

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 3, pp. A1604–A1625

SPARSE STRETCHING FOR SOLVING SPARSE-DENSE LINEAR
LEAST-SQUARES PROBLEMS∗

JENNIFER A. SCOTT† AND MIROSLAV TŮMA‡

Abstract. Large-scale linear least-squares problems arise in a wide range of practical applica-
tions. In some cases, the system matrix contains a small number of dense rows. These make the
problem significantly harder to solve because their presence limits the direct applicability of sparse
matrix techniques. In particular, the normal matrix is (close to) dense, making a Cholesky factoriza-
tion impractical. One way to help overcome the dense row problem is to employ matrix stretching.
Stretching is a sparse matrix technique that improves sparsity by making the least-squares problem
larger. We show that standard stretching can still result in the normal matrix for the stretched
problem having an unacceptably large amount of fill. This motivates us to propose a new sparse
stretching strategy that performs the stretching so as to limit the fill in the normal matrix and its
Cholesky factor. Numerical examples from real problems are used to illustrate the potential gains.

Key words. linear least-squares problems, dense rows, matrix stretching, sparse matrices

AMS subject classifications. 65F05, 65F50

DOI. 10.1137/18M1181353

1. Introduction. Large-scale linear least-squares (LS) problems occur in a wide
variety of practical applications, both in their own right and as subproblems of non-
linear LS problems. Our interest lies in solving the real m × n (m > n) mixed
sparse-dense LS problem

min
x
‖Ax− b‖2 = min

x

∥∥∥∥(AsAd
)
x−

(
bs
bd

)∥∥∥∥
2

,(1.1)

in which each row of the p × n block Ad is considered to be dense and As is ms × n
with ms � p (m = ms + p); the vector b is partitioned conformally. The presence of
dense rows causes the normal matrix C = ATA to be very (or even completely) dense,
and this greatly limits the effectiveness of the straightforward application of sparse
matrix techniques for solving (1.1). A number of authors in the 1980s and 1990s
studied direct methods for tackling this problem, including George and Heath [18],
Heath [21], Björck [7, 8], and Sun [33, 34]. More recently, preconditioning strategies
for (1.1) have been proposed. A simple approach is that of Avron, Ng, and Toledo [5]
in which LSQR [27] is preconditioned by the complete QR factorization of As (Ad is
dropped from the factorization) while Scott and Tůma [32] explore transforming the
problem and using a reduced augmented form with either direct or iterative solvers.
In a separate paper, Scott and Tůma [31] propose processing the rows of Ad separately

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 16,
2018; accepted for publication (in revised form) March 18, 2019; published electronically May 16,
2019.

http://www.siam.org/journals/sisc/41-3/M118135.html
Funding: The second author was supported by projects 17-04150J and 18-12719S of the Grant

Agency of the Czech Republic.
†STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK,

and School of Mathematical, Physical and Computational Sciences, University of Reading, Reading
RG6 6AQ, UK (jennifer.scott@stfc.ac.uk).
‡Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,

Prague, Czech Republic (mirektuma@karlin.mff.cuni.cz).

A1604

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://www.siam.org/journals/sisc/41-3/M118135.html
mailto:jennifer.scott@stfc.ac.uk
mailto:mirektuma@karlin.mff.cuni.cz

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1605

within a conjugate gradient method using an incomplete factorization preconditioner
combined with the factorization of a dense matrix of size equal to the number of dense
rows.

Here, we revisit the idea of matrix stretching for handling dense rows. Stretch-
ing aims to split each of the rows of Ad into several sparser parts and to formulate a
(larger) modified problem that provides the solution to the original one. The approach
was introduced in 1990 by Grcar [20], who proposed both row and column stretching
as an effective way of treating sparse matrices with dense rows or columns before per-
forming an LU factorization. The technique was subsequently used for solving linear
systems by Alvarado [3], Ferris and Horn [17], Aykannat, Pinar, and Çatalyürek [6],
and Duff and Scott [15]. For LS problems, a theoretical analysis of the stretching of
dense rows was presented in 2000 by Adlers and Björck [1, 2], who proposed row split-
ting as an alternative to updating methods and presented some preliminary numerical
results illustrating the potential of the approach.

A key issue with matrix stretching is deciding how to choose the number of parts
the dense rows should be split into. While a small number can significantly improve
sparsity of the normal matrix, increasing this number can adversely effect the condi-
tion of the problem. Moreover, the fill in the Cholesky factor of the normal matrix for
the stretched problem can still be unacceptably large, limiting the suitability of sparse
direct solvers and leading to poor quality incomplete factorization preconditioners. To
overcome this, we introduce a new idea of sparse stretching. Sparse stretching looks at
the interaction between the stretched rows and the nondense rows As when deciding
how to split the dense rows. This leads to the need to solve an auxiliary combinato-
rial problem. In practice, this combinatorial problem is solved approximately, and its
solution determines the number of parts to split the dense rows into as well as how
to split the dense rows.

The rest of the paper is organized as follows. In section 2, we recall stretching of
dense rows and present a result on the condition of the stretched problem. We also
look at the structural properties of the stretched problem for three simple test cases
with a single dense row. These highlight the potential weaknesses of the existing
stretching strategy. In section 3, we introduce sparse stretching and present our
algorithm for determining how to split dense rows so as to limit fill in the resulting
stretched normal matrix. Numerical results are presented in section 4, and concluding
remarks and possible future directions are discussed in section 5.

2. Matrix stretching for LS problems.

2.1. Standard stretching. We start by briefly recalling the simplest case of
matrix stretching for LS problems based on binary splitting. The notation used here
is based on that of Adlers and Björck [2]. We initially assume that Ad represents a
single dense row, which we denote by fT . The stretching procedure has two steps. In
the first, a larger problem is constructed by splitting the dense row fT into two parts
fT = (fTa fTb) and introducing a linking variable s ∈ R. Let us split the sparse block
As and the solution vector x as As = (Asa Asb), x = (xTa xTb)T to conform with
the splitting of fT . It is straightforward to observe [2] that the component x of the
solution (xT s)T of the extended LS problem

min
(xT s)T

∥∥∥∥∥∥
Asa Asb 0
fTa fTb 0

fTa −fTb
√

2

xaxb
s

−
bsbd

0

∥∥∥∥∥∥
2

(2.1)D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1606 JENNIFER A. SCOTT AND MIROSLAV TŮMA

is the same as the solution x of the original problem (1.1). The second step applies
an orthogonal transformation to the extended system matrix in (2.1) to replace fTb
in the second block row and fTa in the third block row by zeros (see [2] for details).
Orthogonal invariance of the norm leads to the equivalent stretched problem

min
z
‖Âz − b̂‖2

with

Â =

 Asa Asb 0√
2 fTa 0 1

0
√

2 fTb −1

 , z =

xaxb
s

 , b̂ =

 bs
bd/
√

2

bd/
√

2

 .

Now consider splitting fT into k ≥ 2 parts. Generalizing the above gives

Â =

(
As
FT γS

)
, Ad ≡ fT =

1√
k
eTFT ,(2.2)

FT ∈ Rk×n, z =

(
x
s

)
, b̂ =

(
bs

bde/
√
k

)
,

where e ∈ Rk is the vector of ones. Here the linking matrix S is given by

S =

1
−1 1

−1
. . .

. . . 1
−1

 ∈ R
k×(k−1),

and s ∈ Rk−1 is the linking vector [2, 35]. The parameter γ offers additional scaling
that is applied to the linking vector and can be chosen to improve the condition
estimate (see below).

Generalizing the splitting further, let Ad =
(
f1, . . . , fp

)T
have p ≥ 1 rows. Let

each dense row fTi be stretched into a matrix FTi with ki > 1 rows, and let the right-

hand side vector bd = (b1, . . . , bp)
T ∈ Rp×n be transformed into b̂. The matrix Â can

be written as in (2.2) with S replaced by Ŝ = diag(S1, . . . , Sp) and F = (F1 . . . Fp),
where

fTi =
1√
ki

eTi F
T
i , FTi ∈ Rki×n, z =

(
x
s

)
,

s =

s1...
sp

 , b̂T =
(
bTs ,

b1√
k1
eT1 . . .

bp√
kp
eTp
)
,

with Si ∈ Rki×(ki−1), si ∈ Rki−1, ei ∈ Rki .
We refer to this matrix stretching for LS problems as standard stretching. In

particular, we assume that standard stretching splits the row indices of the entries
in the dense rows into sets of equal (or almost equal) contiguous segments and then
bases the stretching on these sets.

2.2. Condition of the stretched system. Adlers and Björck [2] showed that
the stretched LS problem has the same set of solutions x as the original problem. In
addition, they analyzed the condition of the stretched problem in the case that A is
of full rank. Since their derivation of an upper bound on the condition number of

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1607

Â contains a small error, we state a slightly modified conditioning result but omit
full details of the proof. In particular, in deriving an upper bound on the norm of
(STS)−1ST , Adlers and Björck use the inequality sinx ≥ x, x ≥ 0, but this inequality
is incorrect. Instead, the following relation may be used.

Lemma 2.1. For all x ≥ 0, sinx > x− x3/3.

Proof. Setting g(x) = x−x3/3− sinx, we can see that g(0) = 0, g′(x) = 1−x2−
cosx = 2 sin2(x/2)−x2 < 2x2/4−x2 = −x2/2 < 0. Consequently, g is decreasing for
x ≥ 0, and the result follows.

Based on the previous lemma, we state another simple relation as follows.

Lemma 2.2. For k ≥ 2, sinπ/(2k) > 1/k.

Proof. From Lemma 2.1 it follows that sin(π/(2k)) > π/(2k) − π3/(24k) >
1/k(π/2− π2/96) > 1/k.

Using this and the identity

‖S†‖22 = ‖(STS)−1ST ‖22 = ‖((STS)−1)ST ((STS)−1ST)T ‖2
= ‖(STS)−TSTS(STS)−1‖2 = ‖(STS)−1‖2,

we obtain a bound for the pseudoinverse

‖S†‖22 = 1/2(1− cos(π/k))−1 = 1/4 sin−2(π/(2k)) < k2/4.(2.3)

We now state a bound on the condition of the stretched system. Let k =
max{ki, 1 ≤ i ≤ p}. Let Ĉ = ÂT Â be the stretched normal matrix. Assume the
singular values σi(A) of A and the eigenvalues λi(Ĉ) of Ĉ are sorted in descending
order of their absolute values. Then we have the following result.

Theorem 2.3 (modified from [2]). If the stretching parameter γ is given by
1/2
√
p k‖Ad‖2, then the largest eigenvalue λ1(Ĉ) satisfies

λn(Ĉ)−1 ≤ σ2
n(A)−1

(
‖S†‖22
γ2

p k‖Ad‖22 +
‖S†‖22
γ2

σ2
n(A) +

‖S†‖2
√
p k

γ
‖Ad‖2

)
.(2.4)

Furthermore,

λ1(Ĉ) ≤
(
σ2
1(A) + p k ‖Ad‖22 + 2γ

√
p k‖Ad‖2

)
=
(
σ2
1(A) + 2p k ‖Ad‖22

)
.

Substituting the bound (2.3) for ‖S†‖2 into (2.4) yields the following result.

Theorem 2.4. An upper bound for the condition number of the stretched matrix
Â with γ = 1/2

√
p k‖Ad‖2 is

κ2(Â) ≤ κ2(A)k

(
1 +

2 p k‖Ad‖22
‖A‖22

)(
k + 1 +

σn(A)2

‖Ad‖22

)
.

2.3. Structural properties of the stretched system. In this section, we
consider structural effects caused by standard stretching. We focus on three simple
cases: As diagonal, As tridiagonal, and As with a simple Laplacian structure based on
the five-point two-dimensional stencil. We demonstrate that the stretched rows can
adversely influence the density of the stretched normal matrix and of its factors, even
if the number of stretched parts is small. This will help understand the experimental

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1608 JENNIFER A. SCOTT AND MIROSLAV TŮMA

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 142
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 755

Fig. 2.1. Structure of Â (left) and Ĉ (right) for the matrix A with a single dense row and As

diagonal with n = 64 and the dense row stretched into 8 parts.

results in section 4 for practical examples and motivates the sparse stretching that we
propose in section 3. With the stretched matrix given by

Â =

(
As
FT γS

)
,

the stretched normal matrix is

Ĉ = ÂT Â =

(
ATs F

γST

)(
As
FT γS

)
=

(
ATs As + FFT γFS

γSTFT γ2STS

)
.(2.5)

The number of entries in Ĉ is denoted by nz(Ĉ).

2.3.1. As diagonal. We start by considering A with a single dense row and As
diagonal. The sparsity pattern of the stretched matrix Â and the stretched normal
matrix Ĉ is illustrated in Figure 2.1. Here, n = 64, and the dense row fT is stretched
into k = 8 parts.

We have the following result.

Lemma 2.5. Consider the m× n matrix A = (
As

fT) with a single dense row, m =

n + 1, n = 2r (r > 1), and As diagonal. If the dense row is split into k = 2l equal
parts (0 ≤ l ≤ r−1), then the number nz(Ĉ) of entries in the stretched normal matrix
Ĉ is

nz(Ĉ) = 22r−l + 2r+2 − 2r−l+2 + 3 (2l − 1)− 2.

Proof. The stretched matrix Â is of order (n+ 2l)× (n+ 2l − 1). The dense row
is split into 2l parts, each of length 2r−l. ATs As + FFT is block diagonal with blocks
of dimension 2r−l, having a total of 2l × 22(r−l) entries. FS has 2l − 1 blocks each of
size 2(2(r−l))× 1. Finally, STS is tridiagonal with 3 (2l− 2)− 2 nonzeros. Combining
yields

nz(Ĉ) = 2l × 22(r−l) + 2(2l − 1)2(2(r−l)) + 3(2l − 1)− 2,

from which the result is obtained.

In this case with As diagonal, there is no fill in the factors of Ĉ.

Lemma 2.6. Under the same assumptions as in Lemma 2.5, the Cholesky factor-
ization of Ĉ generates no fill.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1609

0 10 20 30 40 50 60 70
10

2

10
3

10
4

number of stretched parts

 fi
ll

in
 th

e
st

re
tc

he
d

m
at

ric
es

 fill in the stretched matrix of normal equations
 fill in the stretched matrix

Fig. 2.2. Number of entries in Â and Ĉ when A has a single dense row that is split into an
increasing number of parts and As is diagonal (n = 64).

Proof. Since ATs As +FFT is block diagonal, there is no fill when it is factorized.
Furthermore, there is no fill in the off-diagonal block γFS. All the updates of entries
during the Cholesky factorization belong to the tridiagonal matrix γ2STS. But, be-
cause the construction of Ĉ always couples only two neighboring parts of the stretched
matrix Â, the block γ2STS embeds all the updates within its tridiagonal structure.

Figure 2.2 plots the number of entries in Â and Ĉ for the matrix A with a single
dense row that is split into an increasing number of parts and As diagonal (n = 64).
Even in this simple case we see that, after an initial reduction, nz(Ĉ) (and hence
the number of entries in the Cholesky factor of Ĉ) stagnates as the number of parts
increases. This indicates that it may not be worthwhile to split dense rows into a
large number of parts.

2.3.2. As tridiagonal. We now consider As tridiagonal and again we assume A
has a single dense row. The following lemma shows that the Cholesky factorization
Ĉ = L̂T L̂ of the stretched normal matrix can suffer from significant fill caused by the
interaction of the stretched row with As.

Lemma 2.7. Consider the m× n matrix A = (
As

fT) with a single dense row, m =

n + 1, n = 2r (r > 1) and As tridiagonal. If the dense row is split into k = 2l equal
parts (0 ≤ l ≤ r − 1), then

nz(Ĉ) = 22r−l + 2r+2 − 2r−l+2 + 3 (2l − 1)− 2.

Furthermore, if Ĉ = L̂T L̂, then

nz(L̂+ L̂T)

= 2l × 22 (r−l)+6(2l − 1)+(2l − 1)(2l − 1)+2 (2l − 1)2(r−l) + 2(r−l)(2(l−1)(2l − 1)).

Proof. The dense row is split into 2l parts, each of length 2r−l. ATs As+FFT has
blocks on the diagonal of dimension 2r−l plus nonzeros between the blocks because
As is tridiagonal. This gives 2l×22(r−l) +6(2l−1) entries. The off-diagonal block FS
and the remaining diagonal block ŜTS then contribute 2 (2 (2l− 2)2(r−l) + 2× 2(r−l))
and 2l − 1 + 2(2l − 2) entries, respectively. From this we obtain

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1610 JENNIFER A. SCOTT AND MIROSLAV TŮMA

nz(Ĉ) = 2l×22(r−l) + 6(2l−1) + 2 (2 (2l−2)×2(r−l) + 2×2(r−l)) + 2l−1 + 2 (2l−2),

which gives the first result. To compute nz(L̂+L̂T), we need to consider the fill. There
is no fill from factorizing ATs As+FF

T , and its contribution is thus 2l × 22(r−l) + 6(2l−
1). The (2, 2) block fills in completely, contributing (2l−1)(2l−1) entries. Finally, the
full lower-trapezoidal block in L̂ contributes 2×(2l−1)×2(r−l)+2(r−l)(1+· · ·+2l−1) =
2× (2l − 1)× 2(r−l) + 2(r−l)(2(l−1)(2l − 1)) entries, and the result follows.

Figure 2.3 illustrates the sparsity patterns of Ĉ and its Cholesky factor for the
matrix in Lemma 2.7 with n = 64 and the dense row split into 8 parts. Figure 2.4
plots the number of entries in Â, Ĉ and its Cholesky factor as the number k of parts
into which the dense row is split is increased. Here the fill in the Cholesky factor
increases rapidly with k (even though the basic sparsity pattern of Ĉ is an arrowhead
[12]). In this example, the fill can be reduced by reordering Ĉ prior to performing
the Cholesky factorization. Figure 2.5 illustrates the effect of reordering using the
approximate minimum degree (AMD) algorithm [4].

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 797
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 1163

Fig. 2.3. Structure of Ĉ and its Cholesky factor for the matrix A with As tridiagonal and a
single dense row that is split into 8 parts (n = 64).

0 10 20 30 40 50 60 70
10

2

10
3

10
4

number of stretched parts

 fi
ll

in
 th

e
st

re
tc

he
d

m
at

ric
es

 fill in the stretched matrix of normal equations
 fill in the stretched matrix

0 10 20 30 40 50 60 70
10

2

10
3

10
4

number of stretched parts

 fi
ll

in
 th

e
st

re
tc

he
d

m
at

ric
es

 fill in the stretched matrix of normal equations
 fill in the Cholesky factor of normal equations

Fig. 2.4. Number of nonzeros in Â and Ĉ (left) and number of nonzeros in Ĉ and its
Cholesky factor (right) for the matrix A with As tridiagonal and a single dense row that is split into
an increasing number of parts (n = 64).

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1611

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 301
0 10 20 30 40 50 60 70

10
2

10
3

10
4

number of stretched parts
 fi

ll
in

 th
e

st
re

tc
he

d
m

at
ric

es

 fill in the stretched matrix of normal equations
 fill in the reordered Cholesky factor of normal equations

Fig. 2.5. Structure of the Cholesky factor for the AMD reordered Ĉ for the matrix A with As

tridiagonal and a single dense row that is split into 8 parts (n = 64) (left); the number of nonzeros

in the reordered Ĉ and its Cholesky factor (right) for the same matrix with the dense row split into
an increasing number of parts.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 3077
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 2211

Fig. 2.6. Structure of the Cholesky factor of the stretched normal matrix with no reordering
(left) and AMD ordering (right). As has the structure of the five-point two-dimensional discrete
Laplacian matrix; one dense row is appended and split into 8 parts (n = 64).

2.3.3. As with Laplacian structure. The third example we consider is As
having the structure of the five-point two-dimensional discrete Laplacian matrix with
one dense row appended. In this case, as can be seen in Figures 2.6 and 2.7, reordering
the stretched normal matrix offers some advantages but does not prevent the fill from
growing as the number of parts the dense row is split into increases. We remark
that these results are for AMD ordering, but similar results are obtained using nested
dissection ordering.

3. Sparse stretching. We have seen that standard stretching based on the
simple splitting of the dense row into a number of contiguous segments can result
in significant fill in the stretched normal matrix and, in particular, in its factor. In
this section, we introduce a new sparse stretching strategy that aims to limit this fill.
We use the same notation as in section 2.2, and in particular, we initially assume a
single dense row fT and use the notation (2.5). We want to perform the splitting of

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1612 JENNIFER A. SCOTT AND MIROSLAV TŮMA

0 10 20 30 40 50 60 70
10

2

10
3

10
4

number of stretched parts

 fi
ll

in
 th

e
st

re
tc

he
d

m
at

ric
es

 fill in the stretched matrix of normal equations
 fill in the Cholesky factor of normal equations

0 10 20 30 40 50 60 70
10

2

10
3

10
4

number of stretched parts

 fi
ll

in
 th

e
st

re
tc

he
d

m
at

ric
es

 fill in the stretched matrix of normal equations
 fill in the reordered Cholesky factor of normal equations

Fig. 2.7. Number of nonzeros in the Cholesky factor of Ĉ with no reordering (left) and
with AMD ordering (right) as the number of stretched parts increases. As has the structure of the
five-point two-dimensional discrete Laplacian matrix, and one dense row is appended (n = 64).

fT (that is, the construction of FT) so as to limit the entries in Ĉ. We make the
following observations.

Observation 3.1. STS is tridiagonal, and so the number of entries in the (2,2)
block of Ĉ depends only on the order of S (that is, on the number of parts k the
dense row is split into). Thus we want k to be small.

Observation 3.2. The fill in the principal leading block ATs As+FF
T of Ĉ resulting

from the dense row is a minimum if the structure of FFT is contained within that of
ATs As.

Consider a sparse vector u. Define Struct(u) to be the set of indices corresponding
to the nonzero entries in u. This can be generalized to a sparse matrix X by defining
Struct(X) to be the set of positions (i, j) of the non zero entries in X. The condition
on embedding stated in Observation 3.2 can then be written as

Struct(FFT) ⊆ Struct(ATs As).(3.1)

We define the concept of dominance among rows of a sparse matrix.

Definition 3.1. Consider a sparse matrix X. Row vT of X is said to structurally
dominate row uT of X if

Struct(u) ⊆ Struct(v).

We have the following straightforward result.

Lemma 3.2. Consider an m × n sparse matrix X, and let uT be a 1 × n sparse
row vector. If there exists a row vT of X that structurally dominates uT , then

Struct

((
XT u

)(X
uT

))
⊆ Struct(XTX).

As a simple example, consider the 4× 4 matrix

X =

∗ ∗ ∗
∗

∗ ∗
∗

 .D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1613

The sparsity patterns of rows 2 and 3 are both contained within that of row 1, and
so row 1 structurally dominates rows 2 and 3. If uT = (∗ 0 0 ∗), then again row 1
structurally dominates uT , and it is straightforward to verify that the sparsity pattern
of (XT u)

(
X
uT

)
and of XTX is

∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗

 .

The idea behind sparse stretching is to find a splitting of Struct(f) into k disjoint
nonempty index sets t1, . . . , tk (k ≤ r) and to construct FT so that its ith row
contains the |ti| entries of Struct(f) corresponding to the ith part of the splitting.
Any such splitting that satisfies (3.1) is said to define a correct stretching. From
Lemma 3.2, finding a correct stretching involves finding index sets so that each row
of FT is dominated by one or more rows of As. This problem is closely related to the
well-known problem of minimizing a set cover, which we discuss below.

Definition 3.3. Consider a set U and a collection R of subsets of U whose union
is equal to U . A subcollection Q ⊆ R is a set cover for B ⊆ U if

B ⊆
⋃
q∈Q

q.(3.2)

Q is a minimum set cover for B if it is the smallest subcollection of R satisfying (3.2).
Q is a minimal set cover for B if there is no proper subset of Q satisfying (3.2).

To express the relationship between a minimum vertex cover for B and a correct
stretching we use the following bipartite graph.

Definition 3.4. Denote the ith row of As by (As)i∗ (1 ≤ i ≤ ms), and let
Struct(f) = {j1, . . . , jr}, where r = |Struct(f)|. The bipartite graph G = (R,B,E)
with vertex sets R = {1, . . . ,ms} and B = {j1, . . . , jr} and edges given by

(i, j) ∈ E ⇐⇒ j ∈ Struct((As)i∗)(3.3)

is called the bipartite row intersection graph of As and fT .

As an example, consider the matrix A on the left of Figure 3.1. Here As ∈ R14×12

and Struct(f) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12} (r = 10). The bipartite row intersection
graph of As and fT is given (middle) and a subgraph that contains only the edges
involving the vertices in the vertex cover for B (right). The vertex cover Q′ depicted
here is given by the subset {2, 5, 8, 9} of the vertices in the set R corresponding to
rows (As)2∗, (As)5∗, (As)8∗, and (As)9∗ of A. Thus Q′ = {t′1, t′2, t′3, t′4} with

t′1 = {2, 8, 10}, t′2 = {1, 2, 5, 7}, t′3 = {3, 12}, t′4 = {3, 4, 6}.

Lemma 3.5. Let G = (R,B,E) be the bipartite row intersection graph of As and
fT , and let Q′ = {t′1, . . . , t′k} be a minimal vertex set cover for B. Consider the
transformation of Q′ to another vertex cover Q = {t1, . . . , tk} such that

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1614 JENNIFER A. SCOTT AND MIROSLAV TŮMA

Fig. 3.1. A matrix of order 15 × 12 with one dense row (left); the bipartite row intersection
graph G = (R,B,E) of As and fT (middle); a subgraph containing only the edges involving the
vertices in the vertex cover for B (right).

Struct(tu) ∩ Struct(tv) = ∅, u, v ∈ {1, . . . , k}, u 6= v.(3.4)

Then the sets of column indices in Q represent a splitting that gives a correct
stretching.

Proof. From the definition of a vertex set cover of B it follows that the union of
the sets in Q′ contains all indices in Struct(f). Removal of entries from Q′ makes
its members disjoint. Since the cover is minimal, there is no subcollection of Q′ that
is a vertex set cover of B. This means that none of the members of Q is empty.
Consequently, Q defines a correct stretching.

Recall Observations 3.1 and 3.2. From the above, the structure of FFT is em-
bedded within that of ATs As when the stretching is based on the transformation of a
minimal vertex set cover of B to obtain disjoint sets. Thus to minimize the fill in Ĉ
(2.5), it remains to consider fill in FS. Recall that S is tridiagonal and so it is easy
to see that the fill in FS is given by

|t1|+ |tk|+ 2

k∑
i=2

|ti|.(3.5)

This is minimized by reordering the sets within Q so that

|t1| ≥ |tk| ≥ max
2≤i≤k−1

|ti|.(3.6)

Our algorithm for determining the splitting on which sparse stretching is based
can now be presented (Algorithm 3.1). We remark that the number k of parts into
which the dense row is split is determined by step 2 of the algorithm as the number
of sets in the minimal vertex set cover.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1615

Algorithm 3.1. Sparse stretching of A with one dense row

Input: A ∈ Rm×n with m ≥ n split into two parts As and Ad, where As ∈ Rms×n

and Ad ≡ fT ∈ R1×n

Output: k and disjoint index sets t1, t2, . . . , tk such that Struct(f) = ∪1≤i≤kti
1. Construct the bipartite row intersection graph G = (R,B,E) of As and fT .

2. Find a minimum vertex set cover Q′ = {t′1, . . . , t′k} for B. (This determines k.)

3. for i = 1, . . . , k do

4. Set ti = argmaxτ∈Q′ |τ |, update Q′ ⇐ Q′ \ ti.
5. for q ∈ Q′ do

6. q ⇐ q \ (q ∩ ti)
7. end do

8. end do

9. Set t = t2.

10. for i = 2, . . . , k − 1 do

11. Set ti = ti+1

12. end do

13. Set tk = t.

1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗

.

1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗ ∗
∗ ∗

∗
∗ ∗ ∗

.

Fig. 3.2. For the problem in Figure 3.1, the rows of A that solve the minimal vertex cover
problem are on the left and on the right is the sparsity pattern of the stretched block FT .

We illustrate Algorithm 3.1 for the example in Figure 3.1. Starting with Q′ =
{t′1, t′2, t′3, t′4}, the algorithm finds the vertex set cover Q = {t1, t2, t3, t4} with disjoint
sets

t1 = {1, 2, 5, 7}, t2 = {8, 10}, t3 = {12}, t4 = {3, 4, 6}.

We illustrate this graphically in Figure 3.2. On the left, we have the k = 4 rows
of A chosen by solving the minimal vertex cover problem. Then, on the right, the
sets of indices corresponding to these rows are made pairwise disjoint by removing
some of the entries and then reordering so that the sets with the largest number of
entries are the first and last ones. This gives the required sparse stretching of the
dense row into 4 parts; that is, it gives Struct(F). Observe that the rows of FT are,
respectively, dominated by rows 5, 2, 8, and 9 of As.

We now consider the complexity of the preprocessing based on Algorithm 3.1.
We focus on step 2 because the other steps pass through the selected rows only once
and hence their complexity is low. The decision version of the set cover problem is
one of twenty-one classical NP-complete problems introduced by Karp [25]. There
are a number of ways to construct a minimum vertex set cover; we would like the

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1616 JENNIFER A. SCOTT AND MIROSLAV TŮMA

cardinality k to be small. A classical treatment of this problem and its extensions
can be found, for example, in [36]. In our experiments, we adopt a greedy approach.
Given the bipartite row intersection graph G(R,B,E), for each i ∈ R we define the
adjacency set

adji = {j ∈ B|(i, j) ∈ E};

that is, adji is the set of neighbors of i in B. For each j ∈ B, the adjacency set
adjj is defined analogously. If we store the indices of the entries in As by both rows
and columns, then adji and adjj are readily available. The degrees degi and degj are
the numbers of entries in adji and adjj , respectively. The greedy algorithm starts
by marking all the vertices in B as uncovered and, for each i ∈ R, initializes the
count of uncovered neighbors in B to counti = degi; the m vertices in R are then
sorted into decreasing order of their counts. Starting with the first vertex in the
sorted sequence, at each step, the next vertex i ∈ R in the sequence is selected. The
uncovered neighbors of i are marked as covered, and for each of the remaining vertices
r ∈ R, countr is updated and the sorted sequence amended. It follows that an upper
bound on the operation count of the greedy algorithm is given by

m+ k max
i∈R

degi max
j∈B

degj .

To illustrate that this complexity is comparable with other standard preprocessing
steps used by sparse solvers, consider the algorithms that are used to make a sparse
matrix more diagonally dominant. These are commonly employed within modern
sparse solvers to help limit the need for pivoting that can adversely affect performance
and limit the scope for parallelism (see, for example, [11, 22, 26, 28]) and are based
on maximum matching [13, 14, 16]. For an m × n sparse matrix M , computing a
maximum matching involves employing a bipartite graph GM in which the vertex
sets Row and Col correspond to the rows and columns of M with an edge between
r ∈ Row and c ∈ Col if Mij 6= 0. Each step of the maximum matching algorithm
searches for augmenting paths in GM . This involves passing through the adjacency
sets for both the row and column vertices, and the complexity can be shown [16] to
be n |M | (|M | denotes the number of entries in M), although in practice maximum
matching algorithms are typically much faster than this.

We observe that another interesting aspect of the greedy algorithm is its approx-
imation quality; see, for example, [24]. It can be shown that if kmin is the smallest
possible number of rows in the set cover, that is, the cardinality of the optimum so-
lution, then k in Algorithm 3.1 satisfies k ≤ kmin lnn, where ln denotes the natural
logarithmic function (see [9]).

Finally, we remark that we have discussed stretching of a single row fT . In the
case of more than one such row, we stretch each separately (the number of parts k is
typically different for each row). The matrix is extended by a block FTi for each dense
row fTi that is stretched. While the initial classification of rows is straightforward
since it is enough to mark the rows and not to move them, separate constructions of
the graph model by Algorithm 3.1 for each row can result in significant increases in
the preprocessing time. In our future research we plan to try and overcome this by
handling blocks of dense rows as a single entity.

4. Numerical results. In this section, we demonstrate that sparse stretching
finds a suitable number of parts for the splitting and can significantly reduce the fill
in both the stretched normal matrix and its Cholesky factor compared to standard
stretching.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1617

Table 4.1
Statistics for Test Set 1. ms, ns, and nz(As) are the row and column counts and the number

of nonzeros in As.

Problem ms ns nz(As)

WM1 277 207 2909
LP AGG 615 488 2862
GAMS60AM 1071 714 2607
MARAGAL 5 4654 3320 93091
CEP1 4769 1521 8233
STORM2-8 11322 4409 28553
IG5-15 11369 6146 323509
KEMELMACHER 28452 9693 100875
BAXTER 30733 27441 11576
TESTBIG 31223 17613 61639
STORMG2-27 37485 14441 94274
WORLD 67147 34506 198883
MRI1 147456 65536 589824

0 50 100 150 200 250

number of stretched parts

5000

6000

7000

8000

9000

10000

11000

en
tr

ie
s

in
 th

e
st

re
tc

he
d

no
rm

al
 m

at
rix

0 50 100 150 200 250

number of stretched parts

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

en
tr

ie
s

in
 th

e
C

ho
le

sk
y

fa
ct

or

104

Fig. 4.1. Comparison of the entries in the stretched normal matrix (left) and its Cholesky factor
(right) for problem WM1 with one dense row appended. The curve corresponds to the number of entries
varying with the number of parts into which the dense row is stretched (standard stretching); the dot
is for sparse stretching with the number of stretched parts determined by Algorithm 3.1 (k = 116).

Our first set of examples does not initially contain dense rows; instead we append
one or more dense rows. This allows us to explore the effect of varying the number of
dense rows as well as the density of these rows. The problems are listed in Table 4.1.
They are taken from the University of Florida Sparse Matrix Collection [10] and, if
necessary, are transposed so that ms > ns.

4.1. Two small examples. We first consider two examples WM1 and LP AGG

that are small enough for us to present plots of the stretched matrix and the stretched
normal matrix and its factors. In both cases, one fully dense row is appended to the
given matrix. These problems illustrate the potential advantages of sparse stretching
over standard stretching. For example WM1, Figure 4.1 reports the entries in the
stretched normal matrix (left) and its Cholesky factor (right). Results for standard
stretching are plotted for an increasing number of stretched parts while for sparse
stretching a single point is plotted, corresponding to the number of parts determined
by Algorithm 3.1.

Analogous results for LP AGG are summarized in Figure 4.2. In this case, the
value of k returned by Algorithm 3.1 is 55. For this k, the sparsity patterns of Ĉ for

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1618 JENNIFER A. SCOTT AND MIROSLAV TŮMA

0 50 100 150 200 250 300 350 400 450 500

number of stretched parts

1

2

3

4

5

6

7

en
tr

ie
s

in
 th

e
st

re
tc

he
d

no
rm

al
 m

at
rix

104

0 50 100 150 200 250 300 350 400 450 500

number of stretched parts

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

en
tr

ie
s

in
 th

e
C

ho
le

sk
y

fa
ct

or

105

Fig. 4.2. Comparison of the entries in the stretched normal matrix (left) and its Cholesky factor
(right) for problem LP AGG with one dense row appended. The curve corresponds to the number of
entries varying with the number of parts into which the dense row is stretched (standard stretching);
the dot is for sparse stretching with the number of stretched parts determined by Algorithm 3.1
(k = 55).

0 100 200 300 400 500

nz = 29268

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

nz = 24878

0

50

100

150

200

250

300

350

400

450

500

Fig. 4.3. For problem LP AGG with one dense row appended, the sparsity pattern of the stretched
normal matrix for standard stretching (left) and sparse stretching (right) with the number of stretched
parts determined by Algorithm 3.1.

standard stretching (left) and sparse stretching (right) are given in Figure 4.3, and
its Cholesky factors with and without reordering Ĉ before it is factorized are given in
Figures 4.4 and 4.5, respectively.

The emphasis of our study is on the structural effects of sparse stretching and
the potential this has to make LS problems with a few dense rows more tractable
for both direct and iterative solvers. Nevertheless, it is of interest to consider how
stretching effects conditioning. In Figure 4.6, for examples WM1 and LP AGG we plot the
condition number (computed using the MATLAB function condest) of the normal
matrix corresponding to the original matrix with one dense row appended and to the
stretched matrix (the former has zero stretched parts). As expected, the condition
number increases with the number of stretched parts. But for WM1, we observe that
stretching the dense row into a small number of parts improves the conditioning
compared to the unstretched problem.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1619

Fig. 4.4. For problem LP AGG with one dense row appended, the sparsity pattern of the Cholesky
factor of the stretched normal matrix (without reordering) for standard stretching (left) and sparse
stretching (right) with the number of stretched parts determined by Algorithm 3.1.

0 100 200 300 400 500

nz = 61168

0

50

100

150

200

250

300

350

400

450

500

Fig. 4.5. For problem LP AGG with one dense row appended, the sparsity pattern of the Cholesky
factor of the AMD reordered stretched normal matrix for standard stretching (left) and sparse stretch-
ing (right) with the number of stretched parts determined by Algorithm 3.1.

4.2. Comparison of standard and sparse stretching. We now compare
standard and sparse stretching when applied to the remaining problems in Test Set
1; again, a single dense row is added. Results are given in Table 4.2. Here Ratio(Ĉ)
is the ratio of the number of entries in the stretched normal matrix Ĉ using sparse
stretching to the number using standard stretching. Similarly, Ratio(L̂) is the ratio
of the number of entries in the Cholesky factor of Ĉ using sparse stretching to the
number using standard stretching; nzAMD(L̂) and RatioAMD(L̂) indicate that Ĉ is
reordered before being factorized. We see that, in general, Ĉ is significantly sparser
when sparse stretching is used in place of standard stretching (Ratio(Ĉ) is less than
1.0 for all problems except IG5-15). This, in turn, generally leads to sparser factors,
although this is not guaranteed (particularly if Ĉ is reordered).

4.3. The effects of varying the density. It is not necessary for a row to be
fully dense for it to be advantageous to treat it as dense. Given the density ρ < 1,
we randomly generate the sparsity pattern of the appended row. In Figure 4.7, for

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1620 JENNIFER A. SCOTT AND MIROSLAV TŮMA

0 50 100 150 200 250

number of stretched parts

109

1010

1011

1012

1013

1014

co
nd

iti
on

 n
um

be
r

0 50 100 150 200 250 300 350 400 450 500

number of stretched parts

107

108

109

1010

1011

1012

1013

1014

co
nd

iti
on

 n
um

be
r

Fig. 4.6. The condition number of the normal matrix for the original matrix with one dense
row appended and for the stretched matrix for problems WM1 (left) and LP AGG (right). The curves
correspond to the condition number varying with the number of parts into which the dense row is
stretched (standard stretching); the dot is for sparse stretching with the number of stretched parts
determined by Algorithm 3.1.

Table 4.2
Results for Test Set 1 with a single dense row appended. k is the number of parts the dense

row is split into, determined by Algorithm 3.1. The ratios are for sparse stretching to standard
stretching.

Identifier k Standard stretching Ratios

nz(Ĉ) nz(L̂) nzAMD(L̂) Ratio(Ĉ) Ratio(L̂) RatioAMD(L̂)

GAMS60AM 203 1.1 × 104 1.3 × 105 1.6 × 104 0.48 0.60 1.38
MARAGAL 5 17 2.7 × 106 5.5 × 106 4.4 × 106 0.94 1.00 0.69
CEP1 652 1.3 × 105 1.1 × 106 3.9 × 105 0.82 0.90 1.02
STORMG2-8 2448 1.9 × 106 1.3 × 107 2.3 × 106 0.02 0.68 0.26
IG5-15 1116 1.1 × 107 6.9 × 107 5.7 × 107 1.00 1.04 1.01
KEMELMACHER 4701 1.4 × 105 3.8 × 107 3.2 × 106 0.71 0.95 0.83
BAXTER 7662 1.1 × 107 4.2 × 108 5.9 × 107 0.07 0.41 0.44
TESTBIG 8008 3.0 × 106 1.5 ×108 9.3 × 106 0.57 0.93 1.04
STORMG2-27 8002 2.0 × 107 1.4 × 108 2.2 × 107 0.01 0.65 0.14
WORLD 13443 2.9 × 107 2.0 × 108 3.3 × 107 0.01 0.68 0.10
MRI1 19721 2.1 × 107 1.6 × 109 5.3 × 107 0.04 1.00 0.40

problem WORLD, we plot the number of entries in the Cholesky factor of Ĉ when the
appended row has density ρ = 0.01, 0.05, and 0.1. As expected, as ρ increases, so too
does the number of parts it needs to be split into to retain sparsity in the factors and
the greater the advantage gained from using sparse stretching.

In Figure 4.8, we plot the number of entries in the Cholesky factor of the AMD
reordered stretched normal matrix for an increasing number of added rows. Each
added row is of density ρ = 0.05 (with the patterns generated randomly). Results are
given for standard and sparse stretching. In each case, the number of stretched parts
is determined by Algorithm 3.1. We observe the significant advantage of using sparse
stretching.

4.4. Problems containing some dense rows. We now consider examples
where the supplied matrix has a number of dense rows. These are taken from the
Meszaros subcollection of the University of Florida Sparse Matrix Collection. In
these experiments, we define a row of A to be dense if the number of entries either
exceeds 100 times the average number of entries per row or is more than 4 times
greater than the maximum number of entries in a row in the sparse part As [31]. In

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1621

0 50 100 150 200 250 300 350

number of stretched parts

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

en
tr

ie
s

in
 th

e
C

ho
le

sk
y

fa
ct

or

107

0 200 400 600 800 1000 1200 1400 1600 1800

number of stretched parts

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

en
tr

ie
s

in
 th

e
C

ho
le

sk
y

fa
ct

or

107

0 500 1000 1500 2000 2500 3000 3500

number of stretched parts

3

4

5

6

7

8

9

10

en
tr

ie
s

in
 th

e
C

ho
le

sk
y

fa
ct

or

107

Fig. 4.7. Problem WORLD with one appended row of density ρ = 0.01, 0.05, and 0.1. In each case,
the number of entries in the Cholesky factor of the stretched normal matrix is reported. The curves
correspond to the number of entries varying with the number of parts into which the dense row is
stretched (standard stretching); the dot is for sparse stretching with the number of stretched parts
determined by Algorithm 3.1.

0 10 20 30 40 50 60 70 80 90 100

number of added rows

0

1

2

3

4

5

6

en
tr

ie
s

in
 th

e
C

ho
le

sk
y

fa
ct

or

108

Fig. 4.8. Problem WORLD with an increasing number of added rows, each of density ρ = 0.05.
The solid curve is the entries in the Cholesky factor of the stretched normal matrix for standard
stretching and the dotted curve is for sparse stretching.

Table 4.3, we report results for standard and sparse stretching. The ratios are defined
as in section 4.2. Algorithm 3.1 is applied to each dense row; the total number of
parts the dense rows are split into is reported. We see that, when there are multiple
dense rows, the dimensions of the stretched matrix can be much greater than for
the original matrix. Moreover, compared to standard stretching, sparse stretching
can significantly reduce the number of entries in the factor L̂, although the use of
reordering can limit the differences between the two approaches.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1622 JENNIFER A. SCOTT AND MIROSLAV TŮMA

Table 4.3
Results for problems containing some dense rows. p is the number of dense rows.

∑
i ki is

the total number of parts the dense rows are split into. mstr and nstr are the dimensions of the
stretched matrix Â. The ratios are for sparse stretching to standard stretching.

p
∑

i ki m n mstr nstr Standard stretching Ratios

Identifier nz(L̂) nzAMD(L̂) Ratio(L̂) RatioAMD(L̂)

scrs8-2r 22 12828 27669 14357 40497 27163 9.9 × 107 3.8 × 107 0.80 1.01
sctap1-2b 34 14420 33824 15390 48244 29776 2.1 × 108 2.5 × 107 0.49 0.83
scsd8-2r 50 21640 60500 8645 82140 30235 2.4 × 108 3.0 × 107 0.95 0.45
scagr7-2r 7 12966 46672 32846 59638 45805 1.3 × 108 2.2 × 107 0.62 0.20
sctap1-2r 34 26964 63392 28830 90356 55760 7.3 × 108 6.3 × 107 0.49 0.75
scfxm1-2r 58 15825 65885 37973 81710 53740 1.2 × 108 1.6 × 107 1.00 0.93

4.5. Use with an iterative solver. So far, we have presented results for com-
plete factorizations. However, we can also perform an incomplete Cholesky (IC)
factorization of the stretched normal matrix and use it as as a preconditioner for an
iterative solver. Here we illustrate the effectiveness of combining standard and sparse
stretching with an iterative solver; in a future study, more extensive results will be
given and comparisons made to other approaches for handling dense rows within an
iterative solver, such as have been recently proposed in [31, 32]. To perform the
IC factorization, we use the package HSL MI35 from the HSL mathematical software
library [23]. HSL MI35 implements a limited memory IC algorithm; details are given in
[29, 30]. It requires the user to set the parameters lsize and rsize that, respectively,
control the number of entries in each column of the IC factor and the memory required
to compute the factorization. In general, increasing these parameters improves the
quality of the preconditioner (so that the number of iterations of the preconditioned
iterative solver is reduced) at the cost of more time and memory to compute the fac-
torization and increased cost for each preconditioner application. In our experiments
we set lsize = rsize (and so just report lsize). We employ preconditioned CGLS (an
extension of the conjugate gradient method to LS problems) and terminate it using
the following stopping rule from [19]:

‖ÂT r̂‖2
‖r̂‖2

<
‖ÂT r̂(0)‖2
‖r̂(0)‖2

∗ δ,

where r̂ = b̂−Âz is the residual of the stretched problem, r̂(0) = b̂−Âẑ(0) is the initial
residual, and the convergence tolerance is set to 10−6. The (unstretched) vector b is
taken to be the vector of all 1’s, and we take the initial solution guess for CGLS to be
ẑ(0) = 0. Note that the stopping rule is for the stretched system. Once it is satisfied,
we perform a check that it is also satisfied for the original system.

In Figures 4.9 and 4.10, we present results for problem LP AGG with a single dense
row appended. Here we set the HSL MI35 parameter lsize to 25 and 50. Using sparse
stretching, the iteration counts are 63 and 7, respectively. For standard stretching,
the iteration counts as the number of parts increases do not form a smooth curve
and it is not possible to predict the number of parts that will lead to a low iteration
count. This can be explained from the structural point of view because the stretched
segments that result from using different numbers of parts cause very different fill in
the corresponding stretched normal matrix.

Examination of the condition number of the preconditioned stretched normal
matrix shows that sparse stretching does not always offer an advantage over standard
stretching. Despite this, sparse stretching leads to a lower iteration count, from which

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1623

0 10 20 30 40 50 60 70 80 90

number of split parts

0

100

200

300

400

500

600

700

800

900

1000

ite
ra

tio
n

co
un

t

0 10 20 30 40 50 60 70 80 90

number of split parts

0

20

40

60

80

100

120

ite
ra

tio
n

co
un

t
Fig. 4.9. Comparison of iteration counts for standard and sparse stretching for problem LP AGG

with one dense row appended. The dot is for sparse stretching. Here lsize = 25 (left) and lsize = 50
(right).

100 200 300 400 500 600

No. of eigenvalues, standard stretching (163 parts)

10-10

10-8

10-6

10-4

10-2

100

102

ei
ge

nv
al

ue
s

of
 th

e
pr

ec
on

di
tio

ne
d

m
at

rix

50 100 150 200 250 300 350 400 450 500

No. of eigenvalues, sparse stretching (55 parts)

10-4

10-3

10-2

10-1

100

101

ei
ge

nv
al

ue
s

of
 th

e
pr

ec
on

di
tio

ne
d

m
at

rix

Fig. 4.10. Spectrum of the preconditioned stretched normal matrix. Standard stretching with
k = 163 (left) and sparse stretching (k = 55) (right). Here lsize = 25.

we conclude that the condition number can be a poor indicator of preconditioner
quality. For this example, increasing the number of entries in the preconditioner by
setting lsize = 50 significantly reduces the condition number along with the iteration
counts.

In Figure 4.10, we plot the eigenvalues of the preconditioned stretched normal
matrix (lsize = 25). Following sparse stretching (k = 55), the number of entries
in the incomplete factorization preconditioner is 13,741, and the iteration count is
63. Standard stretching with k = 163 parts yields a preconditioner of a similar size
(16,575 entries), but this fails to give convergence within 2000 iterations. The large
number of eigenvalues close to zero may explain this poor performance.

5. Conclusions. In this paper, we have considered employing matrix stretching
to tackle the problem of dense rows in otherwise sparse LS problems. Stretching
for LS problems has been used in the past [1, 2] but, as we have illustrated using
some problems with very basic sparsity structures, standard stretching can lead to
unacceptably large amounts of fill in the stretched normal matrix and its factor; simply
increasing the number of parts into which the dense rows are split does not necessarily

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1624 JENNIFER A. SCOTT AND MIROSLAV TŮMA

alleviate the problem and can lead to a poorly conditioned problem. The novelty of
our approach lies in performing the splitting so as to limit the fill in the stretched
normal matrix. A practical algorithm for obtaining the proposed splitting has been
presented, and the new sparse stretching strategy has been shown to perform well
when compared with standard stretching on a range of practical problems. Thus we
have a new tool that can be used to help solve LS problems with dense rows.

The main focus has been on complete factorizations, but we have also illustrated
that it is possible to consider incomplete factorizations of the stretched normal matrix
for use as a preconditioner with an iterative solver. Preliminary results suggest that
sparse stretching is again preferable to standard stretching. Further investigations
into using incomplete factorizations with sparse stretching will be part of a study in
which we also explore combining stretching with updating techniques [32]. Updating
techniques aim to use a factorization of the sparse reduced normal matrix Cs = ATs As
combined with the factorization of a dense subproblem involving Ad. However, even
if A is of full column rank, removing the dense block Ad can result in the sparse part
As being rank-deficient. In particular, As may contain one or more null columns and
the Cholesky factorization of Cs breaks down. A possible option is to select some of
the rows of Ad, stretch them, and then add the sparse parts to As to recover full rank.
Again, the original problem will be replaced by a larger one, but the hope is that the
increase will be modest and will allow us to exploit the advantages of both updating
and stretching in a single approach.

Acknowledgments. We are grateful to both Michael Saunders and an anony-
mous reviewer for their constructive feedback that led to improvements in this paper.

REFERENCES

[1] M. Adlers, Topics in Sparse Least Squares Problems, PhD thesis, Department of Mathematics,
Linköpings Universitet, SE-581 83 Linköping, Sweden, available as Linköping Studies in
Science and Technology, Dissertations No. 634, 2000.

[2] M. Adlers and Å. Björck, Matrix stretching for sparse least squares problems, Numer. Linear
Algebra Appl., 7 (2000), pp. 51–65.

[3] F. L. Alvarado, Matrix enlarging methods and their application, BIT, 37 (1997), pp. 473–505.
[4] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering

algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.
[5] H. Avron, E. Ng, and S. Toledo, Using perturbed QR factorizations to solve linear least-

squares problems, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 674–693.
[6] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, Permuting Sparse Rectangular Matrices into

Singly-Bordered Block-Diagonal Form for Parallel Solution of LP Problems, Technical
Report BU-CE-0203, Computer Engineering Department, Bilkent Univeristy, Ankara,
Turkey, 2002.

[7] Å. Björck, A general updating algorithm for constrained linear least squares problems, SIAM
J. Sci. Statist. Comput., 5 (1984), pp. 394–402.

[8] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[9] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms, McGraw-Hill, New York,

NY, 2008.
[10] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.

Software, 38 (2011), pp. 1–28.
[11] I. S. Duff, MA57– a new code for the solution of sparse symmetric definite and indefinite

systems, ACM Trans. Math. Software, 30 (2004), pp. 118–154.
[12] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford

University Press, London, UK, 1986.
[13] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to

the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.
[14] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a

sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SPARSE STRETCHING FOR LEAST-SQUARES PROBLEMS A1625

[15] I. S. Duff and J. A. Scott, Stabilized bordered block diagonal forms for parallel sparse solvers,
Parallel Comput., 31 (2005), pp. 275–289.

[16] I. S. Duff and T. Wiberg, Remarks on implementations of O(n1/2τ) assignment algorithms,
ACM Trans. Math. Software, 14 (1988), pp. 267–287.

[17] M. C. Ferris and J. D. Horn, Partitioning mathematical programs for parallel solution, Math.
Program., 80 (1998), pp. 35–62.

[18] A. George and M. T. Heath, Solution of sparse linear least squares problems using Givens
rotations, Linear Algebra Appl., 34 (1980), pp. 69–83.

[19] N. I. M. Gould and J. A. Scott, The state-of-the-art of preconditioners for sparse linear
least squares problems, ACM Trans. Math. Software, 43 (2017), Art. 36, 35 pp.

[20] J. F. Grcar, Matrix Stretching for Linear Equations, Technical Report SAND90-8723, Sandia
National Laboratories, Albuquerque, NM, 1990.

[21] M. T. Heath, Some extensions of an algorithm for sparse linear least squares problems, SIAM
J. Sci. Statist. Comput., 3 (1982), pp. 223–237.

[22] J. D. Hogg and J. A. Scott, Pivoting strategies for tough sparse indefinite systems, ACM
Trans. Math. Software, 40 (2013), Art. 4, 19 pp.

[23] The HSL Mathematical Software Library, http://www.hsl.rl.ac.uk.
[24] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,

9 (1974), pp. 256–278.
[25] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-

tations, Plenum, New York, 1972, pp. 85–103.
[26] X. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct solver

or unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110–140.
[27] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse

least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.
[28] O. Schenk, A. Wächter, and M. Hagemann, Matching-based preprocessing algorithms to

the solution of saddle-point problems in large-scale nonconvex interior-point optimization,
Comput. Optim. Appl., 36 (2007), pp. 321–341.

[29] J. A. Scott and M. Tůma, HSL MI28: An efficient and robust limited-memory incomplete
Cholesky factorization code, ACM Trans. Math. Software, 40 (2014), Art. 24, 19 pp.

[30] J. Scott and M. Tůma, On positive semidefinite modification schemes for incomplete Cholesky
factorization, SIAM J. Sci. Comput., 36 (2014), pp. A609–A633.

[31] J. Scott and M. Tůma, Solving mixed sparse-dense linear least-squares problems by precon-
ditioned iterative methods, SIAM J. Sci. Comput., 39 (2017), pp. A2422–A2437.

[32] J. A. Scott and M. Tůma, A Schur complement approach to preconditioning sparse lin-
ear least-squares problems with some dense rows, Numer. Algorithms, 79 (2018), pp.
1147–1168.

[33] C. Sun, Dealing with Dense Rows in the Solution of Sparse Linear Least Squares Problems,
Research Report CTC95TR227, Advanced Computing Research Institute, Cornell Theory
Center, Cornell University, 1995.

[34] C. Sun, Parallel solution of sparse linear least squares problems on distributed-memory multi-
processors, Parallel Comput., 23 (1997), pp. 2075–2093.

[35] R. J. Vanderbei, Splitting dense columns in sparse linear systems, Linear Algebra Appl., 152
(1991), pp. 107–117.

[36] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.

D
ow

nl
oa

de
d

05
/0

8/
25

 to
 1

30
.2

46
.2

52
.2

48
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://www.hsl.rl.ac.uk

	Introduction
	Matrix stretching for LS problems
	Standard stretching
	Condition of the stretched system
	Structural properties of the stretched system
	As diagonal
	As tridiagonal
	bold0mu mumu AsAssubsubsectionAsAsAsAs with Laplacian structure

	Sparse stretching
	Numerical results
	Two small examples
	Comparison of standard and sparse stretching
	The effects of varying the density
	Problems containing some dense rows
	Use with an iterative solver

	Conclusions
	References

