
Finding a Positive Semidefinite Interval for a Parametric Matrix* 

R. J, Caron 

Department of Mathematics 
University of Windsor 
Windsor, Ontario, Canada N9B 3P4 

and 

N. I. M. Gould 

Department of Combinatorics and Optimization 
Uniuersity of Waterloo 
Waterloo, Ontario, Canada N2L 3Gl 

Submitted by Richard A. Bmaldi 

ABSTRACT 

Let C and E be symmetric (n, n)-matrices such that C is positive semidefinite 
and E is of rank one or two. This paper is concerned with finding real numbers _t < 0 

and I 2 0 such that C(t) = C + tE is positive semidefinite if and only if t E [_t, t‘]. 
Explicit expressions for _t and t‘ are derived, and a method for computing _t and Z is 
presented along with preliminary numerical experience. 

1. INTRODUCTION 

Let C and E be given symmetric (n, n>matrices such that C is positive 
semidefinite and E is of rank one or two. This paper is concerned with 
finding real numbers _t < 0 and t z 0 so that the parametric matrix 

C(t)=C+tE 

is positive semidefinite if and only if t E [_t, i]. It is assumed that 

E = uu’ + Xuu’, 
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where u and v are linearly independent n-vectors and X = 0, 1, or - 1. 
(Note: In general, a symmetric rank one or two matrix can be written as 
f (uu’ + Xov’). However, if C + tE is positive semidefinite if and only if 
t E [_t, t], then C + t( - E) is positive semidefinite if and only if t E [ - i, - _t]. 
Therefore, the assumption that E = uu’ + huv’ causes no loss of generality.) 

This problem arises in connection with the parametric Hessian quadratic 
programming problem [l] 

minimize {c’x+~x’C(t)xla;x~b,, i=l,...,m}, 

where c,a,,...,a, are n-vectors and b,, . . . , b,,, are scalars. The solution of 
the problem has applications in structural design and portfolio analysis. 

Previous results have been given in association with quasi-Newton meth- 
ods for the unconstrained minimization of functionals [2]. Such methods are 
concerned with choosing t and E such that if C is positive definite then C(t) 
is also positive definite. 

Section 2 contains background material and preliminary results. These 
results will be used in Section 3 to derive explicit expressions for _t and t. A 
method for computing,f and t is given in Section 4, along with the results of 
limited numerical testing. 

2. BACKGROUND AND PRELIMINARY RESULTS 

This section presents various results concerning the matrix C(t) and its 
eigenvalues. Lemma 2.1 is a variation of a result given by Pearson [3], Lemma 
2.2 is due to Wilkinson [4], and Lemma 2.3 can be found in Noble and Daniel 
[5]. The proofs are omitted. 

LEMMA 2.1. lf C is nonsingular, then C(t) is nonsingular if and only if 
P(t) # 0, where 

and where x = C-k and y = C-‘v. Also, det(C(t))= det(C)&t). 

LEMMA 2.2. Suppose that C has eigenvulues 
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and consider e( t ) = C + t( uu’). Zf t < 0 is arbitrary but fixed, then c( t ) has 
eigenvalues Xi(t), i = l,..., n, such that 

LEMMA 2.3. Suppose that C has rank r < n. There exists an (n, r)-matrix 

Q1 and an (n, n - r)-matrix Qz such that Q = [Q1, Qz] is an orthogonal 
( 72, n )-matrix satisfying 

(1) 

where C, is a positive definite diagonal (r, r kmatrix whose diagonal elements 
are the nonzero eigenvalues of C. 

It follows from Lemma 2.3 that 

Q’C(t)Q = 
C,+t(u,u;+Xv,v;) t(u&+Xv,v~) 

t( u‘+; + hv,v’,) t( u& + xv,v!J 1 ’ 
(2) 

where ui = Q;u, us = Qiu, vi = Q;v, and va = Qdv. It is noted that if 
u E R(C), where R(C) denotes the range space of C, then us = 0. Similarly, 
v E R(C) implies 2)s = 0. 

The next lemma will be used in Section 3 to express results obtained using 
(2) in terms of C, u, and v rather than C,, ui, and vi. 

LEMMA 2.4. Let C, Q, and C, be as in Equation (l), and let u and v be 
any n-vectors in R(C). Define u1 = Q;u and v1 = Q;v. Zf x* is the unique 
solution to C1x* = ul, then x* = x1 and 

v;xl = V’X) 

where x is any solution to Cx = u and x1 = Q;x. 

Proof. Let x be any solution to Cx = u. It follows that Q’C( QQ’)x = Q’u, 
which implies that Cix, = ui. Since C, is nonsingular, then x* = xi. Now, 

v’x = v’QQ’x = v;xl + v&x2 = v;xl, 

since u, v E R(C) implies u2 = v2 = 0. 

The expressions for t and t are now derived. 

n 
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3. THE POSITIVE SEMIDEFINITE INTERVAL 

The expressions for _t and t are derived for six distinct cases. The cases are 
determined according to the choice for E and the relationship between C, u, 
and v. 

Case 1: E = uu’ + Ad; u, v E R(C) 
From Equation (2), with u2 = v2 = 0 [since u, v E R(C)], it follows that 

C(t) is positive semidefinite if and only if 

C,(t)=C,+t(u,u;+Xv,v;) 

is positive semidefinite. Let the eigenvalues of C,(t) be represented by 
h,(t),..., x,(t) where hi(O) > 0, i = 1,. . . , r. It follows from Lemma 2.1 that 

det(Cdt)) = det(Cl)Pdt) = t~l~i(~), (3) 

where 

B,(t) = 1+ (u;x, + hv;y,)t + x[ u;x,v;y, - (u;yJ2] t2, 

and where x1 = C; ‘ul and y, = C; ‘vl. If X # 0, the Cauchy-Schwarz in- 
equality [6] implies that PI(t) has two distinct roots. Using Lemma 2.4, the 
roots can be written as 

I.1 = 2 
I( 

-u’r-hv’y-J(u’x-Xv’y)2+4X(u’y)2), 

r, = 2 
I( 

- u’x - Xv’y + J( UIX - Av?J + 4A( u$)2) . 

It follows from (3) that h,(t) = 0 for some i if and only if t = r1 or t = r,. 
This, along with the continuity of the xi(t) and the fact that Xi(O) > 0 for 
i=l,..., r, is used to determine _t and t from r1 and r,. 

If X=1,thenr2<r,<0.Define_t=r1andt=+co.Fort~r, itfollows 
that A,(t)>,O, i=l,..., r, and hence C( t ) is positive semidefinite if t E [ _t , i]. 
For r, < t < r1 we have PI(t)< 0, so that there is some i with h,(t)< 0. 
Lemma 2.2 then implies that A,(t) < 0 for some i whenever t < _t. Thus, C(t) 
is positive semidefinite only if t E [_t, i]. 
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If X = 0, then Pi(t) has the single root rl = - l/u’x. As in the case for 
X=l,set_t=r, andt=+co. 

If A = - 1, then ri < 0 CT,. Define _t = r, and t= rs. In a manner 
analogous to that for X = 1, it can be shown that C(t) is positive semidefinite 
if and only if t E [_t, t]. 

Case2:E=uu’+hvv’;A=O,l;u~R(C)orv~R(C) 
First, it is noted that 

which is nonnegative for all x and for all t z 0. Thus, i = + co. 
Now _t is to be determined. Suppose that u E R(C) and v 4 R(C). Since 

v @ R(C), there exists an n-vector x satisfying Cx = 0 and v’x = 1. Since 
u E R(C), then U’X = 0. Therefore, x’C(t)x = t, which implies that C is not 
positive semidefinite if t < 0. Hence _t = 0. Analogously, if u 4 R(C) and 
v E R(C), then _t = 0. 

Now suppose that both U, v e R(C). Either v E R(C]u) or v P R(C]u), 
where (C)u) is the matrix formed by appending u to C. Suppose v E R( C 1 u); 
then there exists an n-vector s and a scalar (Y satisfying Cs + (YU = v. Since 
u e R(C), there also exists a vector x with Cx = 0 and u’x = 1. Consequently, 
v’x = a, which yields x’C(t)x = (1 + ha2)t. Clearly, this implies that _t = 0. 
Now suppose that u BE: R( C]u), so that there exists an n-vector r such that 
Cx = 0, u’x = 0, and v’x = 1. Therefore, x’C(t)x = At, which also gives _t = 0. 

In conclusion, C( t ) is positive semidefinite if and only if t E [_t, i], where 
_t = 0 and t = + co. Note that these results hold if X = 0 and u P R(C). 

Case 3: E = uu’ - vu’; u 4 R(C) and v E R(C) 
Since h = - 1, u 4 R(C), and v E R(C), Equation (2) reduces to 

(4 

Since u2 Z 0, there exists [7] an (n - r, n - r>matrix (Q;)’ such that u;Q; = 
[R,O], where R = f 6. D e me the orthogonal (n, n )-matrix Q* by f’ 
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It then follows from (4) that 

(Q*)‘Q’c(t)QQ*= y’ 8 ) 

[ I 
(5) 

where C2(t) is the (T + 1, r + l)-matrix given by 

Now (5) implies that C(t) is positive semidefinite if and only if C2(t) is 
positive semidefinite. The numbers _t and t will be derived by examining the 
determinant of C2(t). 

First, take the matrix-vector product of the first r columns of C2(t) with 

w(t)= -@[C,(O] -h, 

and add it to the last column of C2(t). Since the determinant is invariant 
under this operation, it follows that 

W) 0 
det( C,( t )) = det 

q?u; tp2(1-tU;[Cl(t)] -&} 1 
=tp2{l-tU;[Cl(t)]-1~1}det(C,(t)). (6) 

It follows from Lemmas 2.1 and 2.4, [l, p. 61, and (6) that 

det(C,(t)) = t/32det(C,)(1 -My), (7) 

where y is any solution to Cy = u and u’y > 0. From Equation (7) it is seen 
that det(C2( t )) < 0 whenever t < 0 or t > l/u’y. This implies that C(t) is 
positive semidefinite only if t E [_t, i], where _t = 0 and t = l/v’y. It remains 
to show that C( t ) is positive semidefinite if t E [ _t , i]. From (7), det( C,( t )) = 0 
if and only if t = _t or t = i. The continuity of the eigenvalues of C,( t ) and the 
fact that C,(O) has nonnegative eigenvalues implies that C2(t) has nonnega- 
tive eigenvalues whenever t E [_t, i]. Therefore, C(t) is positive semidefinite if 
and only if t E [_t, i], where t = 0 and t = l/u/y. 
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Case 4: E = uu’ - vu’; u E R(C), v @ R(C) 
This case is analogous to case 3. It can be shown that _t = - l/u’x and 

t = 0, where x is any solution to Cx = u. 

Case 5: E = uu’ - vu’; u, v 4 R(C); v 4 R(CI u) 
Since v @ R( C(u), there exists an n-vector x such that Cx = 0, u’x = 0, 

and v’x = 1. Therefore, x’C(t)x = - t, which implies that t = 0. Since v P 
R(Clu), then u 4 R(CIv), which can be used to establish that _t = 0. Hence, 
C is positive semidefinite if and only if t = 0. 

Case 6: E = uu’ - vu’; u, v P R(C); v E R(Clu) 
Since u, v 4 R(C) and v E R(Clu), there exists a nonunique vector x and 

a unique scalar (Y such that Cx + (YU = v. Premultiply this equation with the 
Qi of (1) to get us = (~us. Proceeding as in case 3, a matrix Cs(t) is found that 
is positive semidefinite if and only if C(t) is positive semidefinite. Also, it can 
be shown that 

det(C,(t))=t/32det(C,)[(1-(u2)-t(v-au)’x], (8) 

where (v - au)‘x > 0. Equation (8) is used to determine [_t, t]. There are 
three possibilities. If 1 - e2 = 0 then det(C,(t)) < 0 for all t # 0, which 
implies that _t = t = 0. If 1 - a2 < 0, it can be shown, in a manner analogous 
to case 3, that _t = (1 - a2)/(v - (YU )’ x and t = 0. Similarly, if 1 - a2 > 0 
then g = 0 and t = (1 - a2)/(v - (YU)‘X. 

Expressions for _t and t have been derived for all possible cases. The 
results are summarized in Table 1. The next section shows how _t and t may 
be computed. 

4. COMPUTATION OF THE INTERVAL 

This section presents a method for the computation of _t and t. It also 
presents results of some limited numerical experience. 

From Table 1 it is clear that to compute _t and t, it is only necessary to 
either find a solution, or show that no solution exists, to each of Cx = u, 
Cy = v, and CX + au = v. The obvious complication is that, when C is 
singular, the numerical rank (and hence the range space) of C may be hard to 
determine [8]. There appear to be two approaches to tackling this problem. 
The first is to try to ensure that the rank of C is correctly identified. This 
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TABLE 1 

THE INTERVAL ENDPOINTS 

E G = u? Q/=0? G+au=o? Interval end points 

uu’ + vv~’ Yes Yes i=+m, 
t=2/ -U’X-“‘y-J(u’x-“‘y)2+4(u~y,~} 

i 
Otherwise r=o,i=+m 

II10 - 00’ Yes Yes i = 2/{ - u’x + o’y + J( u)x + “,y)2 - 4( “k)z}, 

r = 2/{ - u’r + o’y - (u’x + “,y)2 - 4( “k)* } 

Yes 

No 
No 

No 

No 
Yes 
No 

No 

t= -l/t/x, i=o 
f = 0, i = l/o’y 

No t=o, i=o 

Yes l-g=0 3 t=o, i=O 

1 - 03 > 0 = .t = 0, i = (1 - a2)/( 0 - w)‘r 

lb012<0 =a t=(l- a2)/(o - uuyx, i = 0 

‘Includes o = 0 

approach is typified by methods which compute a spectral (singular value) 
decomposition of C [8, pp. 289-2991. Unfortunately, such methods tend to be 
expensive. The other approach is to use a less expensive factorization (such as 
a Cholesky factorization with symmetric pivoting) and hope that the rank is 
correctly identified. Although this latter approach is theoretically risky, it has 
proved satisfactory in practice (cf. using the QR factorization for rank 
deficient least squares problems [8, pp. 162-1671). This section makes use of a 
Cholesky factorization with symmetric pivoting. 

Suppose that C has rank T < n. There exists [9] a nonunique permutation 
matrix P and a triangular matrix R (unique for a given P) such that 
P’CP = R’R, where 

and where R 11 is an upper 
matrix. 

triangular (r, r>matrix and R,, is an (r, n - T> 

The equation Cx = u is considered first. The results for Cy = u will be 
analogous. Let xP = P’r and u, = P’u, so that solving Cx = u is equivalent to 
solving R’Rx, = up. Now set y = Rx, and solve 
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where y’ = [ y;, yi] ad uI, = [ ubl, t&l. Clearly, y, is uniquely determined by 
R;,Y, = uPi, y, is undetermined, and Cx = u has no solution if R;2yl = ~~2. 
Suppose that R;,y, = uP2, and solve 

IRd, R;][:::]= [::I* 
where x$ = [XL,, xb2]. This implies that ys = 0 and that, for an arbitrary xP2, 
x Pl is the unique solution to 

J&g,, = yl- %252. (9) 

Thus, if R;,y, = up2, then Cx = u has the nonunique solution x = Px,, where 
xP2 is arbitrary and xPl is determined by (9). 

The equation Cx + OLU = u, where U, o $5 R(C), is now considered. Define 
up = P’u and consider the equivalent equation R’Rx, = up - aup. Set y = 
Rx,, and consider 

Set y, = yiO - ~yyi~, where y,, and y,, are uniquely determined by R;,ylo = 

up1 and R;,Y,~ = upl) respectively. Clearly, Cx + (YU = o has a solution if and 
only if R’,,y, = I.+,~ - aup has a solution (Y. The latter equation is equivalent 
to R’,,y,” - v,,~ = a(R;,y,, - up2), from which (Y can be determined. If (Y 
exists, then Cx + (YU = u has the solution 

(%2Y,o - tb2li 

(y= (Ri2ylU-u~2)i’ 

lgi<n-r, 

where the subscript i denotes the ith component of the vectors, and 

where xb = [x~i, xL2], xP2 is arbitrary, and xPl is the unique solution to 

R,,x,, = Y,, - aylu - %25,2. 
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TABLE 2 
NUMERICALRESULTS 

Example n ! i TL TU 

1 3 -1 3 - 0.9999995 - 2.999995 
2 2 - 9999.99999 co - 10606.0039 co 
3 2 -0.90991 00 - 0.69001 
4 2 -0.90061 00 - 0.6000099 : 
5 3 - 066667071 00 - 0.66007071 00 
6 5 - 0.3498 1.0 - 0.3498 1.0 
7 5 - 1.3498 0.0 - 1.3498 0.0 

In summary, given the Cholesky factorization P’CP = R’R of the matrix 
C, it is possible to select the appropriate expressions for _t and t‘ from Table 1, 
and then to evaluate _t and t. 

The above method for the computation of t and t has been implemented 
in the double precision FORTRAN subprogram DPSINT [lo]. This subprogram 
uses the UNPACK [9] and BLAS [ll] subprograms to perform matrix factoriza- 
tions, solve linear equations, and calculate inner products. 

Numerical experience with the DPSINT code is limited. There are three 
phases to the testing. In the first phase, DPSINT was used to solve thirteen 
examples in which C is a diagonal (5,5)-matrix with O’s and l’s along the 
diagonal. The examples were chosen to reflect the different possibilities in the 
choices of E and in the relationship between C, u, and u. 

In the second phase, DPSINT solved seven examples obtained from [12]. 
The results are summarized in Table 2, where TL and TU are the computed 
values of _t and t, respectively. Example 7 is interesting in that the matrix C 
equals C(t) from example 6. 

In the third phase of testing, three unconstrained minimization problems 
where solved using the BFGS [2, p. 741 method. At each iteration of the 
BFGS method, the approximate second derivative matrix B is updated to B*, 
via a rank two update formula of the form B* = B + uu’ - uu’, for ap- 
propriate vectors u and v, The testing involved finding the positive semidefi- 
nite interval for the parametric matrix B*(t) = B + t( uu’ - 00’). The optimi- 
zation algorithm generated 84 examples for DPSINT. As expected, 1.0 E (_t, t), 
which reflects the hereditary positive definite property of the BFGS update 
formula. 
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