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USE OF THE p4 AND pS ALGORITHMS FOR IN-CORE
FACTORIZATION OF SPARSE MATRICES*

M. ARIOLI?, I. S. DUFFS, N. I. M. GOULDt, AND J. K. REID$

Abstract. Variants of the p4 algorithm of Hellerman and Rarick and the p5 algorithm of Erisman,
Grimes, Lewis, and Poole, used for generating a bordered block triangular form for the in-core solution of
sparse sets of linear equations, are considered.

A particular concern is with maintaining numerical stability. Methods for ensuring stability and the
extra cost that they entail are discussed.

Different factorization schemes are also examined. The uses of matrix modification and iterative
refinement are considered, and the best variant is compared with an established code for the solution of
unsymmetric sparse sets of linear equations. The established code is usually found to be the most effective
method.
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1. Introduction. For solving sparse unsymmetric sets of linear equations

(1.1) Ax=b,

Hellerman and Rarick (1971) introduced an algorithm for permuting A to bordered
block triangular form, which they called the preassigned pivot procedure (p3). A little
later, Hellerman and Rarick (1972) suggested that the matrix should initially be
permuted to block triangular form and that the p3 algorithm should be applied to each
diagonal block; they called this the partitioned preassigned pivot procedure (p4). A
potential problem with both of these algorithms is that, when Gaussian elimination is
applied to the reordered matrix, some of the pivots may be small or even zero. This
leads to numerical instability or breakdown of the algorithm. They intended that small
pivots should be avoided, but the published explanation of their algorithm is lacking
in detail.

Saunders (1976, p. 222) used column interchanges to avoid this difficulty. Erisman,
Grimes, Lewis, and Poole (1985) proposed a cautious variant of p4 that they called
the precautionary partitioned preassigned pivot procedure (pS). p5 avoids structurally
zero pivots away from the border, but does not address problems associated with small
pivots.

Erisman et al. (1985), (1987) performed some extensive numerical tests using as
a benchmark the Harwell code MA28 (Duff (1977), Duff and Reid (1979)), which uses
the pivotal strategy of Markowitz (1957) and a relative pivot test

(k) > (k)(1.2) lakk U max [akj
j>k
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(k) of the kth pivot row. Here u is a preassigned factor, usually seton the elements a kj

to 0.1. The Erisman et al. (1985) tests showed their p4 algorithm encountering zero
pivots and therefore failing in more than half the test cases. This illustrates that
provision for reordering is an essential part of a reliable algorithm. Erisman et al.
(1987) found a full 2 x 2 block that was exactly singular, which illustrates that it is not
sufficient to ensure that the diagonal entries are structurally nonzero. They concluded
(1987) in favour of the standard Markowitz approach, as represented by MA28.

To make this paper self-contained, we summarize the properties of the reduction
to block triangular form in 2 and of the p5 and p4 algorithms in 3 and 4. For
detailed descriptions, we refer the reader to Duff, Erisman, and Reid (1986) or Erisman
et al. (1985). Both algorithms permute the matrix to a form that is lower triangular
with a few "spike columns" projecting into the upper-triangular part. A practical
implementation of p4 or p5 needs some provision for, reordering to avoid small pivots.
We consider this in 5. We have constructed an experimental code to explore these
ideas, and the results are presented in 6. Finally, we present conclusions in 7.

We assume throughout the paper that there is enough main storage for the
computation to be performed without the use of any form of auxiliary storage.

2. Block triangular matrices. Both the p4 and the P5 algorithms start by permuting
the matrix to block triangular form

All
A21 A22

(2.1) A31 A32 A33

AN! AN2 AN3
which allows the system of linear equations

ANN

(2.2) Ax=b

to be solved by block forward substitution

i-1

(2.3) Aiix, b,- Ajxj, i= 1, 2,..., N.
j=l

We assume that each block A, is irreducible, that is it cannot itself be permuted to
block triangular form. There are well-established and successful algorithms for reducing
a matrix to this form (see Duff et al. (1986), Chap. 6, for example), and good software
is available. It is the treatment of the blocks A, that is our concern here.

Because we will subsequently perform a block decomposition of the A, blocks,
we will use the graph theoretic equivalent term "strong component" to identify a block
A, in the following text.

3. The pS algorithm. The P5 algorithm (Erisman et al. (1985)) first permutes the
matrix to block triangular form and then further permutes each strong component to
the form illustrated in Fig. 3.1. The general form is of a matrix

where B is block lower triangular with full diagonal blocks and each column of C has
a leading block of nonzero entries in the rows of a diagonal block of B and extends
upwards at least as far as the preceding column. We refer to the columns of (c) as the
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FIG. 3.1. A strong component @er the application pS. Entries shown as "x" are nonzero and entries
shown as "o" may be zero or nonzero.

"border." For consistency of notation, we refer to any column that projects above the
diagonal as a "spike" column, even though they do not look like spikes in the case of
the p5 algorithm. A border column or a column that is not the first of a diagonal block
is a spike column, and there are no other spike columns. We refer to the part of a
spike column that lies above the diagonal as a "spike."

4. The p4 algorithm. The p4 algorithm leads to the same number of spike columns
as the P5 algorithm, but some of the border columns are moved forward. They still
have the desirable property that each spike acts as the border of a bordered block
triangular matrix in a properly nested set of such matrices. For example, the matrix
of Fig. 3.1 might have the form shown in Fig. 4.1. The two spikes in the middle of the
border have moved forward and become separated. At the outer level, the blocks have
sizes 3, 6, and 5. The first is a full 3 x 3 matrix. The last is a bordered form with inner
blocks that are full 2 x 2 matrices. The middle one is a bordered form with inner blocks
of sizes 4 and 1, the first of which is a bordered form with blocks of sizes 2 and 1.

Our implementation is as described by Duff et al. (1986). Note, in particular, that
this version ensures that the diagonal entries are nonzero unless they are in the border.

Xxx
XXX
XXX

FIG. 4.1. The matrix of Fig. 3.1 after application of p4. Entries shown as "x" are nonzero and entries
shown as "o"may be zero or nonzero.
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5. The treatment of spiked matrices. If Gaussian elimination without interchanges
is applied to any sparse matrix, including those produced by p4 and pS, all fill-in is
confined to the spike columns (if column j is not a spike column, it is inactive during
steps 1, 2,...,j-1 of the elimination). Since this produces triangular factorizations
of the blocks, we will refer to this as "LU."

An interesting property of the matrices produced by p4 and P5 is that they produce
a properly nested set; that is, given any pair of spikes, either the set of rows that are
cut by the first spike on or above its diagonal is a subset of the corresponding set for
the second spike or the two sets of rows do not overlap. Therefore, if Gauss-Jordan
elimination is performed by applying row operations to eliminate any entry in the
lower triangular part of row 2 (that is, entry (2, 1), if present), then any entry in the
upper triangular part of column 2 (that is, entry (1, 2), if present), then all the entries
in the lower triangular part of row 3, then all the entries in the upper triangular part
of column 3, etc., all fill-in is confined to the spikes (that is, the parts of spike columns
that project above the diagonal). Note that if the spikes were not properly nested,
fill-in would lengthen some of them. Gauss-Jordan elimination is sometimes called
"product form of the inverse" or PFI for short. It is more usual to perform the
Gauss-Jordan eliminations column by column.

For numerical stability, Saunders (1976) suggests considering a column interchange
whenever the inequality

is not satisfied, where ul is a small threshold (often 0.001). He took the largest
(k)a kj j k, ", n, as the pivot, but now recommends (private communication) choosing

the first spike column, l, such that

(k)[ > U2 max [a (k)l(5.2) lakl ’= j>-_k
kj I,

where uz is another threshold (usually 0.1), in order that the structure is corrupted
least. Indeed, it is possible for a pivot to fail the test (5.1) and yet pass the test (5.2).
Note that a column interchange may corrupt the property of the previous paragraph
and hence lead to fill-ins that lengthen later spikes.

In both the p4 and PS algorithms, even after column interchanges, we have the
block form

where B and E are square and the second block column contains all the border columns.
We assume that implicit factorization of this block form is used (see George (1974);
see also Duff et al. (1986), p. 61); that is, B is factorized and the Schur complement
E-DB-1C is formed as a full matrix and factorized using conventional interchanges,
but C and D are stored in their original form without fill-ins. The Schur complement
is formed naturally when LU or Gauss-Jordan factorization is used and there is no
need to calculate B- explicitly, but note that the number of operations for forming it
by the two methods is usually different. Where B has a block structure, we could also
use an implicit factorization for B so that no fill-in is held in its off-diagonal blocks,
but have not done this in our experiments because we found that the inner borders
were too small to justify the extra complication.
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6. Numerical experiments. For our numerical experiments, we have taken the
matrices studied by Erisman et al. (1985) and included a few more. We have applied
the Harwell code MA28, which performs Gaussian elimination with the ordering of
Markowitz (1957) and threshold pivoting. We have used the usual value, u 0.1, for
the threshol.d. MA28 transforms the matrices to block triangular form so that fill-in is
confined to the strong components, but implicit factorization of the strong components
(see end of 5) is not available for MA28. We passed the strong components to the
Harwell code MC33 that has options for p4 and p5 ordering. We then applied the
algorithms of 5 with (ul, u2) values of (0.1, 0.1), (0.001, 0.1), and (0.0, 0.0).

The first comment that is worth making concerning our experience is that the
block triangular form usually has few nontrivial strong components. Many matrices
that occur in practice are irreducible (have only one strong component) and those that
are reducible usually have many trivial strong components. The chemical engineering
problems considered by Erisman et al. are all reducible and we show the sizes of their
strong components in Table 6.1. We also show in Table 6.2 the sizes of the strong
components for the linear programming bases BP0, , BP1600 in the Harwell set of
sparse matrices. We also use a set of matrices from Francois Cachard of Grenoble.
These matrices arose in the simulation of computing systems (Cachard (1981)) and
are all irreducible. The matrices in the test set have some entries that are numerically
zero. We processed this data to remove zeros so that the number of entries is less than
indicated in the set distributed by Duff, Grimes, and Lewis (1987). In most instances,
the runs on the BP matrices showed the same trend as the other sets and did not add
to our understanding of the algorithms. We have therefore omitted tables for most of
the BP runs. We have also run the remaining problems referenced in the papers of
Erisman et al. and have found the relative performance similar to the results displayed.

When the p4 and p5 algorithms are applied to the strong components, the final
border plays a very important role. Most of the spikes lie within it, as Tables 6.3-6.5
and Figs. 6.1-6.2 show. For the P5 algorithm, this implies that most of the diagonal
blocks are of size 1. We have observed that those not of size 1 are usually of size 2.

TABLE 6.1
The sizes of the strong components of Westerberg’s matrices.

No. of
components

Order of size or 2 Other sizes

67 66
132 55 77
156 133 23
167 90 77
381 5 375
479 165 308
497 291 92;57;57
655 197 452
989 269 720
1,505 403 1,099;3
2,021 521 1,500
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TABLE 6.2
The strong component sizes for BP0, , BP1600. All the matrices have order 822.

No. of No. of
components components

Identifier of size or 2 of size 3 to 9 Other sizes

BP0 822 0 None
BP200 658 12 32, 39, 40
BP400 575 14 22, 161
BP600 523 11 12, 18,216
BP800 475 15 33,244
BP1000 446 13 33, 56, 19, 207
BP1200 426 17 33, 65,220
BP1400 390 12 372
BP1600 431 16 32, 69,217

TABLE 6.3
The numbers of spikes and border sizes for Westerberg’s matrices.

Component No. of Border Border
Order size spikes size, p5 size, p4

67 66 14 13 11
132 77 6 4 3
156 23 4 4 3
167 77 6 4 3
381 375 75 53 52
479 308 61 42 38
497 92 19 18 16
497 57
497 57
655 452 93 66 54
989 720 98 84 77

1,505 1,099 148 127 116
2,021 1,500 205 175 160

TABLE 6.4
The numbers ofspikes and border sizes for the Grenoble

set of irreducible matrices.

No. of Border Border
Order spikes size, p5 size, p4

115 19 15 15
185 28 28 28
216 25 25 24
216 25 25 24
343 52 52 42
512 55 55 50

1,107 283 113 100
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TABLE 6.5
The numbers of spikes and border sizes for strong components of sizes 10 or

more from the BP matrices.

Component No. of Border Border
Identifier size spikes size, p5 size, p4

BP200 32 4 2 2
39 4 3 2
40 7 3 3

BP400 22 5 2 2
161 30 21 17

BP600 12 4 3
18 4 3 2

216 42 27 21
BP800 33 9 6 4

244 49 38 30
BP1000 33 9 7 5

56 13 10 6
19 2 2 2

207 51 32 26
BP1200 33 9 5 4

65 15 14 8
220 49 34 25

BP1400 372 83 54 45
BP1600 32 9 5 4

69 20 16 8
217 44 29 24

FIG. 6.1. The matrix of order 67 from the Westerberg set after application of pS.
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FIG. 6.2. The matrix of Fig. 6.1 after application of p4.

In all the tables describing the p4 and p5 experiments, we indicate by flop count
the number of multiplications, divisions, and additions performed, and we count only
the fill-in blocks B and E of (5.3) since we are using the implicit form ofthe factorization.

Our experience with Gauss-Jordan elimination, as described in 5, is that it does
indeed often involve less fill-in, but the additional elimination steps lead to a very
substantial increase in operation counts; see Tables 6.6 and 6.7. So substantial is this
increase that we do not consider this variant further.

TABLE 6.6
Comparison between Gauss-Jordan (GJ) and LU on Westerberg’s matrices,

using the p4 algorithm and thresholds u =0.1 and u2 =0.1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros GJ LU GJ LU

67 294 53 113 7.4 3.2
132 413 5 17 1.2 0.9
156 362 8 14 0.4 0.2
167 506 13 20 1.3 0.9
381 2,134 1,332 2,708 834 137
479 1,888 704 1,307 336 44
497 1,721 129 254 16 8.0
655 2,808 1,447 2,704 931 119
89 3,518 2,889 4,098 2,345 171

1,505 5,414 6,177 7,474 6,060 368
2,021 7,310 13,225 19,506 23,714 1,756
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TABLE 6.7
Comparison between Gauss-Jordan (GJ) and LU on Grenoble matrices, using

the p4 algorithm and thresholds u 0.1 and u 0.1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros GJ LU GJ LU

115 421 153 373 43 13
185 975 388 1,085 239 77
216 812 299 571 121 25
216 812 339 3,000 320 127
343 1,310 935 1,853 569 89
512 1,976 1,278 2,515 1,235 161

1,107 5,664 6,731 11,382 14,849 1,744

To discover whether our code is sensitive to the way that the choice is made when
the heuristics of the algorithms say that more than one column is equally good (that
is, sensitivity to tie-breaking), we ran several problems with their columns randomly
permuted. We found little sensitivity. For example, 10 runs of the Grenoble case of
order 512 had p5 borders varying between 51 and 55 and fill-in with LU factorization
(ul u2= 0.1) varying between 2,594 and 3,008.

It can be seen from Tables 6.3 and 6.4 that the p4 algorithm leads to relatively
few spikes being moved forward from the border. We might therefore expect that it
would not make a large difference to the fill-in or operation count. This is confirmed
in Tables 6.8 and 6.9. Usually, but not always, moving spikes forward leads to an
improvement. We therefore prefer the p4 algorithm.

We have stressed the need for interchanges to avoid small pivots. This is essential
if accurate solutions are to be obtained, as is illustrated in Tables 6.10 and 6.11, where
the relative residuals are

(6.1)
Ib, l+Zlalll’

i--1,2,...

TABLE 6.8
Comparison between p5 and p4 on Westerberg’s matrices, using LU

factorization and thresholds u =0.1 and u =0.1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros p5 p4 p5 p4

67 294 125 113 3.1 3.2
132 413 21 17 0.9 0.9
156 362 15 14 0.2 0.2
167 506 17 20 0.9 0.9
381 2,134 2,712 2,708 139 137
479 1,888 1,576 1,307 53 44
497 1,721 301 254 8.2 8.0
655 2,808 3,776 2,704 177 119
989 3,518 4,317 4,098 199 171

1,505 5,414 11,761 7,474 750 368

2,021 7,310 22,395 19,506 2,064 1,756
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TABLE 6.9
Comparison between p5 and p4 on Grenoble matrices, using LU factorization

and thresholds Ul O. and u O. 1.

Factorization flop
Fill-in count (thousands)

Order Nonzeros p5 p4 p5 p4

115 421 373 373 13 13
185 975 1,085 1,085 77 77
216 812 619 571 27 25
216 812 3,014 3,000 132 127
343 1,310 2,657 1,853 132 89
512 1,976 2,996 2,515 193 161

1,107 5,664 13,848 11,382 2,151 1,744

TABLE 6.10
Comparison between u =0.0, 0.001, and 0.1 on Westerberg’s matrices, using p4 and LU factorization

with u2 0.1. The arithmetic is IBM double precision.

Max. relative residual No. of col. interchanges

Order Nonzeros u 0.0 u 0.001 u 0.1 Ul 0.0 ul 0.001 ul 0.1

67 294 5 x 10-15 5 x 10-15 6 x 10-15 0 0 0
132 413 3 10-9 10-11 2 10-15 0 2 2
156 362 4 x 10-15 9 10-16 9 10-16 0
167 506 3 10-9 2 10-13 4 10-15 0 2 3
381 2,134 fails 4 10-1 10-12 0 2 6
479 1,888 10-6 4 x 10-11 4 x 10-14 0 6 10
497 1,721 fails 4 10-11 4 10-14 0 0 3
655 2,808 3 10.-7 6 x 10-11 10-13 0 6 10
989 3,518 4 10-7 7 10-12 4 x 10-14 0 28 39

1,505 5,414 10-7 3 10-1 10-13 0 42 63
2,021 7,310 4 10-6 10-9 2X 10-13 0 56 77

TABLE 6.11
Comparison between u 0.0, 0.001, and 0.1 on Grenoble matrices, using p4 and LU factorization with

u 0.1. The arithmetic is IBM double precision.

Max. relative residual No. of col. interchanges

Order Nonzeros Ul 0.0 u 0.001 ul 0.1 Ul 0.0 Ul 0.001 ul 0.1

115 421 5 10-l 5 x 10-l 10-13 0 0 11
185 975 2x 10-8 2x 10-8 2 10-12 0 0 16
216 812 10-9 10-9 10-9 0 0 0
216 812 fails fails 4 10-14 0 0 85
343 1,310 10-9 10-9 10-9 0 0 0
512 1,976 4 10-2 4 10-2 4 10-2 0 0 0

1,107 5,664 fails fails faiIs 0 3 24
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and R is the computed solution. The number of interchanges is shown in the tables.
Interchanges usually lead to an increase in fill-in and operation count (illustrated in
Tables 6.12 and 6.13) principally because of exchanges between the border and
nonborder columns.

For the Westerberg matrices, the choice of Ul 0.1 gives good residuals, without
an excessive increase in fill-in or operation count; the choice Ul 0.001 yields higher
residuals, but they are reasonably satisfactory.

For the Grenoble matrices, the choice Ul=0.001 yields unsatisfactory residuals
in cases 4, 6, and 7, and the choice U1-0.1 yields unsatisfactory residuals in cases 6
and 7. We regard the use of the small value of 0.001 as "living dangerously" and are
not surprised by an occasional poor result, but the last two results with the value 0.1
prompted us to investigate further. We found that they were indeed caused by large
growth in the size of the matrix entries. For case 6 (order 512), we found that increasing
Ul to 0.2 did not help but that increasing it to 0.5 reduced the maximum relative residual
to 1 x 10-6. For case 7 (order 1107), the values 0.2 and 0.5 reduced the residuals to
1 x 10-9 and 6 10-13, respectively. Increasing u2 made little difference to the results.

Comparison between ut
with u. O. 1.

TABLE 6.12
=0.0, 0.001, and 0.1 on Westerberg’s matrices, using p4 and LU factorization

Factorization flop count

Fill-in (thousands)

Order Nonzeros u 0.0 u 0.001 u 0.1 u 0.0 u 0.001 u 0.1

67 294 117 117 113 3.2 3.2 3.2
132 413 18 30 17 1.0 1.1 0.9
156 362 13 14 14 0.2 0.2 0.2
167 506 16 22 20 0.9 1.0 0.9
381 2,134 2,626 2,707 2,708 134 148 137
479 1,888 1,299 1,438 1,307 41 50 44
497 1,721 255 256 254 9.3 9.6 8.0
655 2,808 2,421 2,918 2,704 93 131 119
989 3,518 3,232 2,938 4,098 112 98 171

1,505 5,414 5,834 6,352 7,474 263 260 368

2,021 7,310 16,501 16,353 19,506 1,263 1,178 1,756

U2

Comparison between u
=0.1.

TABLE 6.13
0.0, 0.001, and 0.1 on Grenoble matrices, using p4 and LU factorization with

Factorization flop count

Fill-in (thousands)

Order Nonzeros u 0.0 ua 0.001 U 0.1 ut 0.0 u 0.001 u 0.1

115 421 227 227 373 6.9 6.9 13
185 975 771 771 1,085 42 42 77
216 812 571 571 571 25 25 25
216 812 584 584 3,000 25 25 127
343 1,310 1,853 1,853 1,853 89 89 89
512 1,976 2,515 2,515 2,515 161 161 161

1,107 5,664 10,281 10,784 11,382 1,113 1,265 1,744
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These results illustrate the potential pitfalls with any particular choice of Ul, but
our general recommendation is nevertheless for the value 0.1, which we use for the
later comparisons in this paper. Note that iterative refinement may be used to improve
any solution; in particular, we found it to be successful for the poor factorizations
discussed in the previous paragraph.

We have also worked with the strategy of performing a column interchange
whenever the inequality (1.2) is not satisfied, which has software advantages if storage
by rows is in use. This strategy is equivalent to the use of a value of ul that is greater
than 1.0. We found that it almost always leads to more column interchanges and hence
to more fill-in and work, though its stability properties are better (for instance, we did
not have such serious difficulties with the last two Grenoble matrices).

As an alternative to performing column interchanges, we also considered changing
the diagonal elements t(k)kk whenever they do not satisfy the pivot test (1.2). The solution
of (1.1) may then be obtained using the modification method (see, for example, Duff
et al. (1986), pp. 244-247). This technique has the advantage of allowing predefined
storage structures but when r diagonal elements are altered it has the disadvantage of
requiring the solutions of r + 1 linear systems, each of whose coefficient matrix is the
perturbed matrix. Unfortunately, the size of r is normally about the same as the number
of column interchanges that would otherwise have been performed with ul u2 0.1,
and this makes such an approach prohibitively expensive (see Tables 6.10 and 6.11).

Another alternative is to ignore the pivot test (1.2) but to check the absolute value
of each entry on the diagonal and to increase it by a value /z if it is less than that
value. Usually the Schur complement is full and we can factorize it by an LU
decomposition with interchanges that makes the pivots the largest entries ofthe columns
(or rows). This strategy is particularly useful for pS, because the fill-in can be confined
to the Schur complement. Obviously the solution obtained may be poor, but it is
possible to improve the error by performing a few steps of iterative refinement. In
Tables 6.14 and 6.15, we show results for Westerberg’s matrices and those from Grenoble
using a value for/ of I x 10-8 (approximately the square root ofthe machine precision).

This approach does not guarantee that iterative refinement converges because the
error in the factorization could be too large. For example, with the Grenoble matrix
of order 1107 iterative refinement does not converge, because the factorization is

TABLE 6.14
Results on Westerberg’s matrices, using LU factorization with iterative refinement and pS, incrementing

the pivot by 10-8 if it is less than x 10-8. The arithmetic is IBM double precision.

Flop count (thousands)
Num. iter.

Order Nonzeros Fill-in Factorization Solution steps Error

67 294 125 3.1 1.4 0 5 x 10-15

132 413 15 0.9 0.9 0 8 x 10-1

156 362 13 0.2 0.6 0 3 10-8

167 506 13 0.9 1.1 0 4 x 10-1

381 2,134 2,721 139 33 2 x 10-12

479 1,888 1,478 46 16 4 x 10-11

497 1,721 293 9.1 4.4 0 2 x 10-655 2,808 2,756 106 30 5 10-989 3,518 3,121 104 30 2 10-1,505 5,414 10,172 598 69 3 10-1

2,021 7,310 18,078 1,397 115 2 10-9
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TABLE 6.15
Results on Grenoble matrices, using LU factorization with iterative refinement and pS, incrementing the

pivot by 10-8 if it is less than x 10-8. The arithmetic is IBM double precision (note that the fourth matrix

is very ill-conditiond).

Flop count (thousands)
Num. iter.

Order Nonzeros Fill-in Factorization Solution steps Error

115 421 222 6.9 6.1 8 10-16

185 975 771 42 20 5 x 10-13

216 812 617 27 19 4 10-17

216 812 617 27 80 7 6 10-2

343 1,310 2,657 132 50 2 10-16

512 1,976 2,996 193 265 5 4 10-13

1,107 5,664 12,723 1,458 Diverged

unstable with entries of size 1 1033. Our view is that this approach does not show
sufficient advantages to compensate for the lack of robustness, and we therefore reject
it.

Finally, in Tables 6.16-6.18, we show a comparison between the most satisfactory
of our algorithms, p4 with LU factorization and thresholds ul u2 0.1, and the Harwell
Markowitz code MA28, with threshold u =0.1. The p4 algorithm often involves less
fill-in, but in most cases it requires more operations, sometimes considerably more.

7. Conclusions. We have compared the p4 and p5 variants ofthe Hellerman-Rarick
algorithm and found that p4 is usually better than pS, but not by much. The special
form of Gauss-Jordan elimination that confines fill-in to the spikes themselves usually
requires far more operations than LU factorization and does not always lead to less
fill-in. We therefore prefer p4 with LU factorization.

The use of interchanges is essential if a reliable solution is to be obtained, even
though the interchanges may lead to an increase in computation.

We also tried to maintain the structure during the factorization by modifying the
pivot when it was too small. We examined the possibility of using updating schemes

TABLE 6.16
Comparison between MA28 and p4 on Westerberg’s matrices, using LU factorization and thresholds

U U U2--- 0.1.

Factorization flop Solution flop
Fill-in count (thousands) count (hundreds)

Order Nonzeros MA28 p4 MA28 p4 MA28 p4

67 294 267 113 2.1 3.2 11 8.5
132 413 105 17 0.5 0.9 6.3 5.3
156 362 26 14 0.1 0.2 1.5 1.2
167 506 97 20 0.5 0.9 6.2 5.4
381 2,134 1,941 2,708 25 137 76 102
479 1,888 1,104 1,307 9.8 44 44 54
497 1,721 299 254 2.4 8.0 19 20
655 2,808 2,223 2,704 22 119 80 101
989 3,518 1,194 4,098 7.2 171 69 137

1,505 5,414 1,984 7,474 12 368 109 233
2,021 7,310 2,659 19,506 16 1,756 147 505
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TABLE 6.17
Comparison between MA28 and p4 on Grenoble matrices, using LU factorization and thresholds u u

u2 0.1.

Factorization flop Solution flop
Fill-in count (thousands) count (hundreds)

Order Nonzeros MA28 p4 MA28 p4 MA28 p4

115 421 654 373 5.6 13 20 19
185 975 3,134 1,085 63 77 80 53
216 812 2,544 571 39 25 65 29
216 812 2,156 3,000 25 127 57 128
343 1,310 5,334 1,853 119 89 129 67
512 1,976 11,545 2,515 402 161 265 94

1,107 5,664 39,316 11,382 1,928 1,744 889 403

TABLE 6.18
Comparison between MA28 and p4 on BP matrices, using LU factorization and thresholds u ul u 0.1.

Fill-in
Factorization flop
count (thousands)

Solution flop
count (hundreds)

Identifier Order Nonzeros MA28 p4 MA28 p4 MA28 p4

BP0 822 3,276 0 0 0 0 0 0
BP200 822 3,802 106 25 0.8 1.3 11 10
BP400 822 4,028 266 196 2.0 5.2 20 22
BP600 822 4,172 484 358 3.5 11 30 34
BP800 822 4,534 681 874 5.9 31 41 56
BP1000 822 4,661 766 827 7.1 31 47 63
BP1200 822 4,726 959 843 9.2 37 54 69
BP1400 822 4,790 1,295 1,747 11.4 105 65 91
BP1600 822 4,841 872 734 8.4 34 53 68

but found them to be prohibitively expensive. We also considered iterative refinement
and found this sometimes to be very competitive, but disliked its lack of robustness.

Apart from numerical considerations, Erisman et al. (1985), (1987) found the p5
algorithm to be competitive with the Markowitz algorithm, but were pessimistic about
being able to ensure numerical stability. Our comparisons, using the same threshold
factor in the two algorithms and taking the number of operations into account, confirm
that the Markowitz algorithm is comparable with respect to fill-in and indicate that it
is usually superior with respect to factorization operation count. Of course, it should
be borne in mind that the Hellerman-Rarick algorithms never need access by rows
and are therefore better suited to out-of-core working. They also have a less expensive
analysis phase. For example, on the Grenoble matrix of order 1107, our analysis time
was 1.2 seconds, whereas MA28 took 60 seconds for the phase that performs both
analysis and factorization.
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