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Abstract
We show that the minimizers of regularized quadratic functions restricted to their
natural Krylov spaces increase in Euclidean norm as the spaces expand.
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1 Introduction

Given a real symmetric, possibly indefinite, matrix H and vector g, we are concerned
with Krylov methods for approximating the global solution of the possibly nonconvex
regularization problem
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minimize
x∈�n

Q(x; σ, p) := 1
2 x

T Hx + gT x + 1
pσ‖x‖p (1.1)

where σ > 0, p > 2 and ‖ · ‖ is the Euclidean norm—note that Q is bounded below
over �n , and all global minimizers have the same norm [7, §3]. Such methods have
been advocated by a number of authors, e.g., [1–3,8]. Here we are interested in how the
norms of the estimates of the solution evolve as the Krylov process proceeds. Themain
utility is that these estimates provide useful predictions for the “multipliers” σ‖x‖p−2

as the Krylov subspace expands [9]. Our result is an analogue of that obtained by
Lukšan, Matonoha and Vlček [11] for the trust-region subproblem.

By way of motivation and explanation, the solution x∗ to (1.1) necessarily satisfies
the first-order criticality condition ∇x Q(x∗; σ, p) = 0, i.e.,

(H + μ∗ I )x∗ = −g, where μ∗ = σ‖x∗‖p−2. (1.2)

In addition, H+μ∗ I is positive semi-definite at any globalminimizer, and if H+μ∗ I is
positive definite, theminimizer is unique [3, Thm.3.1]. Ifμ∗ was known, theminimizer
might be found simply by solving the linear system (1.2), and the skill is then in finding
convergent estimates of μ∗ by iteration [5]. Briefly, this is achieved by seeking the
rightmost root of the secular equation

‖x(μ)‖p−2 − μ

σ
= 0,

where
(H + μI )x(μ) = −g (1.3)

while ensuring that H + μI is positive semi-definite. This is always possible so long
as g intersects the subspace U of eigenvectors of H corresponding to the leftmost
eigenvalue λmin(H) of H , and in this case H + μ∗ I is positive definite. The rare
possibility that the later does not happen is known colloquially as the “hard case”
[12], and the solution to (1.1) in the hard case involves an addition component from
U . We also make the connection between (1.1) and the regularized quadratic

Qν(x) := 1
2 x

T (H + ν I )x + gT x, (1.4)

namely that if ν = μ∗ and the hard case does not occur then x∗ minimizes Qν(x).
This all presupposes that one can solve the linear system (1.3), and unfortunately

in some applications matrix factorization is out of the question, indeed H may only be
available indirectly via Hessian-vector products Hv for given v. An attractive alterna-
tive in such cases is to find an approximation to the solution of (1.1) by restricting the
search domain to a subspace or sequence of subspaces. A particularly appealing set
of nested subspaces is provided by the Krylov space defined by H and g that we will
define formally in the next section. Crucially, the k-th Krylov subspace, Kk(H , g),
may be generated recursively through Hessian-vector products, and has an orthogonal
basis Vk , with the desirable property that if
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xk = arg min
x∈Kk (H ,g)

Q(x; σ, p)

then xk = Vk x̄k , where

x̄k = arg min
x̄∈�k

1
2 x̄

T Tk x̄ + ‖g‖eT1 x̄ + 1
pσ‖x̄‖p, (1.5)

the vector e1 ∈ �k is the first column of the identity matrix and Tk = V T
k HVk ∈

�k×k is tridiagonal. The latter implies that solving (1.5) is feasible via its optimality
equations

(Tk + μk I )x̄k = −‖g‖e1, where μk = σ‖xk‖p−2,

even when the dimension is large, since factorizing shifted tridiagonal matrices and
solving linear systems involving themmay be achieved in a fewmultiples of k floating-
point operations.

Of course, we need to judge when xk is a meaningful approximation to x∗ as
the subspaces evolve, and furthermore to solve each successive subproblem (1.5)
efficiently. The former is addressed in [2,6] and requires estimates of μk , while the
latter appeals to the ideas in [5] and relies on a good starting “guess” for μk . Thus
generating a good starting guess provides motivation for our short paper.

In the next section we provide a set of lemmas leading to our main result, namely
that so long as the evolving Krylov subspaces are of full dimensionality, the norms of
the solution estimates ‖sk‖ and the corresponding “multipliers”μk increase monoton-
ically. We summarize, extend and discuss implications and limitations of our results
in the concluding Sect. 3.

2 Themain result

We start with four vital lemmas that we use to prove our main result. The first shows a
simple property of the conjugate gradient method. We use the generic notation H � 0
(resp. H � 0) to mean that the real, symmetric matrix H is positive definite (resp.
positive semi-definite).

Lemma 1 Given a real symmetric matrix H and real vector g, let

Kk(H , g) := span
{
g, Hg, . . . , Hk−1g

}
,

k ≥ 1, be the k-th Krylov subspace generated by H and the vector g, and let the
columns of Vk provide an orthonormal basis for Kk(H , g). Letting � ≥ k ≥ 1,
suppose that

V T
� HV� � 0 (2.1)

and define
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xk = arg min
x∈Kk (H ,g)

Q(x) := 1
2 x

T Hx + gT x .

Then

‖xk‖ ≤ ‖x�‖.

Proof This follows from [4, Thm.7.5.1] as the requirement there, namely that
pTk Hpk > 0 for specific vectors pk ∈ Kk(H , g), is implied by the more general
assumption (2.1). ��
Note that this is a generalization of [13, Thm.2.1] that relaxes the requirement that H
be everywhere positive definite to be so merely over the evolving Krylov subspaces
of interest.

Our second lemma compares Krylov subspaces of the matrices H and H + μI for
some μ ∈ �.

Lemma 2 [11, Lem.2.3]. Let H , g and Kk be as in Lemma 1, and μ ∈ �. Then

Kk(H + μI , g) = Kk(H , g). (2.2)

Next, we state a crucial relation between the parameter ν that defines Qν(x) in (1.4)
and the norm of the minimizer of Qν(x) within the k-th Krylov space.

Lemma 3 [11, Lem.2.5]. Suppose that the columns of Vk provide an orthonormal
basis forKk(H , g) for given real symmetric H and real g. Let V T

k HVk +νi I , νi ∈ �,
i ∈ {1, 2}, be symmetric and positive definite. Let

xk(νi ) = arg min
x∈Kk (H ,g)

Qνi (x) := 1
2 x

T (H + νi I )x + gT x .

Then

ν2 ≤ ν1 if and only if ‖xk(ν2)‖ ≥ ‖xk(ν1)‖.

Wedefine the grade of H and g, grade(H , g) ≤ n, to be themaximum dimension of
the evolving Krylov spaces Kk(H , g), k = 1, . . . , n [10]. Our final lemma indicates
that the evolving minimizers are unique.

Lemma 4 Let H, g and Vk be as in Lemma 3 and let μk by the rightmost root of the
secular equation

‖x̄k(μ)‖p−2 − μ

σ
= 0, where (V T

k HVk + μI )x̄k(μ) = −V T
k g (2.3)

Then V T
k HVk + μk I � 0 for all 1 ≤ k ≤ m := grade(H , g).
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Proof Using the Lanczos orthonormal basis, we have that V T
k HVk = Tk for an irre-

ducible tridiagonal matrix Tk for k = 1, . . . ,m. It then follows [4, Thm.7.5.12] that
Kk(H , g) has a nontrivial intersectionwith the space of eigenvectors of Tk correspond-
ing to the eigenvalueλmin(Tk) (i.e., the “hard case” cannot occur), and thus that the only
permitted root μk of the secular Eq. (2.3) for the problem satisfies μk > −λmin(Tk),
where λmin denotes the leftmost eigenvalue of its symmetric matrix argument [5,
Sec.2.2]. ��

We are now in a position to state and prove our main theorem.

Theorem 1 Given a real symmetric matrix H, vector g and scalars σ > 0 and p > 2,
let m = grade(H , g),

x j = arg min
x∈K j (H ,g)

Q(x; σ, p) := 1
2 x

T Hx + gT x + 1
pσ‖x‖p,

and
μ j = σ‖x j‖p−2 (2.4)

for j ≥ 1. Then μk ≤ μ� and ‖xk‖ ≤ ‖x�‖ for 1 ≤ k ≤ � ≤ m.

Proof Let Vj be as in the statement of Lemma 3. The vector x j = Vj y j is a minimizer
of the j-th regularization subproblem if and only if

V T
j (H + μ j I )Vj y j = −V T

j g, V T
j (H + μ j I )Vj � 0, and μ j = σ‖y j‖p−2,

(2.5)
and the minimizer is unique since V T

j (H + μ j I )Vj � 0 from Lemma 4 [5, Thm.2].
Consider two integers k and � for which 1 ≤ k ≤ � ≤ m.

Since we have V T
k (H + μk I )Vk � 0 and V T

� (H + μ� I )V� � 0, and as Kk(H +
μk I , g) = Kk(H , g) by Lemma 2, it follows from (2.5) that xk is also the (unique)
solution of the subspace minimization problem

xk = arg min
x∈Kk (H ,g)

Qμk (x), where Qμ(x) = 1
2 x

T (H + μI )x + gT x .

Assume that μk > μ�, which implies that V T
� (H + μk I )V� � 0. Let

x�(μk) = arg min
x∈K�(H ,g)

Qμk (x).

Then it follows from Lemma 1 that

‖xk‖ ≤ ‖x�(μk)‖. (2.6)

But since μ� < μk , Lemma 3 gives that

‖x�(μk)‖ ≤ ‖x�(μ�)‖ = ‖x�‖. (2.7)
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Hence using the definition (2.4) and combining the inequalities (2.6) and (2.7)

μk = σ‖xk‖p−2 ≤ σ‖x�‖p−2 = μ� < μk

which is a contradiction. Thusμk ≤ μ� has to hold. It then follows from the definition
(2.4) that ‖xk‖ ≤ ‖x�‖. ��

The monotonic behaviour of the multipliersμk was predicted in [9, Lem.2.6] when
p = 3, but the proof suggested there relied on [11, Thm.2.6], which appears to have
a minor flaw—the proof depends on [13, Thm.2.1], but applies this at one point to an
indefinite H + μI . Lemma 1 avoids this issue, and the same result fixes the proof of
[11, Thm.2.6] that applies in the trust-region case.

3 Comments and conclusions

We have shown that the norms of the approximations generated bywell-knownKrylov
methods for solving the regularization problem (1.1) increase monotonically as the
dimension of the Krylov spaces expands. This implies that the corresponding “multi-
pliers”μk also increase, and is useful as estimates of thesemultipliers are crucial when
solving the Krylov subproblem; in particular, as the multiplier for the k-th problem is
a lower bound for the (k + 1)-st, Newton-like iterations for the required root of the
secular equation

‖x̄k+1(μ)‖p−2 − μ

σ
= 0, where (V T

k+1HVk+1 + μI )x̄k+1(μ) = −V T
k+1g,

will converge both globally and rapidly to μk+1 when started from μk if addition-
ally μk > λmin(Tk+1) [5, §3]. In particular, Newton’s method, the secant method or
methods based upon certain higher (odd)-order Taylor approximations or nonlinear
rescalings of the term ‖x̄(μ)‖p−2 all converge monotonically from such a starting μ.
Knowledge of themonotonic nature of these quantities is also important when deriving
convergence bounds [6] for such methods.

We warn readers that in exceptional circumstances, namely when g is orthogonal to
the eigenspace corresponding to the leftmost eigenvalue of H andσ is not large enough,
the global minimizer of (1.1) will not lie inKm(H , g), and μm will underestimate the
optimal multiplier. This (zero-probability) possibility is often referred to as the “hard
case” ([3], §6,1, [12]), and, despite their popularity, might be viewed as an unavoidable
defect of Krylov methods.

The main result here may trivially be extended for Krylov methods to

minimize
x∈�n

Q(x; σ, p, M) := 1
2 x

T Hx + gT x + 1
pσ‖x‖p

M ,

for given symmetric M � 0, where ‖x‖2M := xT Mx , so long as we instead consider
the Krylov spaces K (M−1H , M−1g). It is well known that this may be achieved
using the M-preconditioned Lanczos method [3, Sec.6.3]. In particular, if
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x j = arg min
x∈K j (M−1H ,M−1g)

Q(x; σ, p, M) and μ j = σ‖x j‖p−2
M ,

it follows (using the transformation x ← M
1
2 x) that

μk ≤ μ� and ‖xk‖M ≤ ‖x�‖M
for 1 ≤ k ≤ � ≤ m just as in Theorem 1.
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