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Abstract We consider methods for regularising the least-squares solution of the lin-
ear system Ax = b. In particular, we propose iterative methods for solving large prob-
lems in which a trust-region bound | x| < A is imposed on the size of the solution,
and in which the least value of linear combinations of ||Ax — b||g and a regularisation
term ||)c||£7 for various p and ¢ = 1, 2 is sought. In each case, one or more “secular”
equations are derived, and fast Newton-like solution procedures are suggested. The
resulting algorithms are available as part of the GALAHAD optimization library.
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22 C. Cartis et al.

1 Introduction
1.1 Motivation

Let A € W' and b € R be given data, and let || - || denote the Euclidean £, norm.
We are interested in finding x € :” so that both || Ax — b|| and ||x|| are small. Tradi-
tionally this has been achieved by minimizing

| Ax — bl + Allx||?

for some suitable positive regularisation parameter A—this is often known as
Tikhonov regularization or, in statistics, ridge regression. Many heuristics (for ex-
ample, the discrepancy principle, generalised cross validation, the L-curve method,
and the unbiased predictive risk estimator) [21, 34] have been proposed for select-
ing A and, given A, most methods use the observation that the problem may then be
reformulated as the weighted least-squares problem

() (0)

where I is the appropriately-dimensioned identity matrix. In this paper, we consider
both generalisations and alternatives to this form of regularisation.

While there are many real applications for (regularised) linear least-squares
[3, 34], our main interests are in nonlinear problems for which linear least-squares
problems arise as sub-problems. The best know example is nonlinear least-squares
(fitting) in which the least value of the £>-norm || F'(x)| of a vector-valued function
F 0" — 9" is sought [8, Chap. 10]. Here F (x; + s) is often approximated locally
about a current iterate x; by F(xx) + J(x¢)s, involving the Jacobian J of F. This
leads to the Gauss-Newton method in which the correction s is chosen to minimize
| F(xx) 4+ J (xx)s]|. In order to globalise such a scheme, Moré [30] proposed that the
step be regularised to

minimize
xeR"

: (1.1)

minimize || F (xg) + J (xg)s|| subjectto ||s|| < Ag
seR”

for some dynamically adjusted radius Ay > 0, making rigourous earlier heuristics by
Levenberg, Morrison and Marquardt [26, 28, 31] in which the step was chosen to

Lo 1 1
minimize — || F (xg) + J(xk)s||2 + —o% ||s||2
seR" 2 2

for some regularisation parameter o; > 0. This trust-region approach has been ex-
tended to the large-scale case by LukSan [27]. More recently, Nesterov [32] suggested
that choosing the step to

L. 1
minimize | F (xg) + J (xp)s|| + —ak||s||2
seR” 2
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Trust-region and other regularisations of linear least-squares problems 23

leads to a good worst-case iteration complexity bound in some cases, while there
are reasons to believe [5, 33] that similar results are possible for steps chosen to
approximately

o1 1
minimize — || F (xg) + J(xk)s||2 + —O’k||S||3.
seR” 2 3
As a second example, in a number of current iterative methods for constrained
optimization [1, 17, 25, 36], a so-called normal step s is computed to try to improve
constraint infeasibility by approximately solving the subproblem

minimize || J (x¢)s + c¢(x;)|| subjectto ||s|| < Ag.
seR”

Here J(x)s 4+ c(xy) is a linearization of the nonlinear constraints c¢(x) = 0 about
X = X, and the trust-region constraint ||s|| < Ay for a given radius A > 0 is imposed
to limit the size of the step [7, Sect. 15.4]. Such algorithms often compute Lagrange

multiplier estimates y from the subproblem

minimize || J 7 (x¢)y — g(x)|| subjectto [yl < g,
yeR™

where g(x) is the gradient of the objective function and where 7 is chosen to pre-

clude large multiplier estimates. Developing methods [18] replace the trust-region
constraints in these subproblems by adding appropriate regularisation as above.

1.2 The problem

In this paper, we consider the generic linear least-squares trust-region problem

minimize | Ax — b|| subjectto |x|| <A (1.2)
xeR"

for given A > 0, the regularised linear least-squares problem

1
minimize = || Ax — bI|2 + Zlx||” (13)
xeR" 2 )4

and the regularised linear least £,-norm problem

o
minimize || Ax — b| + —||x||? (1.4)
xeR" P

for given o > 0 and p > 2; we shall be especially interested in methods appropriate
when 7 is large. As the two examples in Sect. 1.1 indicate, we shall make no as-
sumption concerning the size of m relative to n, and thus whether the un-regularised
problem is under-, well- or over-determined.
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24 C. Cartis et al.

1.3 Organisation

The paper is organised as follows. In Sects. 2—4 we propose iterative methods for
finding approximate solutions to problems (1.2)—(1.4) respectively. Some details of
software implementations of these ideas are reported in Sect. 5. We make further
comments and draw conclusions in Sect. 6.

2 Solving the least-squares trust-region problem

We first consider the trust-region problem (1.2). There is a long history of work on
this topic [6, 11, 13, 38, 39, 41, 42], which we will review as we proceed.

2.1 Solution characteristics

It is straightforward to derive [11, 41] usable optimality conditions for (1.2). Specifi-
cally, let & > 0 and define x (1) so that

(ATA+1Dx(0) =ATb 2.1

or equivalently that x (1) solves the weighted least-squares problem (1.1). Then so
long as [[x(0)|| < A, x(0) is the desired solution to (1.2). Otherwise the solution is
x (Ay), where A, is the positive root of the so-called “secular” equation

x|l —A=0. (2.2)

If it is feasible to factorize AT A 4+ A1 (either explicitly using Cholesky/possibly-
truncated SVD or implicitly by bi-diagonalising A, see e.g., [9]), a simple univariate
root finding method may be used to determine the appropriate root of (2.2)—this
might require the derivative of w (1) = ||x(1)||, but it is easy to show that

T 1
oy = ELOG)
lx @)l

We give general details in Sect. 2.3.3. Our interest, however, is in the case for which
a factorization of AT A 4 AI is either impossible, through lack of memory, or too
expensive to contemplate—applications such as three-dimensional PDE-constrained
optimization [2] and those for which A has a significant number of non-sparse rows
are good examples. We resort in this case to iterative methods. We note that although
we describe an approach using LSQR, there is at least one alternative based on a
parametric eigenvalue formulation [41, 42].

. where (ATA+ADx' (V) =—x(V). (2.3)

2.2 The unconstrained problem and LSQR

We now describe how we aim to solve (1.2). The basis of what we shall use is the
LSQR method of Paige and Saunders [38, 39]. LSQR is designed to minimize the
function

f(x)=%||Ax—b||2
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Trust-region and other regularisations of linear least-squares problems 25

or its regularisation
1 2, 1 2
L) =ZlAx = bI"+ SAlx|

for some given A > 0. It is to be preferred in practice to the theoretically-equivalent
conjugate-gradient method in many cases since numerical properties are better for
the former [39] and more accurately reflect the conditioning of the problem [3, The-
orem 1.4.6 et. seq.].

We follow in the most part the notation in [39], and for completeness fill in some
of the details of the slightly more terse aspects of Paige and Saunders’ description.

2.2.1 Lower bi-diagonalisation of A

The iterative bi-diagonalisation algorithm due to Golub and Kahan [12] is a core com-
ponent of LSQR. Sequences of unit vectors {u; € %"} and {vy € R"} are constructed
as follows:

Initialization: Siu;=>b and ojv; = ATul
Iteration: Spiiug+1 = Avy — aguy  and 2.4)
A 1Vk1 = AT sy — Prgvx fork > 1.
This leads directly to the relationships
AV, =U B, and b=p U, e, (2.5)

where 1 = ||b||, e; denotes the ith column of the identity matrix, Uy = (uq uy ... ug),
UlU, =1, Vi=@i vy ... v), VIV, =1 and

o]
B2 8
k—1 k€
¢ < 0 Br+i ) (2.6)
B o
Bi+1
is (k 4+ 1) by k and lower bi-diagonal. A further useful property is that

ATUpyy = ViB{ + 001641 2.7

2.2.2 Reduction to upper bi-diagonal form

To approximately minimize f(x), we find the sequence of minimizers of f(Viy) in
the expanding subspace x = Vi y, k=1,2,.... Thus we pick x; = Vi yx, where

yk = argmin || Bxy — Brerl; (2.8)
yeRk
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26 C. Cartis et al.

formally yy satisfies the normal equations
B{ By, =P B{ey. 2.9)

To find y, By is reduced to upper triangular form by pre-multiplying it by a product
of plane rotations Qg = Qg k+1--- O1,2, Where the plane rotation Q; ;41 operates
solely on rows j and j 4 1 to eliminate the sub-diagonal entry in row j. This leads to

R
o men=(" 7). 210)
k+1
where
P10
Re = E<R161 9kek1) @.11)
Pk—1 Ok P
Pk

is k by k and upper bi-diagonal and

fom (f(f;kl) e 9k, @.12)

To be specific, the nature of Qy, together with (2.6) and (2.10) imply that

Ok O _( Ok—1Br—1 Qik—1koker  Or—1xBiel
(%5 D)o men= (@i Qe @oph)

Ri—1 Okek—1  fi—1

= 0 Ok r
0 Bi+1 0

Thus if the plane rotation Qy 41 has non-trivial elements ¢ and s;, we have

<Ck Sk)(ﬁk 4_’k)=<,0k P )
=k k) \Bk+1 0 0 ¢ky1)’

to prepare for the next step we also need Qi ix+10k+1€k+1 for which the non-zero

components are
Ck Sk 0\ _ (O
=Sk ok ) \ kst Pk+1

Initial values p; = o7 and d_n = B are needed.
2.2.3 Solution of the problem in the subspace Vi y
It follows from (2.10) and Q,{ 0, = I that the required solution to (2.8) satisfies

Riyk = f (2.13)
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Trust-region and other regularisations of linear least-squares problems 27

and thus x, = VkRk_1 S = D fy» where
ViR{'=Dy=(di dr ... dp). (2.14)

Hence

Xk = Dy_1 fr—1 + dpdr = xp—1 + rdi

with xg = 0. Fortunately the precise (upper bi-diagonal) form of Ry in (2.11) along
with (2.14) imply that

Ri—1 Orex—
(Vk—1 vi) = Vi = (Di—1 dk)( 12)1 kCk 1)
Pk

= (Dr—1Rk—1 Ok Dr—1ex—1 + prdy)
= (Dr—1Rk—1  Okdi—1 + prdr)

and hence

dr = (v — Okdr—1)/ px.,

enabling us to recur di from dy_; and vy starting from dyp = 0. A small saving can be
made by using py from (2.11) and defining wy = pxdk in which case

X = Xp—1 + (P /pr)wi  and
(2.15)

Wit1 = Vi1 — (Okt1/ o)W
with w; = v.
2.2.4 Norms of required terms

It is important to monitor V, f(x;) = AT (Ax; — b) to decide when to stop the itera-
tion. Fortunately, it follows directly from (2.5) and (2.7) that

Vi f @) = ATU By — Brey)
= Vi B{ (Byy — Brep) + oy Vy1€h41 (B — Brep)s (2.16)
the first term vanishes because of the normal equations (2.9), and thus
Vi f () = 1 V16041 (B — Brey)- 2.17)
But (2.10), (2.13) and the precise form of Qy together show that
el (B — Bre)) = el O Qu(Biyy — Brey) = $rprei Ok €t = Prgi o
and hence from (2.17) that

Vi f i)l = | i 101k
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28 C. Cartis et al.

using known quantities [39, Sect. 5.1]. Thus ||V, f(xx)] is available without the ex-
pense of computing V, f(xx). It is also useful to monitor || Ax; — b|| and again [39,
Sect. 5.1] this is readily available since (2.5) and (2.10) give

Axpy —b=AV,y, —b= Uk+1(Bkyk — Biey)

Riye = fx

- T
— Gt ) = =1 U1 Qk €1 (2.18)

T
= Uit1 9k (

and hence
| Axk — bl = |rt1]-

In what will follow, it is also vital to monitor ||xg||. This is not immediately avail-
able, but may be found with a modest amount of extra work [39, Sect. 5.2]. To be
specific, since Ry is upper bi-diagonal, it may be reduced to lower bi-diagonal form
by post-multiplying by a product of plane rotations Wy = Wy 2 --- Wy_1 k. This pro-
duces

Al
Y2 A2

- Ly_
ReWy =Ly = =( %" (2.19)
V-1 Mk
Vi—1 A1

Ve ok
which is k by k lower bi-diagonal. Note that the leading (k — 1) by (k — 1) sub-block
Lj—1 of Ly is not altered in subsequent iterations, but that the trailing diagonal entry
M of Ly will become A on iteration k + 1.

_ Now let z; and 7 satisfy Lyzx = f and LiZx = fi., respectively. Since Ly and
Ly share the leading k by (k — 1) sub-block,

k= (Zk_l> and Zx = (Zk-] ) ,  where & = )_\—kg'k. (2.20)
Ck Ak
In this case
xp = ViR fio = ViWi L fi = VieWaZk
and thus
e ll = 1zl

since W; is orthogonal and VkT Vi = 1. But (2.12)—(2.20) give that
= Ly > (Zkl) <fk—l>
L Ik = = - = = N
ke <VkekT1 Ay Sk br Je

Gk = (P — VkCk—1) [ hk- (2.21)

in which case
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Trust-region and other regularisations of linear least-squares problems 29

Thus
2 = 12 2 Py 2 2 2
||xk|| = ||Zk|| = ||Zk_1|| + & and ||Zk|| = ||Zk_1|| + &

may be _recu_rred as the iteration proceeds in terms of Ek from (2.21) which needs
Ck—1 = Ck—1Ak—1/Ak—1 from (2.20). Moreover the decomposition (2.19) may be cal-
culated step by step. For, given Ly_1,

<Rk—1 9k6k—1)<Wk—1 0):<Zk1 9k€k1>
Pk 0 1 Pk

Li—2

_ T
= | %-1€-—2 M1 Gk
Pk

Thus if the plane rotation Wy_j  operating on columns k — 1 and k has non-trivial
elements c}f_l and s;” ;, we have

(o )0 @)= 2)
0 o)\l e o )’
which gives A1, Yk, X« and hence Ly, The initial value A = p1 is needed.

2.3 Adding a trust region

It is well known [39, Sect. 7] that the iterates generated by LSQR are mathematically
equivalent to those generated by applying the conjugate gradient method to mini-
mize f(x). Moreover the columns of the matrix Vi span precisely the Krylov space
{(ATA)iATb}f.‘;]l. This has the important consequence [43] that the norms ||xx]|,
k=0,1,2,... are monotonically increasing (see also [27]). Thus if we apply LSQR
to the problem (1.2) and we find

-1l < A < flxells (2.22)

immediately we may deduce that the solution to (1.2) lies on the boundary of the trust
region.

2.3.1 The Steihaug-Toint point

The Steihaug-Toint [43, 44] proposal is to generate iterates using the conjugate-
gradient method—in our case, using LSQR—until an iterate for which (2.22) occurs,
and then to replace x; by the so-called Steihaug-Toint point x;" = x;—1 + 0wy, where
o is determined so that ||x;—; + cwg|| = A. This may be achieved by finding o as
the root of the quadratic equation

e 17 = A2 +2x] w0 + [|w?0? =0 (2.23)

with the same sign as the too-large step-size ¢i/px in (2.15). Such a Steihaug-
Toint approach was first proposed in the least-squares context, using LSQR, by
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30 C. Cartis et al.

LukSan [27]. While the required coefficients in (2.23) may be found directly as in-
ner products, savings may be made by noting that ||xz_1] is already being recurred.
Furthermore (2.15) implies that

it 12 = v I = 2By 1/ POV Wi + Ok /o) 1wy I

=14 (G+1/00)* wiel|? (2.24)

since vk is a unit vector and va+1wk = pkva+1dk = pkvaHVkRk_lek = 0 because
Vk+1 is orthogonal to Vi, and thus ||wg || may also be cheaply recurred. Finally, since
lxx+1] has been computed (and found to be too large), it follows immediately from
(2.15) that

I 12 = 1, 12 = (@ /o) * 1wy II?

(¢k/pk)

20wy =
using available data.
Given o, it is also useful to know [|Ax;" — b|| without computing x;". It follows
from (2.5), (2.10) and (2.14) that
Awy = ppAdy = 'OkAVkRk_lek = PkUpt BkRk_lek

1
= 0 Ui Qi <O)ek=pkUk+1Ql{ek* (2.25)

But since

ol o or . 0\ (crex 0l e
QZek=< L) Qlnac= U5 I ;‘klk :

it immediately follows from (2.25) that

Awy = peerUp OF_ex + prsiitir
and thus from (2.18)
AQy_y +owy) —b=(opkck — o) UL OF_ ey + o pisiitpti.
As uy1 and Uy are orthogonal, we then have the relationship
ST 2 _ 2 _ 7 5\2 2
[Axg —blI” = [A(x,_y +owy) — bII” = (oprck — ¢)” + (o prsk)

in terms of known (scalar) quantities.

There is an important result [45] concerning the application of the conjugate gra-
dient method to minimize a strictly convex quadratic function within a spherical trust

region, which has subsequently been extended [7, Theorem 7.5.9] to cover the convex
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Trust-region and other regularisations of linear least-squares problems 31

case as is needed here. The result is that if x%" is the Steihaug-Toint point and x, is
the solution of (1.2) then

1517 — | Ax, — bII* < 216> — |Ax*" — b||?).

In other words, the optimal decrease will be no more than twice that achieved at the
Steihaug-Toint point. Thus it may become apparent at x*" whether it is impossible to
reduce ||Ax — b|| to zero within the trust region since

| Axy — blI*> > 2|l Ax*" — b||* — ||b]|?,

which will be nonzero whenever ||Ax®" — b|| > ﬁ |b]]. In view of this result, it is
questionable whether it is really beneficial to try to improve upon the Steihaug-Toint
point, but for completeness and for what follows in Sects. 3 and 4 we now show how
this may be achieved.

2.3.2 Beyond the Steihaug-Toint point

Once it is known that the solution lies on the trust-region boundary, problem (1.2) is
equivalent to

minimize || Ax — b|| subjectto |x||=A. (2.26)
xeR”

More particularly, from (2.8), the problem in the subspace x = Vi y becomes

minimize || Byy — Bie1|| subjectto |y||=A

yeRk
or equivalently
o1 2 . 1 2 1 2
minimize — || Bry — Bie1]|© subjectto —|y[|“= <A (2.27)
yeRF 2 2 2
since || Vi y| = ||¥|l as Vi has orthogonal columns.

Necessary and sufficient conditions for yj to solve (2.27) are that
Bl (B,y, — Bie)) + 21y, =0 and |yll=A (2.28)

for some Lagrange multiplier Ay > 0. A more useful interpretation is that given
A = Ag, one could find yx = yx (1) from the equation

[B B, + »1yx(A) — B1Bl e1 =0, (2.29)
and the required A satisfies the scalar secular equation
Iy« — A =0. (2.30)

Vitally, (2.29) is the stationarity condition for the convex function
LBy — Bred + Sl
- — Bie Z ,
) kY 1€l ) y
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32 C. Cartis et al.

and as we observed in Sect. 1.1 we can thus find y; (A) as the solution to the weighted
linear least-squares problem

11/ B
minimize ~ H( © )y - (ﬁe‘)H. 2.31)
yerk 2 || \A2T 0

Thus we seek the positive root of the secular equation (2.29) where y(}) is defined
implicitly as the solution of (2.31).

To solve (2.31), we simply use the method proposed by Paige and Saunders [38],
but recognise that a new factorization will be required every time A changes. To fill
in the details, we proceed just as in (2.10) by reducing

By
ATl

to upper bi-diagonal form using plane rotations. In particular, we apply the product!
of plane rotations

02k (A) = O k1 (X)) Ok, 26+1(A) -+ - Q23(A) 02 413(A) O1,2(X) Q1 k42(A)

to form
B Biel Re(A)  _fi()
02k (1) Ao )T 0 dr+1(A) |, (2.32)
0 (L)

where py (1) € %K. Once the upper bi-diagonal Ry (1) is known, the required solution
vk (1) to (2.31) may simply be recovered by back-substitution from

Re(M)ye(A) = fi(h). (2.33)
Note that (2.32) shows that
BIB, + 11 =R (VR (V) (2.34)

since Q2x(A) is orthogonal.

The seeds of this idea of expanding subspace minimization was first proposed,
in the more general context of minimizing quadratic functions within spherical trust
regions, by Gould, Lucidi, Roma and Toint [14], and forms the basis of the GLTR
package within the GALAHAD optimization library [15]. In the least-squares case,
Golub and von Matt [13] considered similar ideas for equality-constrained problems.

TAs Paige and Saunders note, the rotations may be applied in other orders, but their experience suggests
this order gives marginally more accurate results.
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2.3.3 The secular equation and its solution

We now consider the secular equation (2.29)-(2.30) in a more general context.
Namely, we aim to find the positive root, A, of the secular equation

d) E Iy — A =0, (2.35)

where y()) satisfies
[BTB+1Ily(») —BTg=0, (2.36)

for a given (rectangular) matrix B, vector g and scalar A > 0. We shall suppose that,
as was the case in the previous section, (2.35)—(2.36) has a positive root—this need
not be the case if A is too large. We shall also presume, as was the case in (2.34), that

HO Y BTB+21=RTGHRM) (2.37)
for some upper-triangular (for (2.34), upper bi-diagonal) matrix R(1).

To find the required root it is vital to understand how || y(A)|| behaves. To this end,
here and later we shall use the following general result.

Lemma 2.1 Given scalars B, a; and b;,i =1, ...,L, with b; > 0 and ||a|| # 0, let

and

() E P,

Then r(X) is strictly decreasing and strictly convex on [0,00) when f > 0, and
strictly increasing and concave on [0,00) when f € [—1,0). The same is true
of y(A) for A € (0,00) if instead b; > 0, i = 1,...,€ and more generally for
A€ (—minj<j<¢ b;, 00) forany b;,i =1, ..., ¢.

Proof Differentiation gives
') =BlxWIP 'y’ 0)  and
Y (W) = BIx WP [x )x" ) + (B — DIx’ W17,

and since

2 . ai \’
[x (W] =§<bi+k>

it follows that

4 2 4

x(m’(x):—z(bli—"m and [x’(k)]2+x()»)x”(k)=32(bl 5
1 =1
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34 C. Cartis et al.

Hence v’ ()) has the opposite sign to 8. Moreover, direct substitution and the Cauchy-
Schwarz inequality gives

xWx" 0+ (B = DIx' W1

i ¢ _q ¢ _a )}
3(21':1 (b,-m“) (Zi:l (bi+x)2> - 2)(21‘:1 (bi+x>3>
= -
2izi (bi+1)?

2 2
14 a;
(Zi =1 & +x)3)

Ze aiz
i=1 (b;+1)2

=B+

Thus if 8 > 0, ¥ (1) > 0, while if B € [—1, 0], " (1) <0 as required. O

Lemma 2.2 Let

2 E 1yl = [T Wy, (2.38)

where y(X)) satisfies (2.36). Then mw(A) is strictly convex on [0,00) and decays
monotonically to zero as A increases from zero.

Proof Briefly, suppose that B has the singular-value decomposition B = PSY, in-
volving appropriately-dimensioned orthogonal matrices P and Y as well as the rec-
tangular S, whose only nonzero entries are the “diagonals” S;; =0; > 0,i =1,..., L.
Then (STS +A11)Yy(r) = ST PT g, and hence

t
2r2

W=y =1y P =S —i i 2.
[r WP = lyWIP = 1Yyl §<o?+k>2’ (2.39)

where r = PTg. Here ¢ is no larger than the smaller of the row and column di-
mensions of B. Thus the result follows directly from Lemma 2.1 for the case when
x(A)=m(A) and B = 1. O

This has an immediate vital consequence.

Theorem 2.3 Newton’s method applied to (2.35) will converge monotonically, glob-
ally Q-linearly and ultimately Q-superlinearly to the positive root Ly of (2.35) for
any initial estimate Ly € (0, A,]. The same is true for the secant method for initial
estimates 0 < Ao < A1 < Ay.

Proof This follows directly from Lemma 2.2 because of the known convergence
properties of Newton-like methods applied to univariate convex functions. See
Lemma A.1 for details. 0

We return to this, albeit in more generality, shortly. We comment that although in

many cases A9 = 0 might also be permitted, we avoid this here and hereafter since, at
least in the under-determined case, the derivatives of 7 (A) at 0 may be infinite.
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In practice, instead of seeking the positive root of (2.35), one might equally seek

the same root of
) L w(yml) - w(Aa) =0 (2.40)

for some “suitable” differentiable function W; the choice W(¢) = 1/¢ has strong ad-
vantages since this removes the poles present in (2.36) and produces a virtually linear
function within a large neighbourhood of the required root [6, 22, 40].

In the special case in which

W(t) =1 (2.41)
for a given scalar o, we may generalise Lemma 2.2.
Lemma 2.4 For given real o, let

def

v a) = [T,

where m()) satisfies (2.38), and suppose that A > 0. Then v (A; ) is strictly convex
and decreasing for all « > 0 and concave and increasing for all @ € [—1, 0).

Proof The result follows directly from (2.39) and Lemma 2.1 with x (A) =w(1). O
The situation when o < —1 is less clear, although the identity
¥ 0) =alr W GIyWIPIY WP = 2=y )y’ (1), (242)
which follows by differentiating (2.36) and (2.38) twice, may be rewritten as

v (ks a)

YTO)HOM)Y' (V) yT(A)H—l(x)ym)
Iy (W2 ly() 12

It is then straightforward to deduce that ¥ (A; ) is convex if @ <2 — 3/k(H(A)),

where « (H (L)) is the spectral condition number (A + Uéax) /(O + O’r%lin). In particu-

=a[rM" 2y W2 (3 -Q2-a)

lar, if @ < a, défZ — 301%”/0“211“, Y (A; ) is convex for all A > 0. For « € (ac, —1),
¥ (A; @) may not be unimodal for all A > 0, but appears often to be so over an (unfor-
tunately unknown) interval surrounding the required root.

As before, this has immediate consequences.

Theorem 2.5 Newton’s method applied to (2.40) in the case V(t) = t“ for any
nonzero o > —1 will converge monotonically, globally Q-linearly and ultimately Q-
superlinearly to its positive root Ay of (2.35) for any initial estimate Ao € (0, Ly]. The
same is true for the secant method for initial estimates 0 < Ay < A1 < A4.

Proof This again follows directly from Lemma 2.4 because of the known conver-

gence properties of Newton-like methods applied to univariate convex function. See
Lemma A.1 for details. O
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While one might apply the secant method to solve (2.40) without needing deriv-
atives [6], most effective methods require at least first derivatives. Presuming that
W(¢) and its derivatives are known analytically, the only remaining obstacle is then
the need to find the derivative of (). Direct differentiation of (2.38) immediately
gives
'y = LY D)

lyMl

’

while that of (2.36) yields
HMW)Y' () +y() =0.
Thus, using (2.34),
Y)Y W) ==y HT )y () = —h" W),

and hence
o112
Iyl

So the first derivative of (1) is available by forward substitution from y(A) using
the lower triangular—for (2.34), lower bi-diagonal—matrix RT(1). If higher-order
derivatives are required, they may be computed successively, each at the cost of a
further forward or back substitution [9].

We thus conclude that given A in [0, A), the Newton iterates for (2.40) are gen-
erated as

7'\ = where RT QW)h (L) = y(L).

[y@ )OI [V Aly@HID = W(A)] for j >0 (2.43)
(I Yy )1

and when W(r) = t* for o« > —1 the iterates converge to A.; any starting value
Ao > 0 for which [W(||y(Xo) D) =W (IAIDT/ ¥ (ly(Xo) ) > Ois allowed, and the sim-
ple expedient of choosing Aq to be a tiny positive number almost always suffices. We
note that it is possible to compute better starting values [6, 13], but since the above
Newton iteration has proved to be so effective in practice, we have not done so.
Since (2.43) with W () = t“ converges monotonically to A, from the left for all
o > —1, this leads to the interesting opportunity to choose « at each iteration to give
the best possible next iterate. Specifically, the Newton correction for a particular « is

Ajr1=A; +

lypl? (= n5)

Adj(a) = ||h(xj)||2 o ) Whereujszl
But
O L
decreases monotonically on ), since
e Inp
§(@)=—5—[1—alp—e*"]<0

o?
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which follows because 1 — ¢ < e~ for all ¢, and thus £ () attains its maximum in the
region of interest when o = —1. Thus, there are good theoretical grounds to support
the popular transformation W(¢) = 1/¢. In our experience it is rare to require more
than five Newton steps to attain full working accuracy, and frequently one or two
iterations are enough (see Sect. 5.1).

We note in passing that an alternative way of transforming the original secular
equation (2.35) into one which may be more easily solved, using a nonlinear trans-
formation of the independent variable, has been proposed by Melman [29]. We have
not explored this possibility here.

2.3.4 Recovering the solution

Once the boundary has been attained, we stop the iteration as soon as AT (Axy —b) +
A Xy 1s sufficiently small. Since (2.16) gives that

AT (Ax — b) + Mxi = VT [B] By + Mk — By Bf €]

T
+ 1 V1€ (Bryg — Brey)
and as (2.28) implies that the first term vanishes, we have
AT (Axk = b) + hixk = 0 V1€ Bk = Gy Vi By €6 Ve

Hence

||AT(Axk —b) + Mxi|l = |05k+1vk+1,3k+1€]{yk|

may be computed trivially from available data.

As soon as the required yy is known, the estimate x, = V;y, may be recovered by
regenerating the vectors v, 1 <! < £ as needed, or by recovering them from mem-
ory or backing store. We have found it advantageous to store a small number ¢ (say
t = 10) of the first v¢, 1 <k <t along with u; to avoid the expense of regenerating
these early vectors, and to start the second pass iteration to determine x, from k = ¢ if
necessary. We also take the precaution of recording all previous residuals || Axg — b||,
and picking £ to give a specified fraction of the best reduction found in the first pass.
To do this requires that we know ||Axy — b||. Fortunately, again this is easy to com-
pute from available data. For it follows by forming the product of (2.32) with the
vector (ykT — DT and from (2.33) that

| Axe — bII* + 1A = || By — Brer I + A llye 2
= IRc () vk — fre G I1? + G ) + ok ) 112
= ¢f ) + Il pr ) 112,

and thus

| Axi = bl = /B2, 00) + 1 LI — 2 A2,
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3 Solving the regularised least-squares problem
We next turn to our second, regularised linear least-squares problem (1.3).
3.1 Solution characteristics

As in Sect. 2.1, computationally viable optimality conditions are available. Indeed,
the required solution is given by x(1,) satisfying (2.1), where A, is the positive root
of a different secular equation

ollx(WIP2 =1 =0; (3.1)

this latter condition simply arises from the first-order optimality conditions for prob-
lem (1.3). Again, if it is feasible to factorize AT A + AI, a simple univariate root
finding method—perhaps using the derivative (2.3) of ||x(1)|—may be used to de-
termine the appropriate root of (3.1), while otherwise we must resort to iteration.

3.2 Iterative solution

As before, we shall seek an approximate solution in a sequence of expanding sub-
spaces, and once again we shall use the Golub—Kahan bi-diagonalisation algorithm
as our core ingredient. Thus we seek the solution to (1.3) when x = V}y, where Vi
satisfies (2.5). This solution is thus x; = Vi yx, where

Yk = argmin = || Bry — Brer||* + —|lyll”. (3.2)
yeRK 2 p

Thus

B{ By — Brep) + oIyl 2ye =0
or alternatively
B{ (Biyy — Brey) + iy =0 where ke =o[|yl|’ .
Hence we must find the (positive) root A = A, of the secular equation
o llyeMIP =2 =1 =0, (3.3)
where just as in (2.30)
[B! B, +AI1yx(A) — B,;Bf e, =0. (3.4)
We may solve (3.4) exactly as we did in Sect. 2.3.2, and thus it remains to consider
the secular equation (3.3). For p = 2, this is just the problem considered in detail

by Paige and Saunders [38]; in this case A; = o throughout and the solution can be
obtained in a single pass. Thus, in what follows, we shall assume that p > 2.

@ Springer



Trust-region and other regularisations of linear least-squares problems 39

3.3 The secular equation and its solution

Once again, rather than considering (3.3)—(3.4), we prefer the generic case of finding
the positive root of

b V) E o lly()P2 =1 =0, 3.5)

where y()) satisfies (2.36). But as before, there are advantages in seeking instead the
same root of
def _
Yo W) E U@ lyWIP?) —w() =0 (3.6)
for some “suitable” differentiable function W. The choices W, (1) = (t/o')? for some
real B, giving rise to the secular equation

Ly IPP= — (/o) =0 3.7)
(particularly with g = —1), or W, (¢, 1) = (Ao/1)P, yielding the secular equation

2B

— 5P =0 3.8
Iy fe—2 ~ 7 T ©:8)

have both been proposed for the special case p =3 [5].
For the secular equation (3.7), we have the following result.

Lemma 3.1 For given real 8 and p > 2, let

00 B) L Iy 1FP=2 = (3/0)f

where y()) satisfies (2.36), and suppose that . > 0. Then 0(A; B) is strictly convex
and decreasing for all B € (0, 1] and concave and increasing for all —1/(p — 2) <
B <O0.

Proof Since ¢ (1) L7 strictly convex and decreasing when A > 0 for y € (0, 1],
it follows from Lemma 2.4 that the same is true for 8(A; 8) for 8 € (0, 1]. Likewise,
as ¢ (A) is strictly concave and increasing when A > 0 for y < 0, Lemma 2.4 shows
that the same is true for 8(A; B8) for —1/(p —2) < B8 <O0. O

Thus, as in the trust-region case, appropriately initialized secant and Newton’s
methods applied to (3.7) possess powerful convergence properties.

Theorem 3.2 Newton’s method applied to (3.7) for nonzero B € [—1/(p — 2), 1]
will converge monotonically, globally Q-linearly and ultimately Q-superlinearly to
its positive root A, of (3.5) for any initial estimate Ay € (0, A]. The same is true for
the secant method for initial estimates 0 < Ly < A1 < As.

Proof As before, this follows directly from Lemma 3.1 because of the known con-

vergence properties of Newton-like methods applied to univariate convex function.
See Lemma A.1 for details. U
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By contrast, it is easy to find examples for which the curvature for the function in
(3.8) changes sign, and thus we are unable to conclude in general that Newton-like
methods for this secular equation will converge globally in [0, A.].

The Newton iterates for (3.7) satisfy

Ly GpIPP™2 — (/)P
BL(P = DIy ONINEC=D=2|hG |2 + 257 /o)

Ajt1=Aj

and thus for given g, the Newton correction is

o1z a—uh

(P =DIRODIZ p(1 + ;)

Arj(B) =

where, if Lo € [0, A ] and B € [—1/(p — 2), 1],

A 2 A
S 00 R VR
(p = 2DxjIhA ) oilly@p)lr=

This again gives us the opportunity to pick g to give the best (largest) Newton correc-
tion. Unfortunately, unlike in the trust-region case, the correction may be multi-modal
in the region of interest, and thus the best step may have to be picked by iteration to
maximize

B
df L= M

niBE ——
T B+l

for the given data 1 and 7;.
When 2 < p < 3, another acceleration is possible by choosing 8 = —1 in (3.7).
This gives

ly)I*~P —o/x=0. (3.9)

Rather than applying Newton’s method to (3.9), it then pays instead to linearize the

def . .
term w(\) = ly(AM)[>~7, but not the remaining term o/, when computing a correc-
tion A)\.; to the estimate A ; of the required root of (3.9). The resulting correction thus
satisfies the equation

w(Aj) —l—d(M)Ak; = ;2 +(p—-2) 1O pIP AN = a ~, (3.10)
Iy P Iy )IP Aj+ A

which may be rewritten as a quadratic equation for ALS.
Before we analyse the correction given by (3.10), we have the following general
result.

Lemma 3.3 Let the interval T € Rt = [0,00) and o > 0. Suppose that ¢ :

I — RT is concave, strictly increasing and continuously differentiable, and that

o(A) dgqb(k) — o /) has a (unique) zero Ay € L. Let A, € L be such that 6()\,) < 0.
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Then both the Newton iterate A, + AL} for the equation 6 (1) = 0 and the approxi-
mation A, + AAS, where ALS is the largest root of

o

X ") AL = ———, 3.11

¢ (he) + ¢ ()AL, ho + AU (3.11)

also lie in T and yield negative values of 6, and (if repeated) converge monoton-

ically towards A.. The convergence is globally Q-linear with factor at least 1 —

0'(A4)/0'(Xe) < 1 and is ultimately Q-superlinear. Moreover Lo + ALY < A, +
ANE < Ay,

Proof Since v(A) L 5 /A is concave, it is strictly increasing and continuously dif-
ferentiable on Z, the same is true of 6(A) by assumption on ¢. Thus it follows from
Lemma A.1 that the Newton iterates remain in [A., A«] and convergence occurs as
described.

Since ¢ (A,) is a concave function of A, (3.9) and (3.10) give that

O(he + ALY = P(he + AXY) — —————
(he + Akp) = @ (he + Adp) ro A

o
<o(r ") AL — ——— =0.
Sdhe) + (M)A, o T A

The Newton correction satisfies the linearized equation

o

/ N o N
(b()xg) +¢ (A‘Q)A)“e = )\— - EA)\L, (312)
€ e
But, as 0 /A = —v(A) is a convex function of A,
o o o
—>— — — AL,
e+ AXS T, A2
and hence
B (ko) + ' ) AKE = - — A
e e - A,e )\'% e’

from (3.11). Combining this with (3.12), we obtain

0/ (o) (ALE — ALY = ¢/ () + Z ) (ARE — AXY) > 0
e e e/ — e )Lz e e/ —
e
and hence AAS > ALY > 0 since 6’(A.) > 0. Thus the alternative iterates improves
on the Newton one, and the remaining results follow immediately. O

Applying Lemma 3.3 to the largest root of (3.10) then gives the following im-
provement on Newton’s method.

Corollary 3.4 Suppose that2 < p < 3. Then the sequence {A;}, j > 0,where A j;1 =
Aj+ A)\.; and Ak; is the largest root of (3.10), will converge monotonically, globally
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Q-linearly (with factor at least 1 —6'(14) /60" (ho) < 1) and ultimately Q-superlinearly
to its positive root Ly of (3.5) for any initial estimate Ay € (0, Ay]. Moreover, A; +
Ak;’. < Ajt+1 < Ay, where A)L’}f is the Newton correction for the equation 6 (1) =0 at

=Aj.
Proof The function w in (3.10) satisfies the assumptions required by ¢ in Lemma 3.3
because of Lemma 2.4. The result then follows immediately from Lemma 3.3. g

In practice, the improvements from using Ak; from (3.10) rather than the Newton
correction are sometimes dramatic, particularly when A is small since then lineariza-
tion of o /A gives a poor approximation. Similar accelerations, appropriate when the
coefficients o; and r; in (2.39) are known explicitly, are given by Bunch, Nielsen and
Sorensen [24] and Melman [29].

4 Solving the regularised least-£,-norm problem

Our final topic is the solution of the regularised linear least £,-norm problem (1.4).
We note in passing that (1.4) is an exact penalty function [35, Sect. 15.1] for the
problem of minimizing ||x| subject to Ax = b, and thus if the latter is compatible
we will expect these equations to be satisfied for all sufficiently small 0. By contrast
(1.3) is the quadratic penalty function [35, Sect. 15.1] for the same problem and thus
there is no expectation that Ax = b will be satisfied even if it is compatible.

4.1 Solution characteristics

Let v = ||Ax — b||. In this case (1.4) is equivalent to the differentiable constrained
problem

. o . 1 , 1,
minimize v + —||x||” subjectto =||Ax —b||* = =v~. 4.1
xeR" veR p 2 2

So long as v > 0, first-order optimality conditions for (4.1) require that

) T B
(””’;”p >=u<A “ b)> 42)

for some Lagrange multiplier w. Letting A = ov|x||P~2, (4.2) implies that the re-
quired solution is x (1), where x (1) is given by (2.1) and A, satisfies yet another
secular equation

[Ax () — bl — 4.3)

7_2 == O.
ollx@)?

Once again, if factorizing AT A 4+ A is feasible, a simple univariate root finding
method might be used to determine the appropriate root of (4.3)—this might require
the derivatives (2.3) of ||x(1)|| and

v(d) v(d)

, (Ax(\) —b)T Ax' (M) xT(W)x' (M)
v ()\«) = = - -
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of v(A) = ||Ax(X) — b||—but otherwise we shall resort to an iterative method.
If v =0, as we have mentioned, we simply require the minimum ¢;-norm solution
to Ax = b. Notice that in this case, the required solution satisfies

(2 5)()=0): w

while the solution x(A) to (2.1) when v > 0 satisfies

I AT\ (x)) _ (0
( Z)00)=()

Hence if the secular equation (4.3) has no positive root, the required solution may be
recovered either directly from (4.4) or indirectly as lim; o, x(A) from (2.1) or (4.5).

4.2 Tterative solution

Unsurprisingly, we seek an approximate solution in a sequence of expanding sub-
spaces based on Golub—Kahan bi-diagonalisation. Thus we seek the solution to (1.4)
when x = Vi y, where Vj satisfies (2.5). This solution is thus x; = Vi yx, where

1 o
yk = arg min = || Byy — Brer || + =y ll?. (4.6
yERk 2 P

Crucially, the norm of the residuals vy = || Bryr(A) — Bie1]| is necessarily nonzero
so long as the bi-diagonalisation continues, and thus any potential difficulties that
might occur if v, were zero cannot arise. For otherwise, if Bryx = fB1e; and each ¢;
and B; is nonzero, the first k equations imply that every component of y; must also
be nonzero. But then the residual of the k + 1st equation cannot be zero. Thus, as in
Sect. 3.2, we seek yx = yx(Ar) where yr (1) satisfies (3.4) and A is the positive root
of the secular equation

A
o llyk (WP

It remains to examine the secular equation (4.7).

1 Bkyk(A) — Brei|l — 4.7

4.3 The secular equation and its solution

Once again, rather than considering specifically (3.4) and (4.7), we investigate the
generic problem of finding the positive root of

wt 1By() —gll 1
A) = — =
M=o Iy P2

0, (4.8)

where y(A) satisfies (2.36); as we shall see, there is a good reason for dividing both
sides of the original equation by A. But more generally, we may prefer

s(IBYW—gl\ 1
7 < 7 e = @9
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or

By —gl\* 1
(M) ||y()\)||/3(l’—2>_6—ﬂ=0 (4.10)

for some real §. To this end, we have the following result.

Lemma 4.1 Let

and suppose that A > 0. Then [t (\)1)? is strictly convex and strictly decreasing for
all B > 0 and concave and strictly increasing for all B € [—1, 0).

Proof Using the notation introduced in the proof of Lemma 2.2 and supposing B has
m rows, we have that By(A) — g = P(S(STS+AI)~'STr —r), and hence

¢ 2 m. 2
1By —gl> r; ri
[t = =) — + ) L. @.11)
2 2
A i G/ o O
The result then follows directly by applying Lemma 2.1 with x (1) = t(&). d

Consider first the secular equation (4.9). If 8 > 0, the leading term is strictly con-
vex and decreasing (Lemma 4.1) while the second term is convex and decreasing for
B <1/(p—2) (Lemma 2.4) and hence so is their sum. Similarly, if 8 < 0, the leading
term is concave and increasing for 8 > —1 (Lemma 4.1) while the remaining term is
strictly concave (just concave if p = 2) and increasing (Lemma 2.4) as is the sum of
the two terms. Thus we have the following convergence result.

Theorem 4.2 Newton’s method applied to (4.9) for nonzero B € [—1,1/(p — 2)]
will converge monotonically, globally Q-linearly and ultimately Q-superlinearly to
its positive root Ay of (4.7) for any initial estimate Ly > 0 for which p(lg) > 0. The
same is true for the secant method for initial estimates 0 < Ly < A1 when p(11) > 0.

Proof The fact that p()) is decreasing on [0, co) together with the stated require-
ments on Ag and, if necessary, A; imply that the starting values are to the left of the
required root. The result then follows directly from the above discussion since the
function in (4.9) is convex and decreasing (0 < 8 < 1/(p — 2)) or concave and in-
creasing (—1 < B < 0), and because of the known convergence properties of Newton-
like methods applied to such functions. See Lemma A.1 for details. g

While Theorem 4.2 appears encouraging, the convergence may initially be slow
when p > 2 since both ||y(})| and 7(X) may be large (and have large derivatives)
when X is close to zero. This defect might in principle be avoided by considering
secular equations involving their reciprocals, such as (4.10) when 8 < 0. If 8 > 0,
the leading term in (4.10) is the product of two decreasing, convex, positive functions
(Lemmas 2.4 and 4.1) and thus decreasing, convex and positive [4, Exer. 3.32]. Thus
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Newton-like methods for (4.10) will converge as above in this case. However, for
negative B it is not clear when the leading term

aer (I1BY() — gl
() (—A

B

||y(x)||1’—2) (4.12)
in (4.10) will be concave; it is the product of increasing, concave terms when
max(—1,1/(2 — p)) < B < 0 (Lemmas 2.4 and 4.1), but this is insufficient to en-
sure concavity. Plots of (4.12) for various examples suggest that the term in question
may be concave for sufficiently small negative 8, and indeed it can be shown that
£()) is bounded below and above by known concave functions®> when 8 € [—%, 0)
and p <3.

In practice, we have found that Newton steps for (4.10) with 8 = —1/(p — 1)
always seem to outperform those for (4.9) with B in the range allowed by The-
orem 4.2. We thus use such steps by default, but with the safeguard that if p(X)
in (4.8) following the step becomes negative, we revert to the Newton step for (4.9)
with B = —1/(p — 2). To date this safeguard has not been needed, and between two
and six Newton steps appear to be necessary to achieve full working accuracy when
p = 2; this increases slightly for larger p (see Sect. 5.1).

The special case p =2 is not affected by these deliberations since then (4.10)

becomes
IByG) —gll\? 1
— =0, 4.13
( 2 ) -z (4.13)

for which the leading term is concave and increasing for all 8 € [—1, 0). Thus, for
this case, Newton-like methods for (4.13) will converge as in Theorem 4.2, and the
choice B = —1 gives the best behaviour for the same reasons as those discussed at
the end of Sect. 2.3.3.

5 Software

The ideas developed in this paper have been implemented as three thread-safe Fortran
95 packages—respectively LSTR, LSRT and L2RT for problems (1.2)—(1.4)—as part
of version 2.1 of the GALAHAD optimization library [15]. All use reverse communi-
cation to obtain the matrix-vector products

u:=u-+ Av and v:=v+ATu,

2Spcciﬁcally, given (2.39) and (4.11), it can be shown that if « € (0, 1]

e [ )2 min(1, [rW)12) < (W%t ())? < kol (W1 max(1, [x (W12

for some constants x| and «». In this case
e min(r 1P, (7 0012) < (T 1T W) <1 max(r 1P, (2 (012)

for which the bounding functions are concave by Lemma 2.4 when 8 € [— %, 0).
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as required, and offer a variety of options. In particular, for the trust-region prob-
lem, the user can decide whether to stop at the Steihaug-Toint point if encountered
(Sect. 2.3.1), or to continue around the trust-region boundary (Sect. 2.3.2). For all
three problems, as we have mentioned in Sect. 2.3.4, the second-phase may be ac-
celerated if needed by storing the first # (say) vectors v;, i =1, ..., ¢, along with u;
as calculated in the first pass so that the bi-diagonalisation (2.4) may be restarted at
iteration k = ¢. Moreover (Sect. 2.3.4), as the second pass may be an additional ex-
pense, a record is kept of the optimal objective function values for each value of k,
and the second pass is only performed so far as to ensure a given fraction of the final
optimal objective value. Large savings may be made in the second pass by choosing
the required fraction to be significantly smaller than one.

The software may also be used to solve weighted least-squares problems involving
the objective ||W(Ax — b)|| and a scaled trust region ||Sx|| < A simply by solving
instead the problem

minimize ||Ax — b|| subjectto x| <A,
xeR”

where A = WAS~! and b = Wb and then recovering x = S~!%. Note the implication
here that § must be non-singular. Similarly the weighted regularised problems

| 1
minimize — || W (Ax — b)||9 + —o || Sx||?
xeR" q p

(¢ =1, 2) may be solved instead as

T T I
minimize — ||Ax — b||? + —o || x]||7.
¥eR" 4 p

Note that the choice of W and S will affect the convergence of the method, and
thus good choices may be used to accelerate its convergence. This is often known
as preconditioning, but be aware that preconditioning changes the norms that define
the problem. Good preconditioners will cluster the singular values of A around a few
distinct values, and ideally (but usually unrealistically) all the singular values will be
mapped to 1.

As we indicated in Sect. 1.1, our intention has always been to use these packages
to solve problems arising in nonlinear fitting and constrained optimization. We shall
delay numerical comparisons until we have done so. However at least one comment is
in order here. We mentioned in Sect. 2.3.1 that the improvement possible if we solve
the trust-region problem (1.2) accurately is no more than twice that derived from the
Steihaug-Toint point. In practice, our experience has been far less optimistic, and
often less than a ten percent—and sometimes less than one percent—improvement
has been observed. Thus in the case of (1.2), we do not recommend going beyond the
Steihaug-Toint point, since to do so will incur the cost of a second pass to recover xj
from yy. This is by contrast to the problem of minimizing general quadratic functions
within an ¢ trust-region where the Steihaug-Toint point can be a very poor predictor
of the possible reduction. This issue is not relevant for our other two, regularised,
problems (1.3) and (1.4).
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5.1 Numerical experience

We now supply evidence supporting the claims made in Sects. 2.3.3, 3.3 and 4.3
that Newton/Newton-like methods for the relevant secular equations are efficient in
practice. To illustrate this, we construct a problem in which we may control the con-
ditioning, and report the performance of the Newton-like iteration on a sequence
of examples generated by restricting the given data to the subspace x = Viy (see
Sect. 2.2.2) for each of the problems (1.2)—(1.4).

For given w € W™, z € R", and “diagonal” D € R™*" for which di,j=0(@#)),
we construct A using Householder reflections and the singular-value decomposition

2ww’ 2777

A_<I o >D<I < )
In particular, we chose w; =1 for all i, z; = 1 for odd i and —1 for even i, and the
diagonals d; ; to decrease linearly from 1 to some given p < 1; thus the spectral con-
dition number is 1/p. The components of b are all chosen to be 1. We considered
three configurations (m, n) = (1000, 5000), (5000, 1000) and (5000, 5000), two val-
ues of p = 0.01 and 0.0001, and three trust-region radii A = 1, 100 and 10000. In
Table 1 we report statistics on the number of required Newton steps (minimum, mean
and maximum over all k) for the sequence of problems (1.2) restricted to Viy as
implemented in LSTR.

Notice that the solution to some of these problems lies interior to the trust-region,
and thus no Newton root-finding is needed. For those that do, between one and six
Newton steps are required for each k, with a mean between two and four. This be-
haviour agrees with our observations on other “realistic” examples from the CUTEr
[16] test set. It is interesting to observe that the number of iterations required grows
(modestly) with the size of the radius, but this might be expected as this corresponds
to required smaller values of A for which ¢ in (2.35) and its variants change more
rapidly.

Similar observations may be made for the iterations we have proposed for prob-
lems (1.3) and (1.4) using LSRT and L2RT. With the same data, but now with five
different values of the regularisation weight o = 0.0001, 0.01, 1, 100 and 10000, we

report in Tables 2 and 3 the performance for the most-likely practical values of p
(3 for problem (1.3) and 2 for (1.4)).

Table 1 Newton iterations for (2.40) in the case V() =1/t

A Condition ~ m = 1000, n = 5000 m = 5000, n = 1000 m = 5000, n = 5000
number min mean max min mean max min mean max

1 100 1 2.0 3 1 2.0 3 1 2.0 3

1 10000 1 2.0 3 1 2.0 3 1 2.0 3

100 100 1 2.7 5 2 2.7 4 1 2.7 5

100 10000 1 2.6 5 2 2.7 4 1 2.7 5
10000 100 Interior Interior Interior

10000 10000 2 2.7 5 Interior 3 3.8 6
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Table 2 Newton-like iterations for (3.5) as summarised in Corollary 3.4 (p =3)

o Condition m = 1000, n = 5000 m = 5000, n = 1000 m = 5000, n = 5000
number min mean max min mean  max min  mean max
.0001 100 1 2.6 4 2 2.6 4 1 2.6 4
.0001 10000 1 2.6 4 2 2.6 4 1 2.6 4
.01 100 1 24 4 1 24 4 1 24 4
.01 10000 1 24 4 1 2.4 4 1 2.4 4
1 100 1 2.1 3 1 2.0 3 1 2.1 3
1 10000 1 2.1 3 1 2.0 3 1 2.1 3
100 100 1 1.8 2 1 1.8 2 1 1.8 2
100 10000 1 1.8 2 1 1.8 2 1 1.8 2
10000 100 1 1.7 2 1 1.7 2 1 1.7 2
10000 10000 1 1.7 2 1 1.7 2 1 1.7 2

Table 3 Newton iterations for (4.10) with 8 = —1

o Condition m = 1000, n = 5000 m = 5000, n = 1000 m = 5000, n = 5000
number min mean max min mean max min mean max
.0001 100 1 2.7 4 1 2.0 3 1 2.6 4
.0001 10000 1 2.5 4 1 2.0 3 1 2.5 4
.01 100 1 2.5 5 1 2.2 4 1 2.5 5
.01 10000 1 2.5 5 1 2.2 4 1 2.5 5
1 100 1 22 4 1 2.0 4 1 22 4
1 10000 1 2.2 4 1 2.0 4 1 22 4
100 100 2 3.0 4 1 2.5 4 1 2.5 4
100 10000 2 3.0 4 1 2.5 4 1 2.5 4
10000 100 1 2.0 3 1 2.0 3 1 2.0 3
10000 10000 1 2.0 3 1 2.0 3 1 2.0 3

Now we observe between one and five Newton steps are required for each k, with
a mean between two and three. Again slightly more effort is required when o and
hence the required A are small.

Finally, when a non-standard value of p is used, we see in Table 4 that the number
of iterations rises; for p = 3, now between one and nine iterations are needed, with
the mean between two and four. Small values of the regularisation lead to small values
of A for which p(4) in (4.8) and its variants change rapidly.

6 Comments and conclusions
We have proposed a framework for solving a variety of (implicitly or explicitly) reg-
ularised linear-least squares problems. All proceed by approximating the solution to

the given problem in an increasing set of convenient subspaces. Each leads to its
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Table 4 Newton iterations (4.10) with 8 = —0.5 (p =3)

o Condition  m = 1000, n = 5000 m = 5000, n = 1000 m = 5000, n = 5000
number min  mean  max min mean  max min  mean  max
.0001 100 1 2.6 9 1 2.6 9 1 2.7 9
.0001 10000 1 2.7 9 1 2.6 8 1 2.6 8
.01 100 1 2.8 7 1 2.8 7 1 2.8 7
.01 10000 1 2.8 7 1 2.9 7 1 2.9 7
1 100 1 2.8 6 1 2.8 6 2 32 6
1 10000 2 32 6 1 2.8 6 1 2.8 6
100 100 2 3.0 5 2 3.0 5 2 3.0 5
100 10000 2 3.0 5 1 2.7 5 1 2.7 5
10000 100 1 2.7 5 1 2.7 5 2 35 5
10000 10000 2 35 5 2 35 5 2 35 5

own secular equation—a root-finding problem—for which Newton-like and other
approaches are most effective. Software for each of the problems is available as part
of GALAHAD. The methods considered may easily be extended to the more general
regularisation

o1 1

minimize — ||Ax — b||? + —o ||x||?
xeR” p

for p, g > 1 but we do not give details here.

One alternative we have not yet considered is to apply the ideas first proposed by
Hager and Park [19, 20], and subsequently refined by Erway, Gill, and Griffin [10], for
the problem of minimizing a general quadratic function ¢ (x) within a spherical trust-
region. These recognise that a possible disadvantage of the earlier GLTR approach
[14] to the same problem—and by implication for the methods we have considered
here—is the need for a second pass to recover the solution x; = Vj yx once a suitable
vk has been determined. The idea is simply that once it has been established that the
solution lies on the trust-region boundary, a sequence of points {xx} are generated
by choosing x4 to solve the given problem over a low-dimensional subspace Sk
containing at least x; and a mixture of V,q(xx), a crude Newton-based approxima-
tion to the solution x (1) to the relevant secular equation and an approximation to the
eigenvector corresponding to the left-most eigenvalue of V¢ (xz); since in our cases
the objective is convex, the latter would not be needed. It has been established [20]
that such an iteration converges to the solution to the problem, although it is unclear
quite how this compares in cost with that of the second pass in the GLTR approach.
This general approach can clearly be adapted—in the case of problem (1.2)—or gen-
eralised to the regularised problems (1.3) and (1.4). It remains to see how effective
this is in comparison to the methods we have given in all of these cases.
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Appendix A

The following result is stated, in part, in other sources, e.g., [23, Theorem 4.8]. For
completeness, here we state and prove the version we require.

Lemma A.1 Suppose that 60 : T — R is convex (resp. concave), strictly decreas-
ing (resp. strictly increasing) and continuously differentiable on some interval T =
[Amin> Amax] C R, and suppose further that there is a Ay € T for which 6 (1) = 0.

(i) Now suppose that 6(Lo) > 0 for some given ,y € I. Then the Newton iterates
{Aj}, where

60y

A

hjt = (A1)

for j >0, all lie in [Lo, A«] and increase monotonically to A. The convergence
is globally Q-linear with factor at least

v def | 6" (k)

— <1
8" (%0)

and is ultimately Q-superlinear (Q-quadratic if additionally 0’ is Lipschitz con-
tinuous around ).

(i1) Suppose that 6(ro) and 6(r1) > O for some given Ao < A1 € Z. Then the secant
iterates {).;}, where

(Aj —Aj—1)O())

- ) (A.2)
O(A;) —0(j-1)

Ajt1 =2

for j =1, all lie in [Ag, A«] and increase monotonically to A.. The convergence
is globally Q-linear with factor at least y", and is ultimately Q-superlinear.

Proof We consider the convex case; the concave case then follows directly by con-
sidering —6. The assumptions are such that A € Z with A < A, if and only if (%) > 0.

(i) By induction, suppose that 6(2 ;) > 0. Since by assumption o' (x ) <0, (A1)
shows that A ;11 > A ;. Additionally, the convexity of & and (A.1) imply that

Ohjr1) =0(h)+0' (A j)(Ajs1 —rj) =0,
and thus 6 (A j11) > 0. Convexity also implies that
0" M) (A j = Ai) =0 (0hi) +60' (M) (A — 1) = 0 (0, (A.3)

in which case

O(A;)

0 (h) N
A —Ajp1=Ae—Aj+ S —A) (1= <y (A —4j), (Ad)

0'(Aj) — 0’ (Aj)
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which establishes both that {A ;} converges to A, and that the convergence is at least
linear. Ultimate superlinear convergence follows from (A.4) since 6'(A;) — 6'(Ay),
while quadratic convergence for Lipschitz continuous 6’ follows since 8'(1,) < 0
[37, Theorem 10.2.2].

(ii) By induction, suppose that A j_; < A; and 8(X ;) > 0 (in which case O (A;_1) >
6(A;)). Then it follows directly from (A.2) that A ;4 > A ;. Thus, the convexity of 0
and (A.2) imply that
Ajal —Aj
OAj+1) = 0(;) + ———= (O j-1) —0(A;)) =0.

Aj—1 —Aj

Furthermore, the mean-value theorem implies that 0(A;) — 0(A;—1) = 0'(& DI
Aj—1) for some &; € (A1, A}), and thus from (A.2)
O (%))

- A5
0'()) (A

Ajv1=2j

Thus, using (A.3) and (A.5),

(1)) 0'(As)

0'G) G
(A.6)

once again establishing both that {A;} converges to A, and that the convergence is
at least linear. Ultimate superlinear convergence follows from (A.6) since 6'(§;) —
0’ (A+); a more precise estimate of the Q-rate may be established if 6" is Lipschitz
continuous [37, Theorem 11.2.8]. O
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