum frontsize, from 2417 for pivot size=1 to 2969 for pivot size=16, and this in
turn leads to an increase of 17% in the number of �ops.

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

A FRONTAL SOLVER FOR THE 21ST CENTURY 1029

8. CONCLUDING COMMENTS AND SOFTWARE AVAILABILITY

We have described the design and development of a new Fortran 95 frontal solver
HSL MA42 ELEMENT for �nite-element applications. The code builds on the extensive experience
we have of frontal software development and, for element problems, o�ers a replacement for
our existing frontal codes MA42 and ME42. We have retained a reverse communication interface
because of the �exibility it o�ers but we also now o�er a simpler all-in-one interface that
should appeal to inexperienced users. Incorporating element ordering within the package also
simpli�es its use. A number of options for holding the element matrices and=or the computed
factors out-of-core are o�ered to allow very large problems to be solved on machines with
limited main memory. The out-of-core facilities are simple to use; in fact, the user may only
be aware that �les have been used to hold the factors through a warning �ag.

HSL MA42 ELEMENT is included in the most recent release of the software library HSL
(HSL 2004). Use of the package requires a licence; full details of how to obtain a licence
may be found at www.cse.clrc.ac.uk/nag/hsl/hsl.shtml.

ACKNOWLEDGEMENTS

This work was supported by the EPSRC grant GR=S42170.

REFERENCES

1. Irons BM. A frontal solution program for �nite-element analysis. International Journal for Numerical Methods
in Engineering 1970; 2:5–32.

2. Hood P. Frontal solution program for unsymmetric matrices. International Journal for Numerical Methods in
Engineering 1976; 10:379–400.

3. Du� IS. MA32—a package for solving sparse unsymmetric systems using the frontal method. Report AERE
R10079, Her Majesty’s Stationery O�ce, London, 1981.

4. Du� IS. Enhancements to the MA32 package for solving sparse unsymmetric equations. Report AERE R11009,
Her Majesty’s Stationery O�ce, London, 1983.

5. Du� IS. Design features of a frontal code for solving sparse unsymmetric linear systems out-of-core. SIAM
Journal on Scienti�c and Statistical Computing 1984; 5:270–280.

6. Du� IS. Scott JA. MA42—a new frontal code for solving sparse unsymmetric systems. Technical Report
RAL-93-064, Rutherford Appleton Laboratory, 1993.

7. Du� IS, Scott JA. The design of a new frontal code for solving sparse unsymmetric systems. ACM Transactions
on Mathematical Software 1996; 22(1):30–45.

8. HSL. A collection of Fortran codes for large-scale scienti�c computation, 2004. See http:==hsl.rl.ac.uk=
9. Cli�e KA, Du� IS, Scott JA. Performance issues for frontal schemes on a cache-based high performance
computer. International Journal for Numerical Methods in Engineering 1998; 42:127–143.

10. Scott JA. Exploiting zeros in frontal solvers. Technical Report RAL-TR-98-041, Rutherford Appleton
Laboratory, 1997.

11. Dongarra JJ, DuCroz J, Du� IS, Hammarling S. A set of level 3 basic linear algebra subprograms. ACM
Transactions on Mathematical Software 1990; 16(1):1–17.

12. Scott JA. Multilevel hybrid spectral element ordering algorithms. Communications in Numerical Methods in
Engineering 2005; 21:233–245.

13. Sloan SW. An algorithm for pro�le and wavefront reduction of sparse matrices. International Journal for
Numerical Methods in Engineering 1986; 23:1315–1324.

14. Hu YF, Scott JA. Ordering techniques for singly bordered block diagonal forms for unsymmetric parallel sparse
direct solvers. Technical Report RAL-TR-2003-020, Rutherford Appleton Laboratory, 2003.

15. Scott JA. On ordering elements for a frontal solver. Communications in Numerical Methods in Engineering
1999; 15:309–323.

16. Scott JA. A parallel solver for �nite element applications. International Journal for Numerical Methods in
Engineering 2001; 50:1131–1141.

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1015–1029

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

