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HSL MI28: An Efficient and Robust Limited-Memory Incomplete
Cholesky Factorization Code

JENNIFER SCOTT, Rutherford Appleton Laboratory
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This article focuses on the design and development of a new robust and efficient general-purpose incomplete
Cholesky factorization package HSL MI28, which is available within the HSL mathematical software library.
It implements a limited memory approach that exploits ideas from the positive semidefinite Tismenetsky-
Kaporin modification scheme and, through the incorporation of intermediate memory, is a generalization of
the widely used ICFS algorithm of Lin and Moré. Both the density of the incomplete factor and the amount of
memory used in its computation are under the user’s control. The performance of HSL MI28 is demonstrated
using extensive numerical experiments involving a large set of test problems arising from a wide range
of real-world applications. The numerical experiments are used to isolate the effects of scaling, ordering,
and dropping strategies so as to assess their usefulness in the development of robust algebraic incomplete
factorization preconditioners and to select default settings for HSL MI28. They also illustrate the significant
advantage of employing a modest amount of intermediate memory. Furthermore, the results demonstrate
that, with limited memory, high-quality yet sparse general-purpose preconditioners are obtained. Compar-
isons are made with ICFS, with a level-based incomplete factorization code and, finally, with a state-of-the-art
direct solver.
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1. INTRODUCTION

Incomplete Cholesky (IC) factorizations have long been an important tool in the ar-
moury of methods for the numerical solution of large sparse symmetric linear systems
Ax = b. Many papers, books, and reports on the development and performance of incom-
plete factorizations as preconditioners for iterative methods for solving problems from
a wide range of practical applications have been published over the last 50 years (for
an introduction or overview see, for instance, Benzi [2002], Saad [1996], and Scott and
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24:2 J. Scott and M. Tůma

Tůma [2014] and the long lists of references therein). A number of software packages
have also been developed and made available; the recent study by George et al [2009,
2012] provides an insightful empirical analysis of some widely used iterative solvers
that include an IC factorization preconditioner option.

An incomplete Cholesky factorization takes the form LLT in which some of the fill
entries (entries that were zero in A) that would occur in a complete factorization are
ignored. There are many different types of incomplete factorization. An important
class are level-based IC(�) methods in which the location of permissible fill entries
using only the sparsity pattern of A is prescribed in advance. The aim is to partially
mimic the way in which the pattern of A is developed during the complete factorization.
A symbolic factorization phase is used to assign each potential fill entry a level and
an entry is only permitted in the factor if its level is at most �. Unfortunately, while
entries of the error matrix E = A− LLT are zero inside the prescribed sparsity pattern,
outside they can be very large, and the pattern of IC(�) (even for large �) may not
guarantee that L is a useful preconditioner (particularly if the entries of A do not
decay significantly with distance from the diagonal). Furthermore, although IC(1) can
be a significant improvement over IC(0), the fill-in resulting from increasing � can be
prohibitive in terms of both storage requirements and the time to compute and then
apply the preconditioner.

Another widely used class of IC factorizations are threshold-based IC(τ ) methods in
which the locations of permissible fill entries are determined in conjunction with the
numerical factorization of A; entries of the computed factors or intermediate quantities
that in magnitude are less than a prescribed drop tolerance τ are discarded. Success
depends on being able to choose a suitable τ but this can be highly problem dependent.
Intuitively, using a small τ is more likely to produce a high-quality preconditioner
(measured in terms of the iteration count of a preconditioned Krylov subspace method)
than using a larger τ . But as the fill-in increases as τ is reduced, there is generally a
tradeoff between sparsity and quality. Improvements in robustness through extending
the preconditioner structure by adding simple patterns or by reducing τ have their
limitations and, importantly, for algebraic preconditioning, do not address the problem
of memory consumption.

A straightforward approach to overcome the memory problem is to simply prescribe
the maximum number of entries allowed in each column of the incomplete factor L and
retain only the largest entries. In this case, the dropping inclusion property is often
satisfied, that is, by increasing the maximum number of entries, a higher quality pre-
conditioner is obtained. This strategy appears to have been proposed first by Axelsson
and Munksgaard [1983]. It enabled them to significantly simplify their right-looking
implementation as it allowed simple bounds on the amount of memory required. Drop-
ping based on a prescribed upper bound for the largest number of entries in a column of
L combined with an efficient strategy to keep track of left-looking updates was imple-
mented in a successful and influential IC code by Jones and Plassman [1995a, 1995b].
They retained the nj largest entries in the strictly lower triangular part of the jth
column of L, where nj is the number of entries in the jth column of the strictly lower
triangular part of A. The code has predictable memory demands and, in the event of
factorization breakdown (i.e., a zero or negative pivot is encountered), it uses a strategy
similar to that proposed by Manteuffel [1980] of applying a global diagonal shift (so
that A+ αI is factorized for some positive α).

The combination of dropping by magnitude with bounding the number of entries in a
column first appeared in Freund and Nachtigal [1990] but a very popular concept that
has predictable memory requirements is the dual threshold ILU T (p, τ ) factorization of
Saad [1994]. This is designed for nonsymmetric problems and combines the use of a drop
tolerance τ with the strategy of prescribed maximum column and row counts. All entries
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in the computed factors that are smaller in magnitude than τl are discarded, where τl
is the product of τ times the l2-norm of the lth row of A. Additionally, only the p largest
entries in each column of L and row of U are retained. This approach ignores symmetry
in A and, if A is symmetric, the sparsity patterns of L and U T are normally different.

A widely used limited-memory IC factorization implementation is provided by the
ICFS code of Lin and Moré [1999]. It aims to exploit the best features of both the
Jones and Plassmann and the Saad factorizations, incorporating l2-norm based scaling
and adding a loop for efficiently changing the Manteuffel diagonal shift to prevent
breakdown. Given a user-controlled parameter p, ICFS retains the nj + p largest
entries in the lower triangular part of the jth column of L and uses only memory as the
criterion for dropping entries (thus having both the advantage and disadvantage of not
requiring a drop tolerance). Reported results for large-scale trust region subproblems
indicate that using additional memory by selecting p > 0 can substantially improve
performance on difficult problems. However, following Scott and Tůma [2011], let us
define the efficiency of an IC preconditioner to be

iter × nz (L), (1)

where iter is the iteration count (number of iterations required by the Krylov subspace
method using the preconditioner to achieve the requested accuracy) and nz(L) is the
number of entries in the incomplete factor L. Numerical experimentation reported in
Scott and Tůma [2014] has shown that, for a general set of problems arising from a
range of applications (see Section 4.1 for details), increasing p improves reliability but
the efficiency is not very sensitive to the choice of p (although, of course, the time to
compute the factorization and the storage for L increase with p).

An alternative approach to incomplete factorizations focuses on avoiding break-
down by incorporating positive semidefinite modifications. The scheme introduced by
Jennings and Malik [1977, 1978] in the late 1970s modifies the corresponding diag-
onal entries every time an off-diagonal entry is discarded. It can be shown that the
sequence of these modifications leads to a breakdown-free factorization for which the
error matrix E is a sum of positive semidefinite matrices with nonpositive off-diagonal
entries and is thus itself positive semidefinite. This approach has been adopted in some
engineering applications (and can give good results on moderately ill-conditioned prob-
lems) but in the experiments reported on in Scott and Tůma [2014] for a more general
test set, it was observed that, in general, the quality of the computed preconditioner
was less than was obtained using a global diagonal shift.

A more sophisticated modification scheme is one due to Tismenetsky [1991] and
which was later significantly enhanced by Kaporin [1998]. This approach, which we
discuss further in Section 2, introduces the use of intermediate memory that is em-
ployed during the construction of L but is then discarded. It has been shown to be
very robust but, as Benzi [2002] remarks, it “has unfortunately attracted surprisingly
little attention”. This may be because it suffers from a serious drawback: its memory
requirements can be prohibitively high (in some cases, it has been reported that it uses
more than 70 per cent of the storage required for a complete Cholesky factorization,
see Benzi and Tůma [2003]). The dropping strategy of Kaporin may help to alleviate
this but a breakdown-free factorization is no longer guaranteed.

This leads us to the two main motivations that lie behind our work. The first is that
we would like to develop a generalization of the successful ICFS algorithm that is such
that the efficiency of the IC preconditioner improves with the prescribed memory. Sec-
ond, we would like a memory-efficient variant of the Tismenetsky-Kaporin approach,
without diagonal compensation but using a global shift to avoid breakdown. We want to
combine both these aims within the development a single “black-box” IC factorization
code that is demonstratively robust and efficient on a wide range of problems, while
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also being flexible in allowing experienced users to tune the parameters to potentially
enhance performance for their particular problems of interest. The new package is
called HSL MI28 and is available within the HSL mathematical software library [HSL
2013].

The remainder of this article is organised as follows. In Section 2, we present a
brief overview of the Tismenetsky-Kaporin scheme. We also explain how we can limit
the memory requirements and, in so doing, we obtain a generalization of the ICFS
algorithm. An outline of the algorithm implemented by HSL MI28 is given in Section 3;
implementation details and user parameters are discussed. In Section 4, numerical
results for HSL MI28 are presented. In particular, we report on the effects of using inter-
mediate memory and of scaling, ordering and dropping, and provide comparisons with
a level-based preconditioner and a modern sparse direct solver. Concluding remarks
are made in Section 5.

2. A LIMITED MEMORY TISMENETSKY-KAPORIN MODIFICATION SCHEME

2.1. The Approach of Tismenetsky

The Tismenetsky scheme [Tismenetsky 1991] is based on a matrix decomposition of
the form

A = (L + R)(L + R)T − E, (2)

where L is a lower triangular matrix with positive diagonal entries that is used for
preconditioning, R is a strictly lower triangular matrix with small entries that is used
to stabilise the factorization process, and we consider the error E given by

E = RRT . (3)

Although HSL MI28 uses a left-looking implementation, for simplicity, consider for a
moment an equivalent right-looking approach: at each step, the next column of L is
computed and then the remaining Schur complement is modified. On the jth step, the
first column of the Schur complement can be decomposed into a sum of two vectors

lj + rj,

such that |lj |T |rj | = 0 (with the first entry in lj nonzero), where lj (respectively, rj)
contains the entries that are retained in (respectively, discarded from) the incomplete
factorization. On the next step of a complete decomposition, the Schur complement of
order n − j is updated by subtracting the outer product of the pivot row and column.
That is, by subtracting

(lj + rj)(lj + rj)T .

The Tismenetsky incomplete factorization does not compute the complete update as it
does not subtract

Ej = rjrT
j . (4)

Thus, the positive semidefinite modification Ej is implicitly added to A.
As proposed by Tismenetsky, the obvious choice for rj is the smallest off-diagonal

entries in the column (those that are smaller in magnitude than a chosen tolerance).
Then, at each step of the right-looking formulation, implicitly adding Ej is combined
with the standard steps of the Cholesky factorization, with entries dropped from L after
the updates have been applied to the Schur complement. The approach is naturally
breakdown-free because the only modification of the Schur complement that is used in
the later steps of the factorization is the addition of the positive semidefinite matrices
Ej .
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2.2. Kaporin’s Second-Order Incomplete Cholesky Factorization Scheme

While the fill in L can be controlled through the use of a drop tolerance, this does not
limit the memory required to compute L. A right-looking implementation of a sparse
factorization is generally very demanding from the point of view of memory as it is nec-
essary to store all the fill-in for column j until the modification is applied in the step j,
as follows from (4). Hence, a left-looking implementation (or, as in Kaporin [1998], an
upward-looking implementation) might be thought preferable. But to compute column
lj and rj in a left-looking implementation and to apply the modification (4) correctly,
all the vectors lk and rk for k = 1, . . . , j − 1 have to be available. Therefore, the dropped
entries have to be stored throughout the left-looking factorization and the rk cannot
be discarded until the factorization is finished (and similarly for an upward-looking
implementation). These rk vectors thus represent intermediate memory. Note the need
for intermediate memory is caused not just by the fill in the factorization: it is required
because of the structure of the positive semidefinite modification that forces the use of
the rk. Sparsity allows some of the rk to be discarded before the factorization is complete
but essentially the total memory is as for a complete factorization, without the other
tools that direct methods offer. This memory problem was discussed by Kaporin [1998],
who proposed using two drop tolerances τ1, τ2 with τ1 > τ2. Only entries of magnitude
at least τ1 are kept in L and entries smaller than τ2 are dropped from R. In this case,
the error matrix E has the structure

E = RRT + F + FT ,

where F is a strictly lower triangular matrix that is not computed while R is used in
the computation of L but is then discarded.

When nonzero drop tolerances are introduced, the factorization is no longer guar-
anteed to be breakdown-free. To avoid breakdown, diagonal compensation (as in the
Jennings-Malik scheme discussed in Section 1) for the entries that are dropped from R
may be used. Kaporin coined the term second-order incomplete Cholesky factorization
to denote this combined strategy.

In recent years, the Tismenetsky-Kaporin approach has been used to provide a robust
preconditioner for some practical applications, see, for example, Axelsson et al. [2000],
Beirão da Veiga et al. [2009], Kaporin [1998], and Lipnikov et al. [2007, 2009]. We note,
however, that there are no reported comparisons with other approaches that take into
account not only iteration counts but also the size of the preconditioner; providing some
comparisons is one of our aims (see Sections 4.7 and 4.8).

2.3. A Limited-Memory Tismenetsky-Kaporin Approach

The use of drop tolerances τ1 and τ2 can help to reduce the amount of intermediate mem-
ory needed. However, picking suitable tolerances can be highly problem dependent: too
small and the dropping has little effect, too large and the resulting preconditioner is in-
effective. Applying an appropriate scaling can help significantly. Yamazaki et al. [2009]
use the Tismenetsky-Kaporin approach without diagonal compensation; in the event
of breakdown, they employ a global diagonal shift. By restricting their attention to a
specific class of problems, they are able to determine an interval of useful drop toler-
ances that limit the size of the computed factor and to obtain good preconditioners for
their examples.

In a recent study [Scott and Tůma 2014], we found that, in terms of efficiency
(recall (1)), using unlimited intermediate memory leads to a good preconditioner. How-
ever, efficiency as a measure for assessing how well an algorithm works does not take
into account the time required to compute the incomplete factorization and this can
be prohibitive (or at least uncompetitive) for the Tismenetsky-Kaporin approach, un-
less the factorization time can be amortized over several problems. Furthermore, for
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a number of the largest test problems used in Scott and Tůma [2014], the incomplete
factorization failed because of insufficient memory, that is, a memory allocation error
was returned. Thus, the Tismenetsky-Kaporin approach can only be considered robust
if the problems to be solved are not too large for the available memory. These key issues
highlight that the Tismenetsky-Kaporin approach can be impractical for the very large
problems that we want to solve using an iterative method and motivates us impose on
it the use of limited memory.

The memory predictability of our approach depends on specifying a parameter lsize
that limits the maximum number of nonzero off-diagonal fill entries in a column of L.
Thus, we retain at most nz(A) + (n − 1) ∗ lsize off-diagonal entries in the incomplete
factorization (where nz(A) is the number of entries in the lower triangular part of A
and n is the order of A). We employ a second parameter rsize ≥ 0 that controls the
amount of intermediate memory that is used for R; it is limited to at most (n−1)∗rsize
entries. At step j, the candidate entries for inclusion in the jth column of L are held in a
temporary array. The entries of this array are sorted and (at most) the nj +lsize entries
of largest magnitude (plus the diagonal) are retained in L; the next rsize largest entries
form the jth column of R and all other entries are discarded. Following Kaporin, our
implementation offers the option of employing two drop tolerances; entries in L are
retained only if they are at least τ1 in magnitude while those in R must be at least τ2.
Numerical results (see Section 4.4) will illustrate the potential benefits of employing
dropping according to the magnitude of the entries.

3. AN ENHANCED LIMITED-MEMORY IC FACTORIZATION

Based on this discussion, we now summarise our limited-memory IC factorization
algorithm and briefly describe its user interface and implementation; further details
of how to use the code are supplied in the user documentation that is distributed with
the software and is also available at http://www.hsl.rl.ac.uk/catalogue/. Given a
symmetric sparse matrix A, HSL MI28 computes an IC factorization (QL)(QL)T , where
Q is a permutation matrix. The matrix A is optionally scaled and, if necessary, shifted
to avoid breakdown of the factorization, so that the incomplete factorization of A =
SAS + αI is computed, where S = {si} is a diagonal scaling matrix and α is a positive
shift. The user supplies the lower triangular part of A in compressed sparse column
format and the computed L is returned to the user in the same format; a separate entry
performs the preconditioning operation y = Pz, where P = (LL

T
)−1, L = S−1 QL, is the

incomplete factorization preconditioner.

3.1. Algorithm Outline

In Figure 1, we present a summary outline of our left-looking IC algorithm. Here
A = {aij} and aj , lj and rj denote the jth columns of the lower triangular parts of A,
L and R, respectively; w is a work array of length n. For simplicity of explanation, we
assume that each lj can have at most lsize fill entries (that is, we ignore the use of any
spare space that has been passed from a previous column). The scalar small is used
to determine whether a diagonal entry is sufficiently large; if at any stage a diagonal
entry is less than small, the factorization is considered to have broken down and in
this case, the shift α is increased and the factorization restarted. Details of the shift
strategy are given in Section 3.2.5 (note that, in Figure 1, we omit the possibility of
decreasing the chosen α but this is discussed in Section 3.2.5). τ1 ≥ τ2 ≥ 0 are chosen
drop tolerances.

The ICFS algorithm of Lin and Moré [1999] is a special case in which ordering is not
incorporated, τ1 = τ2 = 0 and rsize = 0 (so that there is no dropping of entries by size,
R = 0 and only LLT updates are applied).
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ALGORITHM 1: Outline of the HSL MI28 incomplete Cholesky factorization

! Reorder (see Section 3.2.4)
Compute an ordering Q for A
Permute the matrix: A ← QT AQ

! Scale (see Section 3.2.3)
Compute a diagonal scaling S
Scale the matrix: A ← SAS

! Diagonal shift (see Section 3.2.5)
Choose α such that min(aii) + α > small
Initialise breakdown = false and α0 = 0

! Loop over shifts
Set w = 0
do

Set A ← A+ (α − α0)I and d(1 : n) = (a11, a22, ..., ann)

! Factorization : loop over columns
for j = 1 : n do

Copy aj into w

Apply LLT + RLT + LRT updates from columns 1 : j − 1 to w

Apply LLT + RLT + LRT updates from columns 1 : j − 1 to d( j + 1 : n)
Optionally apply RRT updates from columns 1 : j − 1 that cause

no additional fill-in in w ! User-controlled option (see Section 3.2.6)
if (min(d( j + 1 : n)) < small) then

Set breakdown = true, α0 = α and increase α ! (see Section 3.2.5)
exit

end if
Sort entries in w by magnitude
Keep at most nj + lsize entries of largest magnitude in lj such that

they are all at least τ1
Keep at most rsize additional entries that are next largest in magnitude

in rj such that they are all at least τ2
Reset entries of w to zero

end do
if breakdown = false exit

end do

3.2. User Interface and Implementation Details

3.2.1. Setting the Memory Limits. The user must supply the following parameters that
determine the amount of memory and work involved in computing the incomplete
factorization.

—lsize is the maximum number of fill entries within each column of the incomplete
factor L. The number of entries in the computed factor is at most nz(A) + lsize ×
(n − 1).

—rsize is the maximum number of entries within each column of the strictly lower
triangular matrix R. An integer array and a real array of size rsize × (n − 1) are
allocated internally to hold R thus the amount of intermediate memory used, as well
as the amount of work involved in computing the preconditioner, depends on rsize.
If rsize = 0, R is not used (and the code is then our implementation of the ICFS
algorithm [Lin and Moré 1999]).
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3.2.2. Control Parameters. A number of control parameters provide the experienced user
with the means of experimenting with different settings and to tune the code for a par-
ticular application. These parameters have default values that we have chosen on the
basis of numerical experimentation (see Section 4 for results that support our choices);
for some problems, selecting different values can be beneficial but the default settings
have been found to be generally robust. In particular, we have two parameters, tau1
(=τ1) and tau2 (=τ2), that control dropping of small entries from L and R, respectively.
Note that, by allowing lsize and rsize to be sufficiently large, the user can force the
code to simulate the dropping strategy of Suarjana and Law [1995] and Kaporin [1998].
But, as we will see from our experimental results, for our test examples this is unnec-
essary since limiting memory appears to afford a more practical approach. From the
results of our experiments (see Section 4.4), the dropping parameters have default
values 0.001 and 0.0001, respectively; dropping based on the size of entries is disabled
by setting both to zero. Observe that these values, that were chosen on the basis of our
general set of scaled matrices, are significantly smaller than those that are typically
recommended (see, e.g., Benzi [2002] and Kaporin [1998]).

3.2.3. Scaling Options. For scaling and ordering A before the factorization begins,
HSL MI28 is able to offer a range of options by taking advantage of existing HSL routines.
The default scaling is l2 scaling, in which the entries in column j of A are normalised
by the 2-norm of column j; this is used in ICFS [Lin and Moré 1999]. We also offer
diagonal scaling, scaling based on maximum matching using a symmetrized version
of the package MC64 [Duff and Koster 2001; Duff and Pralet 2005], and equilibration
scaling using MC77 [Ruiz 2001; Ruiz and Uçar 2011]; in addition, there is a facility
for the user to supply a scaling. The effects of the choice of scaling are illustrated in
Section 4.3.

3.2.4. Ordering Options. Based on our numerical experiments (see Section 4.5), a pro-
file reduction ordering using a variant of the Sloan algorithm [Reid and Scott 1999;
Sloan 1986, 1989] is the default ordering (this variant is implemented by the HSL
package MC61). Other orderings that are currently offered are reverse Cuthill McKee
(RCM) [Cuthill and McKee 1969] (again, implemented within MC61), approximate min-
imum degree [Amestoy et al. 2004] (HSL MC68), nested dissection (currently, provided
by routine METIS NodeND from the METIS package [Karypis and Kumar 1997] but it is
anticipated that this may be replaced by an HSL package in the future), and ordering
of the rows by ascending degree. In addition, an option is available for the user to
supply an ordering; this is convenient if a series of problems having the same sparsity
pattern is to be solved.

3.2.5. Coping with Breakdown. In the event of breakdown within the factorization,
HSL MI28 employs a global diagonal shift. It is important to try and use as small a shift
as possible but also to limit the number of breakdowns. An option exists for the user to
supply an initial (positive) shift α0. Otherwise, α0 is computed as in Lin and Moré [1999]
so that, if β = min(s2

i aii) > 0 (where si is the ith diagonal entry of the scaling matrix S),
then α0 = 0.0; otherwise, α0 = −β + lowalpha, where lowalpha > 0 may be chosen
by the user. The incomplete factorization algorithm is applied to A0 = SAS + α0 I. If
breakdown occurs, a larger shift

α1 = max(lowalpha, α0 × shift factor), (5)

with shift factor > 1, is tried. The process continues until an incomplete factorization
of Ak = SAS + αkI is successful. If breakdown occurs at the same (or nearly the
same) stage of the factorization for two successive shifts, we try to limit the number of
restarts by more rapidly increasing the shift. In this case, we increase α by a factor of
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2 × shift factor. Conversely, if αk = lowalpha, to prevent an unnecessarily large shift
from being used, we try decreasing α. We first take a copy of the successful factorization
(if there is insufficient memory to do this, we accept the successful factorization), then
set

αk+1 = αk/shift factor2, (6)

with shift factor2 > 1, and apply the incomplete factorization algorithm to Ak+1 =
SAS + αk+1 I. If this factorization is also breakdown free, we repeat (up to maxshift
times); otherwise, we use the stored factorization. In all cases, the value of the final
shift is returned to the user, along with the number of shifts tried and the number of
restarts.

In summary, the parameters within HSL MI28 that determine the initial and subse-
quent choice of the shift α and their default settings are as follows.

—alpha holds the initial shift α. It has default value zero.
—lowalpha controls the choice of the first nonzero shift. The default value is 0.001.
—maxshift determines the maximum number of times the shift can be decreased after

a successful factorization with a positive shift. Limiting maxshift may reduce the
factorization time but may result in a poorer quality preconditioner. It has default
value 3.

—shift factor controls how rapidly the shift is increased after a breakdown. Increas-
ing shift factor rapidly may reduce the factorization time but may result in a poorer
quality preconditioner. It has default value 2.

—shift factor2 controls how rapidly the shift is decreased after a successful factor-
ization with α = lowalpha. It has default value 4.

In all the experiments reported on in Section 4, we use the default settings for these
parameters (which were selected on the basis of experimentation).

3.2.6. Other Control Parameters. As well as the parameters already described and pa-
rameters that are used to control diagnostic printing, HSL MI28 uses the following
control parameters.

—rrt is used to control whether entries of RRT that cause no additional fill-in are
included (rsize> 0 only). Experiments in Scott and Tůma [2014] found that allowing
such entries can improve the quality of the preconditioner but this is not guaranteed.
Such entries are allowed if rrt = .true.. The default is rrt = .false.

—small is used to decide when factorization breakdown has occurred. Any pivot whose
modulus is less than small is treated as zero and, if such a pivot is encountered, the
factorization breaks down, the shift is increased and the factorization restarted (see
Figure 1). The default value in the double precision version of the package is 10−20

and in the single version it is 10−12.

4. NUMERICAL EXPERIMENTS

4.1. Test Environment

All the numerical results reported on in this article are performed (in serial) on our
test machine that has two Intel Xeon E5620 processors with 24 GB of memory. The
ifort Fortran compiler (version 12.0.0) with option -O3 is used. The implementation of
the conjugate gradient (CG) algorithm offered by the HSL routine MI22 is employed,
with starting vector x0 = 0, the right-hand side vector b computed so that the exact
solution is x = 1, and stopping criteria

‖Ax̂ − b‖2 ≤ 10−10‖b‖2, (7)
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where x̂ is the computed solution. In addition, for each test we impose a limit of 2000
CG iterations.

In assessing the effectiveness of a preconditioner we use the definition of efficiency
given by (1). A weakness of this measure is that it does not take into account the number
of entries in R. If lsize is fixed, increasing rsize will generally lead to a more efficient
preconditioner. However, this will be at the cost of additional work in the incomplete
factorization. Thus, we record the time to compute the preconditioner together with
the time for convergence of the iterative method: the sum of these is referred to as the
total time and is also used to assess the quality of the preconditioner. Note that in our
tests, a simple matrix-vector product routine is used with the lower triangular part of
A held in compressed sparse column format: we have not attempted to perform either
the matrix-vector products or the application of the preconditioner in parallel and all
times are serial times.

Our test problems are real positive-definite matrices of order at least 1000 taken
from the University of Florida Sparse Matrix Collection [Davis and Hu 2011]. Many
papers on preconditioning techniques and iterative solvers select a small set of test
problems that are somehow felt to be representative of the applications of interest.
However, as in Scott and Tůma [2014], our interest is more general and we want
to test our new software on as wide a range of problems as we can. Thus, we took
all such problems and then removed any that were diagonal matrices and, where
there was more than one problem with the same sparsity pattern, we chose only one
representative problem. This resulted in a test set of 153 problems of order up to
1.5 million. Following initial experiments, eight problems were removed from this set
as we were unable to achieve convergence to the required accuracy within our limit
of 2000 iterations without allowing a large amount of fill. To assess performance on
our test set and compare different settings and options, we use performance profiles
[Dolan and Moré 2002], which in recent years have been widely used to compare the
performance of linear solvers, both direct and iterative (see, e.g., George et al. [2009,
2012], Gould and Scott [2004], and Gould et al. [2007]).

Performance profiles provide a way to compare several different algorithms on a set
of problems with respect to a performance measure such as efficiency, iteration count
or time. The performance ratio for an algorithm on a particular problem is the per-
formance measure for that algorithm divided by the smallest performance measure
for the same problem over all the algorithms (here we are assuming that the perfor-
mance measure is one for which smaller is better). The performance profile is the set
of functions {ρk(τ ) : τ ∈ [1,∞)}, where ρk(τ ) is the proportion of problems where the
performance ratio of the kth algorithm is at most τ . Thus, ρk(τ ) is a monotonically
increasing function taking values in the interval [0, 1]. By plotting the curves ρk(τ ) on
a single plot, it is straightforward to compare them and deduce information about the
relative performance of the respective algorithms.

For τ = 1, ρk(τ ) is how often the kth algorithm is the best (or joint best). If we assume
failure to solve a problem (e.g., through the maximum iteration count being exceeded)
is signaled by a performance measure of ∞, then limτ→∞ρk(τ ) < 1 if the kth algorithm
failed to solve at least one problem that was solved by another algorithm. Thus, for
large values of τ , the performance profile reveals the reliability of the algorithm.

4.2. Results for lsize Fixed and rsize Varying

As reported in Scott and Tůma [2014], increasing lsize with rsize = 0 does little to
improve the preconditioner quality (in terms of efficiency), although it can improve reli-
ability. We thus start by examining the effects of introducing intermediate memory. We
set the drop tolerances to zero, employ l2 scaling, no reordering, and fix lsize = 5.
We run with no intermediate memory, rsize = 2, 5, and 10, and with unlimited
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Fig. 1. Efficiency (left) and total time (right) performance profiles for rsize varying.

Table I. The Effects of Increasing rsize Having Fixed lsize = 5

Problem rsize = 0 rsize = 5 rsize = 10

Boeing/msc01440 142 (3, 8.0 × 10−3) 119 (1, 1.0 × 10−3) 130 (0, 0.0)
HB/bcsstk17 227 (4, 3.2 × 10−2) 209 (3, 1.6 × 10−2) 172 (2, 8.0 × 10−3)
Overwolfach/gyro-m 230 (4, 3.2 × 10−2) 230 (3, 8.0 × 10−3) 193 (0, 0.0)
GHS psdef/hood 762 (6, 6.4 × 10−2) 662 (6, 6.4 × 10−2) 783 (4, 3.2 × 10−2)

The iteration counts are reported and, in parentheses, the number of shifts used and the
final shift.

intermediate memory (all entries in R are retained, which we denote by rsize = -1).
We remark that the latter is not an option offered by HSL MI28 but corresponds to the
original Tismenetsky approach. Figure 1 presents the efficiency performance profile
(on the right) and total time performance profile (on the left). Since lsize is the same
for all runs, the fill in L is essentially the same in each case and thus comparing the
efficiency here is equivalent to comparing the iteration counts. Note that the asymp-
totes of the performance profile provide a statistic on reliability (that is, the proportion
of problems that are successfully solved) and as the curve for rsize = -1 lies below the
others on the right-hand axis of the profiles in Figure 1, this indicates poorer reliability
when using unlimited memory. This poor reliability is because, as anticipated, in this
case there was insufficient memory to factorize a number of our large test problems.
Moreover, in terms of time as well as memory, unlimited intermediate memory is the
most expensive option. With the introduction of a limit on memory, we see that, as
rsize is increased from 0 to 10, the efficiency and robustness of the preconditioner
steadily increases, without significantly increasing the total time. Since a larger value
of rsize reduces the number of iterations required, if more than one problem is to be
solved with the same preconditioner, it may be worthwhile to increase rsize in this
case.

Using intermediate memory can reduce the number of restarts required during the
factorization and thus the size of the final shift. This is illustrated in Table I. In general,
for a given problem, the smaller the shift the fewer the number of iterations. But this
is not always the case. For example, for problem GHS psdef/hood, for rsize = 10,
α = 3.2 × 10−2 and 783 iterations are required. However, for rsize = 5, a larger shift
α = 6.4 × 10−2 is used but the iteration count drops to 662.
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Fig. 2. Efficiency performance profile for different scalings.

4.3. Effect of Scaling

The importance of scaling in the solution of linear systems is well known. In
Figure 2, we illustrate how scaling effects the performance of HSL MI28. The code is
run with lsize = rsize = 10, drop tolerances tau1 = 0.001, tau2 = 0, and no ordering.
We see that, considering the test set as a whole (a set that contains some problems
that are initially well scaled and others that are initially poorly scaled), scaling can
significantly improve performance. Interestingly, each of the tested scalings gives a
preconditioner of similar quality. For each, there was at most two problems for which
we failed to achieve the requested accuracy within the iteration limit and the number
of shifts used was at most four. If no scaling is used, the number of restarts following
factorization breakdown can be large, the final shift can be large and the computed
IC preconditioner of poor quality. There were ten failures to converge and up to 22
restarts were necessary using the default setting for the shift strategy. We remark that
the studies by Hogg and Scott [2008, 2014] into the effects of scalings on the perfor-
mance of direct solvers for the solution of sparse symmetric indefinite systems found
MC64 to be expensive but it produced the highest quality scalings, particularly for some
“tough” problems (problems that a direct solver can struggle to solve efficiently as well
as accurately). MC64 has also been used to advantage in the non symmetric case (e.g.,
Benzi et al. [2000] report on the beneficial effects of scalings to place large entries
on the diagonal when computing incomplete factorization preconditioners for use with
Krylov subspace methods). However, since it is expensive, does not significantly reduce
the number of factorization breakdowns compared with the other scalings, and does
not lead to higher quality IC preconditioners for our test problems, it is not the default
scaling within HSL MI28; the default is the much cheaper and simpler l2 scaling.

4.4. Effect of Dropping

Figure 3 presents an efficiency performance profile (on the left) and an iteration per-
formance profile (on the right) for the drop tolerance tau1 in the range 0 (no threshold-
based dropping) and 0.01. Here we use lsize=rsize=5, l2 scaling, no reordering and
tau2 = 0 (so that small entries are dropped from L but dropping is not used on R).
In terms of efficiency, it is clearly advantageous to use a small drop tolerance greater
than zero but, if tau1 is increased too far, reliability of the computed preconditioner is
reduced. Looking at the iteration performance profile, we see that, as expected, drop-
ping entries reduces the quality of the preconditioner but for small tau1 the number
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Fig. 3. Efficiency (left) and iteration count (right) performance profiles for tau1 varying.

Fig. 4. Efficiency performance profile for different orderings. RCM is the reverse Cuthill-McKee bandwidth
minimisation algorithm, Sloan is a profile reduction algorithm, AMD is an approximate minimum degree
ordering, Ascend is ordering by ascending degree, METIS is a nested dissection ordering, and None indicates
the supplied (natural) ordering.

of extra iterations is generally modest. We have selected tau1 = 0.001 as the default
setting in HSL MI28. Provided the problem has been scaled, we found that also using a
non zero value for tau2 has a relatively small but beneficial effect on the efficiency. We
have chosen the default value to be tau2 = 0.0001.

4.5. Effect of Ordering

The effects of sparse matrix orderings on the convergence of preconditioned Krylov
subspace methods have been widely reported on in the literature (the survey by
Benzi [2002], for example, contains a large number of references and a brief sum-
mary discussion). In Figure 4, we compare the performance of the ordering algorithms
offered by HSL MI28 (with the same settings as previoulsy mentioned and l2 scaling).
Our results agree with previously reported findings; in particular, minimum degree
and nested dissection perform less well than the natural order and this, in turn, is
outperformed by RCM and the Sloan algorithms. It is interesting to observe how well
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Table II. The Effects of Varying lowalpha

Problem lowalpha = 0.01 lowalpha = 0.001 lowalpha = 0.0001

Boeing/msc01440 40 (4,1.56 × 10−4) 40 (3,2.50 × 10−4) 39 (2,2.00 × 10−4)
FIDAP/ex33 427 (2,1.00 × 10−2) 415 (3,8.00 × 10−3) 460 (5,1.28 × 10−2)
HB/bcsstk17 112 (3,2.50 × 10−3) 151 (3,8.00 × 10−3) 136 (5,6.40 × 10−3)
GHS psdef/oilpan 817 (3,2.50 × 10−3) 698 (2,1.00 × 10−3) 708 (3,1.60 × 10−3)
Um/offshore 69 (2,1.00 × 10−2) 71 (3,1.60 × 10−2) 72 (4,6.40 × 10−3)

The iteration counts are reported and, in parentheses, the number of shifts used and the
final shift.

the Sloan algorithm does: it is significantly better (in terms of efficiency and reliability)
than the more widely used RCM ordering and, as its use adds very little to the time
to compute the factorization, we have made it the default ordering within HSL MI28.
Closer examination of the results shows that the Sloan ordering gives the best results
across the range of problems tested (in particular, it gives the same kind of overall
performance improvement for the largest problems as for the smallest).

4.6. The Shift Strategy

We now consider the effects of varying the parameter lowalpha that controls the choice
of the initial shift. We set lsize = rsize = 10 and default settings are used for the
control parameters. For these parameter choices and initial shift α0 = 0, convergence is
achieved for all but one of our test problems and for 60 of the problems a nonzero shift is
needed. If α > 0 is required, at least two shifts are tested. This is because α = lowalpha
is first tried and, as discussed in Section 3.2.5, if the factorization is breakdown free,
by default we reduce α by a factor of shift factor and restart the factorization. For 30
out of the 60 problems, only two shifts are required; for 24 problems, three shifts are
needed and for the remainder four shifts are used.

A subset of the problems that require a non zero shift are reported on in Table II. The
subset was chosen to illustrate different behaviours. It is clear that there is no single
best choice for lowalpha: if it is small, it may be necessary to increase the shift several
times to avoid breakdown (for example, FIDAP/ex33 with lowalpha = 0.0001), while if
it is too large, a number of reductions may need to be made so that an unnecessarily
large shift is avoided (e.g., Boeing/msc01440 with lowalpha = 0.01). For some problems
(including GHS psdef/oilpan) the iteration count is sensitive to the choice of shift while
for others (such as Um/offshore) this is not the case. Based on our experiments, we have
selected lowalpha = 0.001 as the default value (but as it is a control parameter, users
can easily experiment with other values to try and limit the number of shifts used for
their problems). Note that this choice is made on the assumption that the problem has
been scaled; if the problem is not well scaled, we found larger shifts were needed and
so a larger lowalpha could be advantageous.

As already noted, with our default settings, half of our test problems that required a
non zero shift used α = lowalpha = 0.001 and the time spent in trying a reduced value
was wasted. It is thus of interest to consider whether allowing the possibility of reducing
α below its initial nonzero value is beneficial. If the control parameter maxshift is set to
zero, there is no attempt to reduce the shift if α = lowalpha yields a breakdown-free fac-
torization. Table III presents results for maxshift = 0 and 3. We also ran maxshift = 2
and 4 and found, for the problems tested, that these gave the same results as
maxshift = 3. This is not guaranteed and depends on how rapidly α is decreased
(controlled by shift factor2). We see that for some examples (including ND/nd3k and
GHS psdef/shipsec8) the iteration count is significantly reduced by reducing α but
others are not sensitive (GHS psdef/bcsstk13).
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Table III. The Effects of Varying maxshift

Problem maxshift = 0 maxshift = 3

Boeing/msc01440 47 (1,1.00 × 10−3) 40 (3,2.50 × 10−4)
GHS psdef/bcsstk13 54 (1,1.00 × 10−3) 54 (4,1.56 × 10−4)
ND/nd3k 208 (1,1.00 × 10−3) 135 (3,2.50 × 10−4)
GHS psdef/shipsec8 883 (1,1.00 × 10−3) 661 (3,2.50 × 10−4)

The iteration counts are reported and, in parentheses, the number of
shifts used and the final shift.

Fig. 5. Efficiency and iteration performance profiles for level-based and memory-based methods.

4.7. Comparison with a Level-Based Approach

In an earlier paper, Scott and Tůma [2011] considered level-based preconditioning and
presented an improved strategy that considers the individual entries of the system
matrix and restricts small entries to contributing to fewer levels of fill than the largest
entries. Their numerical results showed that preassigning levels of fill can be beneficial.
In Figure 5, we present an efficiency performance profile (on the left) and an iteration
performance profile (on the right) that compare the performance of the level-based pre-
conditioner IC(�) with � = 3 with that of HSL MI28. The settings for computing IC(3)
were those found in Scott and Tůma [2011] to give the best performance. For IC(3)
and HSL MI28 we use l2 scaling and no reordering. We see that the HSL MI28 precondi-
tioner is more efficient than IC(3). However, while the IC(3) incomplete factor is much
denser than that produced by HSL MI28, it requires fewer iterations. In terms of relia-
bility, IC(3) failed to give convergence for 19 problems, while with lsize = rsize = 5,
the HSL MI28 preconditioner failed on 8 problems and with lsize = 20, rsize = 10
and lsize = 40, rsize = 20 all the problems were solved. These findings suggest that
the use of intermediate memory can have a positive effect compared with using the
concept of levels. However, as level-based factors are denser and are more structured
and they offer the possibility of being computed in parallel [Hysom and Pothen 2001],
they remain a useful approach to incomplete factorization.

4.8. Comparisons with a Direct Solver

It is of interest to examine how well the preconditioned conjugate method performs in
comparison with a modern direct solver. In Figure 6, we present total time performance
profiles that compare HSL MI28 with the ICFS code of Lin and Moré [1999] and the mod-
ern direct solver HSL MA97 [Hogg and Scott 2011] (Version 2.1.0). Although HSL MA97 is
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Fig. 6. Total time performance profile for direct and iterative methods (all problems on left, large problems
only on right).

a parallel OpenMP code, here we run it in serial (since our current incomplete factor-
ization code is a serial code); all parameter settings within HSL MA97 are the default
settings and we use the Intel MKL BLAS (10.3.0). ICFS is run with p = 5 (a maximum
of 5 fill entries in each column of L) and for HSL MI28 we use lsize=rsize=5 plus
default settings for the control parameters. The left-hand profile includes all problems
in our test set while that on the right is restricted to the set of 43 problems for which
the total ICFS time is at least 1 second. On small problems, ICFS performs well; it
is a much simpler code than the others and includes no overhead for ordering or for
the other options that are available within HSL MI28. For larger problems, we see the
benefits of incorporating reordering and using rsize > 0, with HSL MI28 performing
significantly better than ICFS. For these problems, the direct solver is clearly the best
approach; it employs a block algorithm and is able to make extensive use of Level 3
BLAS to enhance performance. However, memory limitations mean HSL MA97 was un-
able to solve two of the largest problems that were successfully solved by HSL MI28 and
ICFS. Thus, the results demonstrate the potential of HSL MI28 to be used to efficiently
solve problems that are too large to be tackled by a direct solver but also suggests a need
to incorporate techniques used by the direct solver into the incomplete factorization
(see, e.g., Gupta and George [2010]).

5. CONCLUDING REMARKS

In this article, we have discussed the design and development of a new software package
HSL MI28 for incomplete Cholesky factorizations. The algorithm implemented within
HSL MI28 is based on the robust Tismenetsky-Kaporin scheme, which we have made
into a practical approach through the introduction of limited memory for both the
incomplete factor L and the lower triangular matrix R that is used to stabilise the
factorization but is subsequently discarded. Through the use of R and the option to drop
entries by size, HSL MI28 generalizes the ICFS code. Because our previous work [Scott
and Tůma 2014] found that, in many instances, the use of a diagonal compensation
scheme to prevent factorization breakdown can lead to a poor quality preconditioner,
HSL MI28 follows ICFS in using a global diagonal shift.
HSL MI28 can be used as a black box package. However, through the inclusion of

control parameters that have default settings but that can be reset by the user, the
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design is such that the experienced user can tune the code to optimise its performance
on his or her problems of interest.

We have presented the results of extensive numerical experiments. In our opinion,
using a large test set drawn from a range of practical applications allows us to make
general and authoritative conclusions. The experiments emphasize the concept of the
efficiency of a preconditioner (defined by (1)) as a measure that can be employed to
help capture preconditioner usefulness, although we recognise that it can also be nec-
essary to consider other statistics (such as the time and the number of iterations). The
experiments have been used to isolate the effects of ordering, scaling and dropping. An
interesting observation is that the ordering that gives the best results overall is the
Sloan profile reduction algorithm, rather than the more widely-used RCM ordering.

Our results suggest that Tismenetsky-type updates are better able to stabilise the
decomposition than the concept of levels (even in the enhanced form introduced recently
in Scott and Tůma [2011]). Thus we conclude that memory-limited decompositions are
not only possible but are also highly effective and a potentially useful addition to the
armoury of tools for solving sparse linear systems.
HSL MI28 is available as part of the 2013 release of the HSL mathematical software

library. All use of HSL requires a licence; licences are available to academics without
charge for individual research and teaching purposes. Details of how to obtain a licence
and the code are available at http://www.hsl.rl.ac.uk or by e-mail to hsl@stfc.ac.uk.
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