
BIT Numer Math (2011) 51:385–404
DOI 10.1007/s10543-010-0299-8

The importance of structure in incomplete factorization
preconditioners

Jennifer Scott · Miroslav Tůma

Received: 11 February 2010 / Accepted: 27 November 2010 / Published online: 14 December 2010
© Springer Science + Business Media B.V. 2010

Abstract In this paper, we consider level-based preconditioning, which is one of the
basic approaches to incomplete factorization preconditioning of iterative methods.
It is well-known that while structure-based preconditioners can be very useful, ex-
cessive memory demands can limit their usefulness. Here we present an improved
strategy that considers the individual entries of the system matrix and restricts small
entries to contributing to fewer levels of fill than the largest entries. Using symmet-
ric positive-definite problems arising from a wide range of practical applications, we
show that the use of variable levels of fill can yield incomplete Cholesky factoriza-
tion preconditioners that are more efficient than those resulting from the standard
level-based approach. The concept of level-based preconditioning, which is based on
the structural properties of the system matrix, is then transferred to the numerical in-
complete decomposition. In particular, the structure of the incomplete factorization
determined in the symbolic factorization phase is explicitly used in the numerical fac-
torization phase. Further numerical results demonstrate that our level-based approach
can lead to much sparser but efficient incomplete factorization preconditioners.

Keywords Sparse symmetric linear systems · Incomplete factorizations ·
Preconditioners · Level-based approach

Communicated by Petter Bjørstad.

The work of the first author was supported by the EPSRC grant EP/E053351/1. The work of the
second author was supported by the international collaboration grant M100300902 of AS CR.

J. Scott (�)
Computational Science and Engineering Department, Atlas Centre, Rutherford Appleton Laboratory,
Oxfordshire OX11 0QX, UK
e-mail: jennifer.scott@stfc.ac.uk

M. Tůma
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou
věží 2, 18207 Praha 8, Libeň, Czech Republic
e-mail: tuma@cs.cas.cz

mailto:jennifer.scott@stfc.ac.uk
mailto:tuma@cs.cas.cz

386 J. Scott, M. Tůma

Mathematics Subject Classification (2000) 65F08 · 65F50

1 Introduction

Incomplete Cholesky factorizations are an important tool in the solution of large
sparse symmetric linear systems of equations Ax = b. Preconditioners based on an
incomplete factorization of A (that is, a factorization in which some of the fill entries
and possibly some of the entries of A are ignored) fall into three main classes:

(i) Threshold-based IC(τ) methods in which the locations of permissible fill entries
are determined in conjunction with the numerical factorization of A; entries of
the computed factors that exceed a prescribed threshold τ are dropped. Success
of this approach depends on being able to choose a suitable τ and this is highly
problem dependent.

(ii) Memory-based IC(m) methods in which the amount of memory available for
the incomplete factorization is prescribed and only the largest entries in each
column are retained.

(iii) Structure-based IC(�) methods in which an initial symbolic factorization phase
determines the location of permissible fill entries using only the sparsity pattern
of A. Each potential fill entry is assigned a level and an entry is only permitted
in the factor if its level is at most �. This kind of fixed fill strategy allows the
memory requirements to be determined before the second phase that performs
an incomplete numerical factorization.

Many refinements, variants and hybrids of the above approaches have been proposed
and used to solve problems from a wide range of application areas. In Sect. 2, we pro-
vide a brief historical overview and highlight some of the important developments in
the field over the past 50 years. We are interested in structure-based incomplete factor-
ization preconditioners that have both predictable memory requirements and depend
on the entries of A. We propose a general class of methods based on computing an
incomplete LDLT factorization IC(�, τ,m), where the factor L is unit lower triangu-
lar and D is diagonal, � ≥ 0 is the target number of levels of fill, τ is a drop tolerance
and m controls the maximum number of entries allowed in the factor. In Sect. 3, we
introduce a modification to the standard level-based approach. Rather than allowing
all the non-zero entries of A to contribute to � levels of fill, we restrict small en-
tries to contributing to fewer levels and allow the largest entries to contribute to more
than � levels. We explain how this variable level approach can be implemented us-
ing a minor change to an existing algorithm for computing a symbolic incomplete
factorization. Then, in Sect. 4, we consider transferring the structure of the symbolic
incomplete factorization to the numerical factorization, allowing extra entries outside
the symbolic pattern if sufficient memory is available and the entries are large enough.
Numerical results that illustrate the effectiveness of our proposed level-based strat-
egy for practical applications are presented in Sect. 5 and, finally, some concluding
remarks are made in Sect. 6.

The importance of structure in incomplete factorization 387

2 Background

Sparsity structure was the main ingredient of the first algebraic preconditioners that
were developed in the late 1950s. At that time, the sparsity structure essentially ex-
pressed the stencils for discretized partial differential equations on structured grids. In
particular, the EBM-2 method of Buleev [12] interpolated values of the function at a
grid point using a combination of the function values at neighbouring grid points. The
solution process was accelerated by additional parametrization derived from smooth-
ness assumptions. The resulting system expressed what we call now the precondi-
tioned system of equations, in which the preconditioner was directly combined with
the system matrix. The method was generalized to stencils for three dimensional
problems in [13]. An independent derivation and its interpretation as an incomplete
factorization (that is, a factorization in which some of the fill entries are ignored) for
a matrix from a simple 5-point stencil was given by Varga [42] (see also [3, 34]).
Note that [42] is also well-known for introducing the concept of regular splittings.
Further early developments included additional corrections that led to heavily para-
metrized procedures and included more complicated stencils. Later, modifications of
the interpolation that implicitly expressed incomplete decompositions were proposed
to change in individual steps of the iterative procedure [41]. An overview of the early
procedures and the motivations behind them may be found in [26, 27].

Further developments for incomplete factorizations included their classification
by the order (first or second order) of the polynomial defining the interpolation on
the grid points, extensions to larger stencils, and the development of early matrix for-
mulations and existence criteria for breakdown-free factorizations. The key relation
that has been gradually better understood is that between stencil multiplications, local
interpolation and extrapolation on a grid, and the combinatorial elimination process
(that is, the elimination process based on a graph structure).

The real breakthrough in the practical use of preconditioning using an incom-
plete factorization came with two important papers. Firstly, Meijerink and van der
Vorst [31] recognised the importance of preconditioning for the conjugate gradient
method. This paper also implied an understanding of the crucial role of the separate
computation of the incomplete factorization as well as recognizing the possibility
of prescribing the sparsity structure of the preconditioner by allowing additional di-
agonals. Discussing the sparsity structure in the form of diagonals was very natural
since simple matrix stencils typically restrict nonzeros to a few diagonals [21, 32].
The other key paper that helped to popularize incomplete factorizations was that of
Kershaw [29]. Kershaw introduced the idea of locally replacing pivots by a small
positive number to prevent breakdown of the factorization, and this led the way to in-
complete factorizations in which dropping is based solely on the size of the computed
entries [1, 2] (see also the detailed experimental results in [35]).

The hierarchy of sparsity structures that can be prescribed for incomplete factor-
izations of general matrices was introduced by Watts in 1981 [43]. Since that time,
the notation IC(�) for an incomplete Cholesky factorization (or, for general systems,
ILU(�)) based on the concept of levels of fill that we discuss in Sect. 3, has become
commonplace. It was soon realised that although IC(1) can be a significant improve-
ment over IC(0) (that is, an appropriate iterative method preconditioned using IC(1)

388 J. Scott, M. Tůma

generally requires fewer iterations to achieve the requested accuracy than IC(0)), the
fill-in resulting from increasing � can be prohibitive in terms of both storage require-
ments and time to compute and then apply the preconditioner (see, for example, [17]).
Moreover, the amount of fill-in is difficult to predict. It is easy to explain this increase
in density with � since, while entries of the error matrix A − LLT (where L is the
exact Cholesky factor) are zero inside the prescribed sparsity pattern, outside they
can be very large, and the pattern of IC(�) (even for large �) may not adequately
represent the pattern of L. The error can be particularly large for matrices in which
the entries do not decay significantly with distance from the diagonal. D’Azevedo,
Forsyth, Tang [15] started to solve the problem by combining the approach by levels
with dropping by values. Other early global tools to correct dropping by values were
introduced by Munksgaard [33], who tried to get the fill-in curve close to that of the
exact decomposition by dynamic changes in the drop tolerance.

Around the same time, an important strategy based on combining dropping entries
by value with keeping a prescribed number of the largest entries was proposed [20].
A columnwise algorithm based on a similar concept was presented by Jones and
Plassmann [28]. They retain the nl largest entries in the strictly lower triangular part
of the l-th column of L, where nl is the number of entries in the l-th column of
the strictly lower triangular part of A. Another approach that has predictable storage
requirements and depends on the matrix entries is the dual threshold ILUT(p, τ) fac-
torization of Saad [39]. A drop tolerance τ is used to drop all entries in the computed
factors that are smaller than τl , where τl is the product of τ times the l2-norm of the
l-th row of A. Additionally, only the p largest entries in each column of L and row
of U are retained. For general unsymmetric matrices, ILUT(p, τ) has proved very
popular but note that it ignores symmetry in A and, if A is symmetric, the sparsity
patterns of L and UT will normally be different.

The algorithm of Lin and Moré [30] for symmetric matrices aims to exploit the
best features of the Jones and Plassmann factorization and the ILUT(p, τ) factoriza-
tion of Saad. This approach retains the nl + p largest entries in the lower triangular
part of the l-th column of L (p is a chosen memory parameter) and uses only mem-
ory as the criterion for dropping entries (thus having the advantage of not requiring
a drop tolerance). The reported results of Lin and Moré for large-scale trust region
subproblems indicate that allowing additional memory can substantially improve per-
formance on difficult problems.

Recently, a new strategy was developed by Bollhöfer and Saad [7–9]. Here the
dropping is relative to the estimated norms of the rows and columns of the factors of
the inverse matrix. They have shown both theoretically (by perturbation arguments)
and experimentally that preconditioners based on this strategy are very reliable. Ex-
tended dropping of this kind that mutually balances direct and inverse factors has
been introduced in the last few years by Bru, Marín, Mas, and Tůma [10]; see also
their comparison of recent incomplete factorization schemes [11].

These later approaches do not take into account the structure of the levels. One rea-
son for this is that, as already observed, the structure may fill in quickly as � increases
and, importantly, until relatively recently it was not clear how this structure could be
computed efficiently, especially for larger �. A significant advancement came with
the work of Hysom and Pothen [25] (see also [24]). They describe the relationship

The importance of structure in incomplete factorization 389

between level-based factorizations and lengths of fill paths and propose a fast method
of efficiently computing the sparsity pattern of IC(�) (and ILU(�)) factorizations,
opening the way to the further development of structure-based preconditioners.

Among recent results, the usefulness of level-based preconditioners in parallel
computing environments was emphasised in [24]. Their efficiency in the context of
a Newton-Krylov method was shown in [6, 36]. Efficiency of block level-based pre-
conditioners is illustrated in [22].

The main goal of this paper is to show that sparsity structure plays an important
role in incomplete factorization preconditioners. While the progress that has been
achieved in the field of incomplete factorization preconditioners is substantial, we
strongly believe that constructing such preconditioners by considering only the size of
the entries, possibly complemented by limits on the overall memory or on the number
of additional entries, has important limitations. We are persuaded that to increase
robustness we need to use other available tools. In particular, we need to exploit
the sparsity structure of the factors. As mentioned above, the work of Hysom and
Pothen offers relatively cheap tools for computing level-based factorizations. These
are sufficiently general to allow changes to the general strategy of the level-based
approach. We propose one possible generalization. The structure of levels that we
obtain represents a symbolic incomplete factorization.

Furthermore, we believe that it can be necessary to combine the decomposition
by levels with a dropping strategy based on the magnitudes of entries. Our approach
starts with the level-based structure obtained by the symbolic incomplete factoriza-
tion. We then use two additional parameters: a memory multiplier m and a drop tol-
erance τ . The memory multiplier determines the maximum memory allowed for the
preconditioner in terms of the incomplete factor size computed by the symbolic fac-
torization. Any additional memory is predistributed to the individual columns of the
final factor. The drop tolerance is then used to decide whether an entry should be
dropped or kept in the factor. The implementation keeps track separately of the en-
tries inside the structure returned by the symbolic factorization and those outside it.
Entries that are removed either from the symbolic structure or from the additional
space available if m > 1 provides further space for the incomplete factor. The details
are explained in Sect. 4. By using a combination of these approaches, our aim is to
obtain an incomplete factorization that retains some of the global characteristics of
the full factorization. and provides a good preconditioner.

3 Variable levels of fill in an IC(�) preconditioner

In this section, we briefly recall the concept of levels of fill in an incomplete matrix
factorization and summarise the approach of Hysom and Pothen [25] for efficiently
performing a symbolic IC(�) factorization. We then propose a simple generalization
that encourages the dropping of small entries from the incomplete factorization by
preassigning small entries in A an initial level greater than 0 and we explain how our
modification can be incorporated into the symbolic factorization. We use the notation
L = {lij } to denote the complete factor of A and L̂ = {l̂ij } to denote an incomplete
factor.

390 J. Scott, M. Tůma

3.1 The incomplete fill path theorem and symbolic IC(�) factorization

It is convenient to use some basic concepts and notation from graph theory. The
pattern of a sparse symmetric matrix A = {aij } of order n can be represented by an
undirected graph G = (V ,E) with vertices V = {1, . . . , n} and edges E. An edge
{i, j} is present in E if and only if aij �= 0 and i �= j . Vertices i and j in V are
neighbours (or are adjacent to each other) if edge {i, j} ∈ E. The adjacency set for i

is the set of its neighbours, that is,

adj(i) = {j | j ↔ i, i, j ∈ V },
where we use the notation i ↔ j to denote that i and j are neighbours. A path of
length k in G is an ordered set of distinct vertices (v1, v2, . . . , vk, vk+1), with vi ↔
vi+1 (1 ≤ i ≤ k). A path in G connecting vertices i and j is a fill path if the index of
each of the intermediate vertices is less than min(i, j).

An important result that characterizes the fill in the complete factor of A is the fill
path theorem of Rose, Tarjan and Lueker [37, 38]. This states that lij is non zero if
and only if there is a fill path connecting i and j in G .

Two rules appear in the literature for assigning levels to fill entries, referred to
as the sum rule [15] and the max rule [21]. Following the work of Hysom and
Pothen [25], we use the more common sum rule, which states that entries of the
factor that correspond to nonzero entries of A are assigned the level 0 while each
potential fill entry is assigned a level

level(i, j) = min
1≤l≤min{i,j}{level(i, l) + level(l, j) + 1}.

That is, a level is assigned that is one more than the sum of the levels of the
two causative entries. A fill entry is permitted in the incomplete factor provided
level(i, j) ≤ �.

The incomplete fill path theorem of Hysom and Pothen [25] states that, if the sum
rule is used, level(i, j) = � if and only if there exists a shortest fill path of length
� + 1 joining i and j in G . Hysom and Pothen use this result to develop the scheme
outlined in Algorithm 1 for computing the sparsity pattern of a single column of the
incomplete factor L̂. The procedure uses a breadth first search that finds a shortest
path between vertex k and vertices reachable from k via a traversal of at most � + 1
edges. A key feature is that the structure of each column of L̂ can be computed
independently (and hence in parallel). Note that since the number of entries in each
column of L̂ is not known initially, Algorithm 1 may first be used with line 15 omitted
and then repeated after allocating the adjacency set adj

′
(k) for column k of L̂ to have

size nzk .

3.2 Preassigning levels: Strategy I

It is convenient to define ilev(i, j) to be the number of levels of fill to which each
nonzero entry aij of A may contribute. In a standard IC(�) algorithm, ilev(i, j) is
set to � for each nonzero aij . To try and ensure that small entries contribute to fewer

The importance of structure in incomplete factorization 391

Algorithm 1 Symbolic IC(�) factorization: computes the sparsity pattern of column
k of L̂. The row indices of the entries in column k are returned in adj′(k) and nzk is
the number of such entries. length is an array of size n.

1 Input: G , � and k.
2 Initialise: initialise the queue to hold only k;
3 flag k as visited;
4 set length(k) = 0 and nzk = 0.
5 do
6 if (the queue is empty) exit
7 take i from the queue
8 forall (unvisited j ∈ adj(i))
9 flag j as visited
10 if (j < k and length(i) < �) then
11 add j to the queue
12 set length(j) = length(i) + 1
13 else if (j > i) then
14 nzk = nzk + 1
15 add j to adj′(k)

16 end if
17 end forall
18 end do

levels of fill in the incomplete factorization than larger entries, the approach we pro-
pose preassigns ilev(i, j) for each entry of A individually to have an integer value
that depends on |aij |.

We begin by computing the absolute values of the smallest and largest nonzero en-
tries of A, which we denote by msmall and mbig, respectively. We then take the loga-
rithm of each nonzero |aij | and distribute these between the mgrp = [log(mbig) −
log(msmall)] + 1 groups that uniformly span the set of logarithm matrix values
{log |aij |}. In practice, we have observed that a number of the groups can be empty so
that the entries of A are distributed between ngrp ≤ mgrp non-empty groups, which
we refer to as slots. We index the slots as 1 to ngrp, with the entries of smallest ab-
solute value in slot 1 and those of largest absolute value in the slot with index ngrp.
How the initial levels are preassigned then depends on whether � < ngrp or � ≥ ngrp.

When � < ngrp we uniformly decrease the number of slots to � and set

ilev(i, j) =
{[kij /q] if mod(kij , q) = 0,

min(l, [kij /q] + 1) otherwise,
(3.1)

where q = [ngrp/�] and kij (1 ≤ kij ≤ ngrp) is the index of the slot log |aij | belongs
to. Thus the smallest entries may contribute to a single level of fill and the largest to
� levels. For � ≥ ngrp, we set

ilev(i, j) = � − (ngrp − kij), (3.2)

with kij is as before. In this case, the largest entries again contribute to � levels of fill
while smaller entries contribute to fewer levels.

392 J. Scott, M. Tůma

Since we want to ensure very small entries of A do not contribute to fill entries
in the sparsity pattern of L̂, for all entries that are smaller in absolute value than the
square root of machine precision multiplied by the entry of largest absolute value
belonging to the slot with index 1, we set ilev(i, j) = −(n + 1). This has the effect of
removing these small entries from A during the symbolic factorization.

We will refer to the strategy we have described for preassigning the levels as Strat-
egy I. Having preassigned the levels, we can compute the sparsity pattern of each
column of L̂ using a simple modification to Algorithm 1. In addition to inputting
ilev(i, j) for each nonzero aij of A, the only modifications we need to make are
replace line 8 by the line

8new forall (unvisited j ∈ adj(i) with ilev(i, j) �= −(n + 1))

and to replace line 10 by the line

10new if (j < k and length(i) < ilev(i, j)) then

Line 8new ensures very small entries that have been preassigned a level of −(n + 1)

are skipped over while line 10new results in entries with ilev < � potentially contribut-
ing to fewer levels of fill than they would in the original Hysom and Pothen algorithm.
We will refer to this variant of Algorithm 1 using either Strategy I or Strategy II (see
below) as the modified HP algorithm.

3.3 Strategy II

Numerical results for Strategy I show that preassigning levels so that small entries
contribute to fewer than � levels of fill can be advantageous (see Sect. 5). However,
the gains are often small. To try and improve the effectiveness of the preconditioner
further, we have experimented with allowing the largest entries to contribute to more
than � levels of fill. Recall that we distributed the set of logarithm matrix values
{log |aij |} between mgrp = [log(mbig) − log(msmall)] + 1 ≥ ngrp groups. Let mij

be the group that log |aij | belongs to. If mij ≥ ngrp, we set

ilev(i, j) = min(mij , ν ∗ �) (3.3)

for some ν > 1. Thus, the largest entries may contribute up to a maximum of ν ∗ �

levels of fill and rather than being the maximum number of levels of fill allowed, � be-
comes the target number of levels of fill, with small entries restricted to contributing
to fewer than � levels of fill while the largest entries may contribute to more levels.
We will refer to this approach as Strategy II. Note that mij plays a similar role to kij

in Strategy I, but the two indices are generally different since they correspond to the
distribution of logarithm matrix values into different numbers of groups.

4 The IC(�, τ,m) preconditioner

For general matrices that are not diagonally dominant, the size of an entry of L is not
necessarily related to its level of fill. We therefore want a strategy that offers greater
flexibility during the numerical factorization. Our basic approach will be to allow

The importance of structure in incomplete factorization 393

entries outside the pattern predicted by the symbolic factorization to be included pro-
vided there is sufficient space available in the preconditioner and, optionally, all en-
tries must be greater in absolute value than a chosen tolerance τ . We will also drop
computed entries within the predicted pattern if they are too small.

The (modified) HP algorithm is first used to compute the number nzl of entries in
the sparsity pattern of the IC(�) incomplete factor L̂. Based on the storage available
for the preconditioner P , a memory multiplier m is then chosen. If m > 0, the number
of entries in P will be at most m∗nzl; choosing m ≤ 0 indicates there is no restriction
on the number of entries in P , which will be controlled only by the drop tolerance τ .
In the following subsections, we consider the possible choices for m, with and without
a drop tolerance.

4.1 Special case: m = 1, τ = 0.0

In the special case in which no entries are dropped because of their size (τ = 0) and
the number of entries in P is equal to nzl, the sparsity pattern of P is determined
using the (modified) HP algorithm, the entries of the original matrix A are copied
into the data structure for P and then a right-looking algorithm is used to compute
the entries of P . The resulting preconditioner is a classical IC(�) preconditioner if all
entries of A are allowed to contribute to � levels of fill.

4.2 m ≥ 1

Choosing m > 1 (or m = 1 with τ > 0) allows entries outside the sparsity structure
of L̂ to be retained. We begin by allocating arrays for the values and row indices of
the entries of P to be of size [m ∗ nzl] and define eroom = [(m − 1) ∗ nzl] to be the
extra space that is not required by L̂. The sparsity pattern of L̂ is determined using the
(modified) HP algorithm and P is initially given this sparsity pattern. The entries of
the original matrix A are copied into the data structure for P , leaving eroom locations
free at the start of the arrays. If nzk is the number of entries in column k of L̂, the
space provisionally assigned to column k of P is spk = nzk + [eroom/n] (that is, the
spare locations are shared equally between the columns).

The incomplete factorization is computed one column at a time using a left-
looking algorithm. The entries within each column are always sorted by increasing
row index. This enables the strategy proposed in the Yale sparse package [18, 19] to
be followed. This keeps track of the columns that are required to update the current
column using a simple linked list, which is updated after each major step of the left-
looking algorithm. As each column is computed, it is moved forward so that its first
entry occupies the first available location in the arrays holding P . Any entries that are
smaller in absolute value than τ are dropped as they are computed and not included
in P . Additional entries outside the sparsity pattern of L̂ that was computed by the
symbolic factorization are permitted provided there is sufficient room to accommo-
date them and they are greater than τ . If there is insufficient space to include all such
additional entries, they are sorted and the largest are included in P . Conversely, if the
number of accepted entries for column k is less than spk , the spare space is added to
the space spk+1 available for the next column. Note that if τ = 0, memory is the only
criteria for dropping fill entries from P .

394 J. Scott, M. Tůma

4.3 0 < m < 1

If 0 < m < 1, the number of entries in each column k of P must, in general, be less
than the corresponding number nzk in the IC(�) incomplete factor L̂, and we therefore
need to decide how much space to initially assign to each column of P . We perform
a complete symbolic Cholesky factorization A = LLT and compute the number of
entries in each column of L. We then share out the [m ∗ nzl] entries allowed for P so
that the distribution for the individual columns is approximately proportional to the
column counts for L. We denote by nzpk the number of entries provisionally assigned
to column k.

The incomplete factorization again proceeds column by column, using a left-
looking algorithm. The computation of column k starts by computing the sparsity
pattern of column k of L̂ using the (modified) HP algorithm. A temporary array of
size nzk is allocated, initialised to zero and the entries of column k of A then copied
into it. If nzk is greater than the space spk available for column k, the entries in the
temporary array are sorted and only the spk entries of largest absolute value are kept.

Candidate entries with absolute value less than the drop tolerance τ are not in-
cluded in P . If τ > 0, this may mean that, when column k is processed, the final
number of entries that are retained is less than the space available for that column. In
this case, the spare space sk is passed to the next column so that the space for column
k + 1 becomes spk+1 = nzpk+1 + sk .

4.4 m < 0, τ �= 0

We use m < 0 to indicate that there are no memory restrictions on the size of P and
entries are only dropped because of their size relative to τ . In this case, we perform
an incomplete factorization without distinguishing between entries inside the pattern
predicted by the symbolic IC(�) factorization and those outside it. The storage re-
quirements are not predictable. We initially allocate arrays for the values and row
indices of the entries of P to be of size max(2, |m|) ∗ nzl. If these arrays are subse-
quently found to be too small, we reallocate them with larger size (saving the already
computed columns using temporary arrays) and then continue the incomplete factor-
ization. Reallocation can be needed more than once and failure only occurs if we do
not have sufficient memory available to successfully allocate larger arrays. The final
incomplete factorization depends only on τ (and not on � or m); we denote this by
IC(τ).

4.5 Dropping strategies

The dropping strategy we use is absolute dropping so that a potential entry of P is
dropped if its absolute value is less than the chosen tolerance τ . An alternative ap-
proach is relative dropping (see, for example, [40]). In this case, an entry is dropped
whenever its absolute value is less than τ multiplied by some quantity that expresses
the average size of the computed entries. An appropriate choice for this might be
a norm of the computed column. Our preference is to use absolute dropping in in-
complete factorizations and this is used in the numerical experiments reported on in

The importance of structure in incomplete factorization 395

Sect. 5. Both absolute and relative dropping have potential advantages and disadvan-
tages. A drawback of relative dropping is that it can hide significant growth in entries
of the incomplete factor. This growth, which may result in a very unstable precon-
ditioner, can then be detected only numerically. However, for absolute dropping the
growth can be detected by monitoring the size of fill-in. We believe that this may be
more useful for future adaptive strategies. Another reason for offering absolute drop-
ping is that some problems can involve large and small entries that are coupled by
subtle properties of the physical model. This may happen, for example, when solving
shell problems from structural engineering (see, for example, [5]).

5 Numerical experiments

The numerical results reported in this section were performed on a single processor of
a 2-way quadcore Harpertown machine. All the software was written in Fortran; the
g95 compiler with option -O was used. The implementation of the conjugate gradient
algorithm offered by the HSL [23] routine MI22 was employed, with starting vector
x0 = 0, the right-hand side vector b computed so that the exact solution was x = 1,
and stopping criteria

‖Ax̂ − b‖2 ≤ 10−6‖b‖2

where x̂ is the computed solution. In addition, for each test we imposed a limit of 800
iterations.

We define the iteration count for preconditioner P for a given problem to be the
number of iterations required by the iterative method using the preconditioner P to
achieve the requested accuracy and we define the preconditioner size to be the number
of entries nz(P) in the lower triangular part of P .

While we are well aware that the number of entries in the preconditioner may
increase but its effectiveness decrease, in many practical situations, the mutual rela-
tion between the iteration count and preconditioner size provides an important insight
into the usefulness of an incomplete factorization preconditioner if we assume that
the following two important conditions are fulfilled:

1. the preconditioner is sufficiently robust with respect to changes to the parameters
of the decomposition, such as with respect to the drop tolerance or number of
levels,

2. the time required to compute the preconditioner grows slowly with the problem
dimension n.

We define the efficiency of P to be

iter × nz(P),

where iter is the iteration count for P . Assuming the preconditioners Pk (q =
1, . . . , r) each satisfy the above conditions, we say that, for solving a given problem,
Pi is the most efficient of the r preconditioners if

iteri × nz(Pi) ≤ min
q �=i

(iterq × nz(Pq)).

We use this measure of efficiency in our numerical experiments.

396 J. Scott, M. Tůma

Unless stated otherwise, all our test problems are real positive-definite matrices
of order at least 1000 taken from the University of Florida Sparse Matrix Collec-
tion [14]. We took all such problems and then removed any that were diagonal matri-
ces and, where there was more than one problem with the same sparsity pattern, we
chose only one representative problem. This resulted in a test set of 147 problems of
order up to 1.5 million. In the tables of results, n denotes the order of A; nz(L̂) is the
number of entries in the lower triangular part of L̂ (measured in thousands); iter and
effic are the iteration count and efficiency, respectively.

5.1 The effects of preassigning levels

In our first experiment, we look at the effects of preassigning levels of fill. Since we
want to isolate these effects from those caused by allowing additional memory and/or
using a drop tolerance during the numerical factorization, we restrict our attention to
the case m = 1, τ = 0.0 (see Sect. 4.1). To illustrate the potential benefits of preas-
signing levels, we start by presenting results for problem carsten3, which arises
from a finite-difference discretization of a Kohn–Sham equation of physical chem-
istry in two dimensions (see [4]). The matrix dimension is 250500 and it has 750998
nonzeros. In Fig. 1, the number of iterations needed for CG to achieve the requested
accuracy as a function of the number of entries in the incomplete factor IC(�,0,1)

is presented for � = 1, . . . ,15, both with preassigning levels (using Strategy II with
ν = 2) and without preassigning levels (that is, standard constant levels). As � in-
creases, the number of nonzeros increases and the number of iterations decreases.
We see that, for this example, the efficiency is consistently improved by preassigning
the levels.

To assess the effect of preassigning the levels on a large set of problems, it is
convenient to use performance profiles [16]. A performance profile measures per-
formance of two or more preconditioners on a set T of problems. Let ek,P be the
efficiency of using preconditioner P to solve problem k and define the efficiency per-
formance ratio to be ratiok,P = ek,P /min{ek,Pi

: for all Pi}. If the number of prob-
lems in T is N , the efficiency performance profile

ρP (α) = (1/N)|{k ∈ T : ratiok,P ≤ α}|
is the probability that an efficiency performance ratio ratiok,P is within a factor α of
the best possible ratio. For instance, ρP (1) gives the fraction of the test problems for
which P is the most efficient preconditioner and ρP (2) gives how often P can get re-
sults with an efficiency that is within twice that of the best preconditioner. The closer
ρP is to 1, the greater the probability that preconditioner P can solve all problems
from T .

For a fixed value of �, for each problem we computed the IC(�,0,1) precon-
ditioner with and without preassigning levels. Any problem for which the resulting
preconditioned CG method failed to converge with Strategy I and with Strategy II and
without preassigning levels was removed from the test set T (�). Since the costs asso-
ciated with computing and applying as well as storing an IC(�,0,1) preconditioner
increase with �, we are normally interested in small values of �. Here we consider
� = 3 and use ν = 2 for Strategy II. The set T (3) comprises 120 problems.

The importance of structure in incomplete factorization 397

Fig. 1 The effect of allowing variable levels for problem carsten comparing preassigning (using Strat-
egy II) with standard level-based preconditioning (no preassigning). Results are given for � = 1, . . . ,15

Fig. 2 Efficiency performance
profile for IC(3,0,1)

The efficiency performance profile for IC(3,0,1) is given in Fig. 2. It is clear
that overall there is an advantage in preassigning levels. The improvement is often
modest, particularly for Strategy I and, in some instances, it is better not to preas-
sign levels. Unfortunately, we are currently unable to predict when this is the case.

398 J. Scott, M. Tůma

Fig. 3 Efficiency performance
profile comparing IC(3,0,1)

with Strategy II with IC(6,0,1)

without preassigning levels

Table 1 Results for IC(3,0,1) for a subset of our test set. n denotes the order of A and nz(A) is the
number of entries in the lower triangular part of A. nz(A) and nz(L̂) are in thousands

Problem n nz(A) No
preassigning

Strategy I Strategy II

nz(L̂) iter nz(L̂) iter nz(L̂) iter

Boeing/msc01440 1440 23 76 12 76 12 86 5

Nasa/nasa2910 2910 88 236 18 235 17 352 5

Boeing/ct20stif 52329 1326 6704 73 6608 73 16591 23

Wissgott/parabolic_fem 525825 2099 5926 299 5175 289 7968 244

DNVS/ship_003 121728 1949 17146 113 15625 110 37529 57

Looking in more detail at the results for Strategy I, we find that in many examples
the number of iterations is the same as for not preassigning levels: the improvement
in efficiency comes from having fewer entries in L̂. Thus, as was our intention, Strat-
egy I improves the sparsity of L̂ without reducing its quality as a preconditioner. The
achieved reduction in L̂ will be particularly beneficial if the preconditioner is used to
solve more than one system. On the other hand, Strategy II can produce denser pre-
conditioners that require fewer iterations. Some examples that illustrate this are given
in Table 1. With � = 3 and ν = 2, Strategy II allows the largest entries to contribute
up to 6 levels of fill. In Fig. 3, we compare this with IC(6,0,1) without preassigning
levels. We again see that preassigning levels is advantageous. IC(6,0,1) produces
preconditioners with more entries than Strategy II with � = 3 and, in some cases, L̂

can be significantly denser (and more expensive to compute and to apply). Based on
our findings, in the rest of the paper, we preassign levels.

The importance of structure in incomplete factorization 399

Fig. 4 The iteration count for IC(1,0,m) for the simple Laplace equation as m increases (left-hand plot)
or nz(L̂) increases (right-hand plot)

5.2 Memory control

In this section, we illustrate the importance and usefulness of the memory control
parameter m. We first consider a simple five-point discretization of the 2D Laplace
equation on a unit square with homogeneous Dirichlet boundary conditions using a
100 × 100 grid. For m ranging from 0.2 to 25, Fig. 4 shows the dependence of the
number of iterations required for the convergence of IC(1,0,m) on m and on nz(L̂).
We see that, as m increases, so too does nz(L̂) while the number of iterations steadily
decreases. Note in particular that our strategy for m < 1 yields IC-like precondition-
ers that have fewer entries than the initial level-based structure but that nevertheless
yield convergence. However, in practice, extreme values of m (either very small or
very large values) are unlikely be useful. Small m may require prohibitively many
iterations while large m may be infeasible from the memory point of view.

In Table 2, we present results for IC(�,0,m) for a tougher problem HB/
bcsstk17 from our test set. With � = 1 we found it was necessary to set m to
be greater than 2.7 to achieve convergence while m = 5 gave a complete factoriza-
tion. Thus results are given for m in the range 2.7 to 5 and, for comparison, we ran
� = 0,1,2. We see that, for fixed �, as m increases so too does nz(L̂) and, in general,
the number of iterations decreases. Note that if � is increased to 3, for all the values
of m in the given range nz(L̂) = 1596 ∗ 103 and a single iteration is required.

5.3 A comparison with IC(τ) and symmetric ILUT(p, τ)

Tables 3 and 4 show results of experiments for problem TKK/tube1, a symmet-
ric positive-definite matrix that comes from solving thin shell problems in three-
dimensional structural analysis. The matrix has dimension 21498 and 459277 nonze-
ros. The first of these tables presents results for IC(�, τ,1) with � ranging from 4 to
15 and different drop tolerances τ (smaller values of � did not give convergence). We

400 J. Scott, M. Tůma

Table 2 Results for IC(�,0,m)

for � = 0,1,2 and a range of
values of m applied to problem
HB/bcsstk17. nz(L̂) is in
thousands. † indicates
convergence not achieved

m � = 0 � = 1 � = 2

nz(L̂) iter nz(L̂) iter nz(L̂) iter

2.7 592 † 945 † 1271 11

2.75 603 † 966 23 1292 10

2.78 603 † 977 18 1303 10

2.8 614 † 988 33 1314 10

2.85 625 † 999 † 1336 10

2.9 636 † 1021 17 1358 9

3 657 † 1054 17 1412 8

3.1 679 † 1086 17 1455 8

3.15 691 † 1108 16 1477 7

3.2 701 † 1119 70 1499 7

3.25 712 † 1141 14 1520 6

3.3 723 † 1163 15 1553 4

3.5 767 † 1228 12 1596 1

4 876 † 1402 9 1596 1

4.3 942 71 1510 6 1596 1

4.5 985 26 1576 3 1596 1

5 1094 16 1597 1 1596 1

Table 3 Results for IC(�, τ,1) for a range of values of � and small drop tolerances τ applied to problem
TKK/tube1. nz(L̂) is in thousands. † indicates convergence not achieved

� τ = 0.0 τ = 10−10 τ = 10−8 τ = 10−7

nz(L̂) iter nz(L̂) iter nz(L̂) iter nz(L̂) iter

4 1654 520 1653 501 1639 506 1608 499

5 2188 283 2186 278 2158 313 2105 287

6 2863 223 2857 224 2800 197 2711 197

7 3705 159 3691 156 3584 158 3431 159

8 4662 † 4630 † 4458 744 4222 †

9 5628 † 5574 † 5322 † 4999 †

10 7383 230 7271 231 6835 204 6346 239

11 7624 325 7480 252 7030 261 6519 236

12 10532 158 10221 154 9344 123 8527 159

13 10588 135 10270 155 9386 139 8563 123

14 10612 135 10293 151 9405 139 8580 165

15 13667 83 13018 80 11619 61 10404 59

see that for fixed �, using a small non-zero drop tolerance can reduce the number of
entries in L̂ without adversely effecting its performance. The second table presents
results for IC(τ) (see Sect. 4.4). For this problem, to get convergence we found that
the drop tolerance needed to be approximately 5 ∗ 10−5 or less; by only varying τ ,

The importance of structure in incomplete factorization 401

Table 4 Results for IC(τ) for a
range of values of the drop
tolerance τ applied to problem
TKK/tube1. nz(L̂) is in
thousands. † indicates
convergence not achieved

τ nz(L̂) iter τ nz(L̂) iter

100 88 † 1e-2 14262 †

60 168 † 1e-3 16140 †

55 281 † 1e-4 9001 †

50 1458 † 5e-5 9649 471

45 2077 † 2e-5 9611 87

40 2253 † 1e-5 10050 18

10 4624 † 5e-6 10741 6

1 7151 † 1e-6 12451 2

1e-1 11565 † 0 21803 1

it was not possible to achieve convergence with nz(L̂) less than 9.6 ∗ 106. This con-
trasts with the level-based preconditioner results in Table 3, where convergence was
achieved with significantly sparser L̂. A partial explanation is based on the fact that
the finite-element discretization of thin shell problems couples unknown displace-
ments and bending moments that strongly differ in magnitudes and this fact makes
the uni-parametric preconditioner IC(τ) difficult to tune. Note that for IC(τ) we tried
values of the drop tolerance τ greater than one. Such values are meaningful if there is
growth in the entries during the computation. In fact, checking sensitivity of the drop
tolerance against the number of dropped entries which reflects the growth factor can
be a tool for adaptive dropping schemes.

Comparing the results for IC(�, τ,1) with those for IC(τ) demonstrates that incor-
porating a level-based strategy can lead to very different results. Furthermore, finding
a suitable τ is both highly problem dependent and strategy dependent (IC(�, τ,1) and
IC(τ) used different τ), which means that it is hard to perform a unified compari-
son on the kind of large test set that was reported on using performance profiles in
Sect. 5.1. To illustrate further the difficulties of choosing appropriate drop tolerances,
we compare our level-based strategy IC(�, τ,1) with the symmetric dual parameter
ILUT(p, τ) preconditioner [39] for two of our test problems. Figure 5 presents re-
sults for the thin shell problem Cylshell/s1rmt3m1 (n = 5489, nz = 112505).
The figure shows the dependence of the number of iterations required for the con-
vergence of IC(�,0.5,1) with � = 1,2, . . . ,15 and for the symmetric ILUT(p, τ)

preconditioner with parameters varying from (78,9) to (120,0). Note that it was
very difficult to find parameters for which ILUT converged and these were found by
repeated experimentation. Similarly, Fig. 6 shows results for the structural mechanics
problem Nasa/nasasrb problem (n = 54870, nz = 1366097). The behaviour of
IC(�,100,1) is shown for � in the range 5 and 15 (for smaller � convergence was
not achieved) and ILUT(p, τ) with p, τ varying from (258,119) to (1000,0). Again,
finding parameters that gave convergence of ILUT(p, τ) was difficult. The superior
performance of the level-based approach is clear in both examples. This confirms
our belief that starting the construction of an efficient preconditioner by improving a
relatively stable level-based strategy may be a reasonable strategy.

402 J. Scott, M. Tůma

Fig. 5 Comparison of
ILUT(p, τ) preconditioning
with variable parameters and
IC(�,0.5,1) for problem
Cylshell/s1rmt3m1

Fig. 6 Comparison of
ILUT(p, τ) preconditioning
with variable parameters and
IC(�,0,1) for problem
Nasa/nasasrb

6 Concluding remarks

In this paper, we have presented a new strategy for computing an incomplete
Cholesky factorization preconditioner that is derived from the level-based approach.
In particular, we have proposed new strategies for setting the levels and then ex-
ploited the sparsity structure computed during the symbolic factorization throughout
the numerical factorization. The numerical experiments confirmed that the proposed
approach is viable and can be regarded as one step in improving basic incomplete fac-
torization preconditioning strategies. It is generally assumed that a universal incom-
plete factorization preconditioning strategy for all types of problems is not possible,
but there still seems to be scope for improving the computational paradigms that we
have. Note that the scheme is easily extended to the nonsymmetric case, that is, for
ILU preconditioners. Symbolic procedures by Hysom and Pothen were, in fact, pro-

The importance of structure in incomplete factorization 403

posed for the general nonsymmetric case. Nevertheless, it is well known that the re-
sulting preconditioned iterative methods can behave much more erratically. Because
of this, our next target will be first to embed our ideas into a more comprehensive
scheme that will exploit blocks, pivoting, efficient nonsymmetric reorderings, possi-
bly also a multilevel framework. We believe that these enhancements are necessary
for getting more consistent improvements and comparisons also in the nonsymmetric
case.

References

1. Ajiz, M.A., Jennings, A.: A robust incomplete Choleski-conjugate gradient algorithm. Int. J. Numer.
Methods Engrg. 20(5), 949–966 (1984)

2. Axelsson, O., Munksgaard, N.: Analysis of incomplete factorizations with fixed storage allocation. In:
Preconditioning Methods: Analysis and Applications. Topics in Comput. Math., vol. 1, pp. 219–241.
Gordon & Breach, New York (1983)

3. Baker, G. Jr., Oliphant, T.: An implicit, numerical method for solving the two-dimensional heat equa-
tion. Quart. Appl. Math. 17, 361–373 (1960)

4. Benzi, M., Haws, J.C., Tůma, M.: Preconditioning highly indefinite and nonsymmetric matrices.
SIAM J. Sci. Comput. 22(4), 1333–1353 (2000)

5. Benzi, M., Kouhia, R., Tůma, M.: Stabilized and block approximate inverse preconditioners for prob-
lems in solid and structural mechanics. Comput. Methods Appl. Mech. Engrg. 190(49–50), 6533–
6554 (2001)

6. Blanco, M., Zingg, D.: A Newton-Krylov algorithm with a loosely coupled turbulence model for
aerodynamic flows. AIAA J. 45, 980–987 (2007)

7. Bollhöfer, M.: A robust ILU with pivoting based on monitoring the growth of the inverse factors.
Linear Algebra Appl. 338, 201–218 (2001)

8. Bollhöfer, M.: A robust and efficient ILU that incorporates the growth of the inverse triangular factors.
SIAM J. Sci. Comput. 25(1), 86–103 (2003)

9. Bollhöfer, M., Saad, Y.: On the relations between ILUs and factored approximate inverses. SIAM J.
Matrix Anal. Appl. 24(1), 219–237 (2002)

10. Bru, R., Marín, J., Mas, J., Tůma, M.: Balanced incomplete factorization. SIAM J. Sci. Comput. 30(5),
2302–2318 (2008)

11. Bru, R., Marín, J., Mas, J., Tůma, M.: Improved balanced incomplete factorization. SIAM J. Matrix
Anal. Appl. 31(5), 2431–2452 (2010)

12. Buleev, N.I.: A numerical method for solving two-dimensional diffusion equations. Atomnaja En-
ergija 6, 338–340 (1959)

13. Buleev, N.I.: A numerical method for solving two-dimensional and three-dimensional diffusion equa-
tions. Mat. Sb. 51, 227–238 (1960)

14. Davis, T.A.: The university of Florida sparse matrix collection. Technical Report, University of Florida
(2007). http://www.cise.ufl.edu/~davis/techreports/matrices.pdf

15. D’Azevedo, E., Forsyth, P., Tang, W.: Drop tolerance preconditioning for incompressible viscous flow.
Int. J. Comput. Math. 44, 301–312 (1992)

16. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91(2), 201–213 (2002)

17. Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradients. BIT 29, 635–
657 (1989)

18. Eisenstat, S.C., Gursky, M.C., Schultz, M.H., Sherman, A.H.: The Yale sparse matrix package
(YSMP)—II: The non-symmetric codes. Tech. Rep. No. 114, Department of Computer Science, Yale
University (1977)

19. Eisenstat, S.C., Gursky, M.C., Schultz, M.H., Sherman, A.H.: Yale Sparse Matrix Package (YSMP)—
I: The symmetric codes. Int. J. Numer. Methods Engrg. 18, 1145–1151 (1982)

20. Freund, R.W., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-
hermitian matrices, Part II. Technical Report TR 90-46, RIACS, NASA Ames Research Center (1990)

21. Gustafsson, I.: A class of first order factorization methods. BIT 18(2), 142–156 (1978)

http://www.cise.ufl.edu/~davis/techreports/matrices.pdf

404 J. Scott, M. Tůma

22. Hénon, P., Ramet, P., Roman, J.: On finding approximate supernodes for an efficient block-ILU(k)

factorization. Parallel Comput. 34(6–8), 345–362 (2008)
23. HSL: A collection of Fortran codes for large-scale scientific computation (2007). See http://www.cse.

scitech.ac.uk/nag/hsl/
24. Hysom, D., Pothen, A.: A scalable parallel algorithm for incomplete factor preconditioning. SIAM J.

Sci. Comput. 22, 2194–2215 (2001)
25. Hysom, D., Pothen, A.: Level-based incomplete LU factorization: Graph model and algorithms. Tech-

nical Report UCRL-JC-150789, Lawrence Livermore National Labs (November 2002)
26. Il’in, Y.M.: Difference Methods for Solving Elliptic Equations (in Russian). Novosibirskij Gosu-

darstvennyj Universitet, Novosibirsk (1970)
27. Il’in, Y.M.: Iterative Incomplete Factorization Methods. World Scientific, Singapore (1992)
28. Jones, M.T., Plassmann, P.E.: An improved incomplete Cholesky factorization. ACM Trans. Math.

Softw. 21(1), 5–17 (1995)
29. Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of sys-

tems of linear equations. J. Comput. Phys. 26, 43–65 (1978)
30. Lin, C.J., Moré, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput.

21(1), 24–45 (1999)
31. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the

coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977)
32. Meijerink, J.A., van der Vorst, H.A.: Guidelines for the usage of incomplete decompositions in solving

sets of linear equations as they occur in practical problems. J. Comput. Phys. 44(1), 134–155 (1981)
33. Munksgaard, N.: Solving sparse symmetric sets of linear equations by preconditioned conjugate gra-

dients. ACM Trans. Math. Softw. 6(2), 206–219 (1980)
34. Oliphant, T.A.: An extrapolation process for solving linear systems. Quart. Appl. Math. 20, 257–265

(1962)
35. Østerby, O., Zlatev, Z.: Direct Methods for Sparse Matrices. Lecture Notes in Computer Science,

vol. 157. Springer, Berlin (1983)
36. Pueyo, A., Zingg, D.: Efficient Newton-Krylov solver for aerodynamic computations. AIAA J. 36,

1991–1997 (1998)
37. Rose, D.J., Tarjan, R.E.: Algorithm aspects of vertex elimination on directed graphs. SIAM J. Appl.

Math. 34(1), 176–197 (1978)
38. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithm aspects of vertex elimination on graphs. SIAM J.

Comput. 5, 266–283 (1976)
39. Saad, Y.: ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4),

387–402 (1994)
40. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston (1996)
41. Sabinin, V.I.: An algorithm of the incomplete factorization method. Chisl. Metody Mekh. Sploshn.

Sredy 16(2), 103–117 (1985)
42. Varga, R.S.: Factorizations and normalized iterative methods. In: Boundary Problems in Differential

Equations, pp. 121–142. University of Wisconsin Press, Madison (1960)
43. Watts, J.W. III: A conjugate gradient truncated direct method for the iterative solution of the reservoir

simulation pressure equation. Soc. Pet. Eng. J. 21, 345–353 (1981)

http://www.cse.scitech.ac.uk/nag/hsl/
http://www.cse.scitech.ac.uk/nag/hsl/

	The importance of structure in incomplete factorization preconditioners
	Abstract
	Introduction
	Background
	Variable levels of fill in an IC(l) preconditioner
	The incomplete fill path theorem and symbolic IC(l) factorization
	Preassigning levels: Strategy I
	Strategy II

	The IC(l,tau,m) preconditioner
	Special case: m=1, tau= 0.0
	m >=1
	0 < m < 1
	m < 0, tau<>0
	Dropping strategies

	Numerical experiments
	The effects of preassigning levels
	Memory control
	A comparison with IC(tau) and symmetric ILUT(p,tau)

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

