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UNIVERSAL REGULARIZATION METHODS: VARYING THE
POWER, THE SMOOTHNESS AND THE ACCURACY∗
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Abstract. Adaptive cubic regularization methods have emerged as a credible alternative to
linesearch and trust-region for smooth nonconvex optimization, with optimal complexity amongst
second-order methods. Here we consider a general/new class of adaptive regularization methods
that use first- or higher-order local Taylor models of the objective regularized by a(ny) power of the
step size and applied to convexly constrained optimization problems. We investigate the worst-case
evaluation complexity/global rate of convergence of these algorithms, when the level of sufficient
smoothness of the objective may be unknown or may even be absent. We find that the methods
accurately reflect in their complexity the degree of smoothness of the objective and satisfy increasingly
better bounds with improving model accuracy. The bounds vary continuously and robustly with
respect to the regularization power and accuracy of the model and the degree of smoothness of the
objective.
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1. Introduction. We consider the (possibly) convexly constrained optimization
problem

(1.1) min
x∈F

f(x)

where f : Rn −→ R is a smooth, possibly nonconvex, objective and where the feasible
set F ⊂ Rn is closed, convex, and nonempty (for example, the set F could be de-
scribed by simple bounds and both polyhedral and more general convex constraints).1

Clearly, the case of unconstrained optimization is covered here by letting F = Rn. We
are interested in the case when f ∈ Cp,βp(F), namely, f is p-times continuously dif-
ferentiable in F with the pth derivative being Hölder continuous of (unknown) degree
βp ∈ [0, 1].2 We consider adaptive regularization methods applied to problem (1.1)
that generate feasible iterates xk that are (possibly very) approximate minimizers
over F of local models of the form

mk(xk + s) = Tp(xk, s) +
σk
r
‖s‖r2,
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596 C. CARTIS, N. I. M. GOULD, AND PH. L. TOINT

where Tp(xk, s) is the pth-order Taylor polynomial of f at xk and r > p ≥ 1. The
parameter σk > 0 is adjusted to ensure sufficient decrease in f occurs when the model
value is decreased. In this paper, we derive evaluation complexity bounds for finding
first-order critical points of (1.1) using higher-order adaptive regularization methods.
Despite the higher order of the models, the model minimization is performed only
approximately, generalizing the approach in [3]. The proposed methods also ensure
that the steps are “sufficiently long,” in a new way, generalizing ideas in [19]. The
ensuing complexity analysis shows the robust interplay of the regularization power
r, the model accuracy p, and the degree of smoothness βp of the objective, with
some surprising results. In particular, we find that the degree of smoothness of the
objective—which is often unknown and is even allowed to be absent here—is accu-
rately reflected in the complexity of the methods, independently of the regularization
power, provided the latter is sufficiently large. Furthermore, for all possible powers
r, the methods satisfy increasingly better bounds as the accuracy p of the models
and smoothness level βp are increased. All bounds vary continuously as a function of
the regularization power and smoothness level. Table 4.1 summarizes our complexity
bounds.

We now review the existing literature in detail and further clarify our approach,
motivation, and contributions. Cubic regularization for the (unconstrained) minimiza-
tion of f(x) for x ∈ Rn was proposed independently in [20, 25, 27], with [25] showing
it has better global worst-case function evaluation complexity than the method of
steepest descent. Extending [25], we proposed some practical variants—adaptive reg-
ularization with cubics (ARC) [9]—that satisfy the same complexity bound as the
regularization methods in [25], namely at most O(ε−

3
2 ) evaluations are needed to find

a point x for which

(1.2) ‖∇xf(x)‖ ≤ ε,

under milder requirements on the algorithm (specifically, inexact model minimiza-
tion). We further showed in [8, 10] that this complexity bound for ARC is sharp
and optimal for a large class of second-order methods when applied to functions with
globally Lipschitz-continuous second derivatives. Quadratic regularization, namely,
a first-order accurate model of the objective regularized by a quadratic term, has
also been extensively studied and shown to satisfy the complexity bound of steepest
descent, namely, O(ε−2) evaluations to obtain (1.2) [22]. It was also shown in [9]
that one can loosen the requirement that global Lipschitz continuity of the second
derivative holds to just global Hölder continuity of the same derivative with exponent
β2 ∈ (0, 1]. Then, if one also regularizes the quadratic objective model by the power
2 + β2 of the step, involving the (often unknown) Hölder exponent, the resulting

method requires O(ε−
2+β2
1+β2 ) evaluations, which, as a function only of ε, belongs to

the interval [ε−
3
2 , ε−2]; these bounds are sharp and optimal for objectives with corre-

sponding levels of smoothness of the Hessian [10]. Note that this bound also holds if
β2 = 0.

An important related question and extension were answered in [3]: if higher-order
derivatives are available, can one improve the complexity of regularization methods?
It was shown in [3] that if one considers approximately minimizing an (r − 1)th-
order Taylor model of the objective regularized by the (weighted) rth power of the
(Euclidean) norm of the step in each iteration (so r = p+1), the complexity of the re-
sulting adaptive regularization method is O(ε−

r
r−1 ) evaluations to obtain (1.2), under
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UNIVERSAL REGULARIZATION METHODS 597

the assumption that the (r − 1)th derivative tensor is globally Lipschitz continuous.
The method proposed in [3] measures the progress of each iteration by comparing the
Taylor model decrease (without the regularization term) to that of the true function
decrease and only requiring mild approximate (local) minimization of the regular-
ized model. Here, we generalize these higher-order regularization methods from [3]
to allow for an arbitrary local Taylor model, an arbitrary regularization power of the
step, and varying levels of smoothness of the highest-order derivative in the Taylor
model.

The interest in considering relaxations of Lipschitz continuity to Hölder conti-
nuity of derivatives comes not only from the needs of some engineering applications
(such as flows in gas pipelines [16, section 17] and properties of nonlinear PDE prob-
lems [1]), but also in its own right in optimization theory, as a bridging case between
the smooth and nonsmooth classes of problems [21, 23]. In particular, a zero Hölder
exponent for a Hölder-continuous derivative corresponds to a bounded derivative, and
an exponent in (0, 1) corresponds to a continuous but not necessarily differentiable
derivative, while an exponent of 1 corresponds to a Lipschitz continuous derivative
that can be differentiated again. For the case of functions with Hölder-continuous gra-
dients, methods have already been devised, and their complexity analyzed, both as a
weaker set of assumptions and as an attempt to have a “smooth” transition between
the smooth and nonsmooth (convex) problem classes, without knowing a priori the
level of smoothness of the gradient (i.e., the Hölder exponent) [15, 23]; even lower com-
plexity bounds are known [21]. In [11] we considered regularization methods applied
to nonconvex objectives with Hölder-continuous gradients (with unknown exponent
β1 ∈ (0, 1]) that employ a first-order quadratic model of the objective regularized by
the rth power of the step. We showed that the worst-case complexity of the result-
ing regularization methods varies depending on min{r, 1 + β1}. In particular, when
1 < r ≤ 1+β1, the methods take at most O(ε−

r
r−1 ) evaluations/iterations until termi-

nation, and otherwise at most O(ε−
1+β1
β1 ) evaluations/iterations to achieve the same

condition. The latter complexity bound reflects the smoothness of the objective’s
landscape, without prior knowledge or use of it in the algorithm, and is independent
of the regularization power. Here we generalize the approach in [11] to pth-order Tay-
lor models and find that similar bounds can be obtained. Also, we are able to allow
βp = 0 provided p ≥ 2. We note that advances beyond Lipschitz continuity of the
derivatives for higher-order regularization methods were also obtained in [12], where
a class of problems with discontinuous and possibly infinite derivatives (such as when
cusps are present) is analyzed, yielding similar bounds to [3].

Recently, Grapiglia and Nesterov [19] proposed a new cubic regularization scheme
that yields a universal algorithm in the sense that its complexity reflects the (possibly
unknown or even absent) degree of sufficient smoothness of the objective; the approach
in [19] addresses the case when p = 2, r = 3, and β2 ∈ [0, 1] in our framework. Our
ARp algorithm includes a modification in a similar (but not identical) vein to that in
[19]. In particular, our approach checks a theoretical condition that carefully monitors
the length of the step on each iteration on which the objective is sufficiently decreased.
The technique in [19] is different in that it requires a specific/new sufficient decrease
condition of the objective on each iteration that makes progress. We generalize the
approach in [19] and achieve complexity bounds with similar universal properties for
varying r, p, and unknown βp ∈ [0, 1], provided r ≥ p+βp. We are also able to analyze
ARp’s complexity in the regime p < r ≤ p+βp, providing continuously varying results
with r and βp.
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598 C. CARTIS, N. I. M. GOULD, AND PH. L. TOINT

Our algorithm can be applied to convexly constrained optimization problems
with nonconvex objectives, where the constraint/feasibility evaluations are inexpen-
sive, offering another generalization of proposals in [3, 19], which are presented for
the unconstrained case only; we also extend [19] by allowing an inexact subproblem
solution.

The structure of the paper is as follows: section 2 describes our main algorithmic
framework (ARp), section 3 presents our complexity analysis, while section 4 con-
cludes with a summary of our complexity bounds (see Table 4.1) and a discussion of
the results.

2. A universal adaptive regularization framework: ARp. Let f ∈ Cp(F),
with p integer, p ≥ 1; let r ∈ R, r > p ≥ 1. We measure optimality using a
suitable continuous first-order criticality measure for (1.1). We define this measure
for a general function h : Rn −→ R on F : for an arbitrary x ∈ F , the criticality
measure is given by

(2.1) πh(x)
def
= ‖PF [x−∇xh(x)]− x‖,

where PF denotes the orthogonal projection onto F , and ‖ · ‖ the Euclidean norm.
Letting h(x) := f(x) in (2.1), it is known that x is a first-order critical point of
problem (1.1) if and only if πf (x) = 0. Also note that

πf (x) = ‖∇xf(x)‖ whenever F = Rn.

For more properties of this measure see [2, 13].
Our ARp algorithm generates feasible iterates xk that (possibly very) approxi-

mately minimize the local model

(2.2) mk(xk + s) = Tp(xk, s) +
σk
r
‖s‖r subject to xk + s ∈ F ,

which is a regularization of the pth-order Taylor model of f around xk,

(2.3) Tp(xk, s) = f(xk) +

p∑
j=1

1

j!
∇jxf(xk)[s]j ,

where ∇jxf(xk)[s]j is the jth-order tensor ∇jxf(xk) of f at xk applied to the vector
s repeated j times. Note that Tp(xk, 0) = f(xk). We will also use the measure (2.1)
with h(s) := mk(xk+s) for terminating the approximate minimization of mk(xk+s),
and for which we have again

πmk(xk + s) = ‖∇smk(xk + s)‖ whenever F = Rn.

A summary of the main algorithmic framework is as follows.
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Algorithm 2.1. A universal ARp variant.

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization
parameter σ0 ≥ 0 are given, as well as an accuracy level ε > 0. The
constants η1, η2, γ1, γ2, γ3, θ, σmin, and α are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1, and(2.4)

0 < γ3 < 1 < γ1 < γ2 and α ∈ (0, 13 ].(2.5)

Compute f(x0), ∇xf(x0) and set k = 0. If πf (x0) < ε, terminate. Else,
for k ≥ 0, do:

Step 1: Model set-up. Compute derivatives of f of order 2 to p at xk.
Step 2: Step calculation. Compute the step sk by approximately minimizing

the model mk(xk + s) in (2.2) over xk + s ∈ F such that the following
conditions hold:

xk + sk ∈ F ,(2.6)

mk(xk + sk) < f(xk),(2.7)

and

πmk(xk + sk) ≤ θ‖sk‖r−1.(2.8)

Step 3: Test for termination. Compute ∇xf(xk + sk). If πf (xk + sk) < ε,
terminate with the approximate solution xε = xk + sk.

Step 4: Acceptance of the trial point. Compute f(xk + sk) and define

(2.9) ρk =
f(xk)− f(xk + sk)

f(xk)− Tp(xk, sk)
.

If ρk ≥ η1, check whether

(2.10) σk‖sk‖r−1 ≥ απf (xk + sk).

If both ρk ≥ η1 and (2.10) hold, then define xk+1 = xk + sk; otherwise
define xk+1 = xk.

Step 5: Regularization parameter update. Set
(2.11)

σk+1 ∈

 [max(σmin, γ3σk), σk] if ρk ≥ η2 and (2.10) holds,
[σk, γ1σk] if ρk ∈ [η1, η2) and (2.10) holds,
[γ1σk, γ2σk] if ρk < η1 or (2.10) fails.

Increment k by one, and go to Step 1 if ρk ≥ η1 and (2.10) holds, and to
Step 2 otherwise.

Iterations for which ρk ≥ η1 and (2.10) holds (and so xk+1 = xk + sk) are
called successful and those for which ρk ≥ η2 and (2.10) holds are referred to as very
successful, while the remaining ones are unsuccessful. For a(ny) j ≥ 0, we denote the
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600 C. CARTIS, N. I. M. GOULD, AND PH. L. TOINT

set of successful iterations up to j by Sj = {0 ≤ k ≤ j : ρk ≥ η1 and (2.10) holds}
and the set of unsuccessful ones by Uj = {0, . . . , j}\Sj . We have the following simple
lemma that relates the number of successful and unsuccessful iterations, and that is
ensured by the mechanism of Algorithm 2.1.

Lemma 2.1 (see [9, Theorem 2.1]). For any fixed j ≥ 0 until termination, let
σup > 0 be such that σk ≤ σup for all k ≤ j in Algorithm 2.1. Then

(2.12) |Uj | ≤
| log γ3|
log γ1

|Sj |+
1

log γ1
log

(
σup
σ0

)
,

where | · | denotes the cardinality of the respective index set.

Proof. The proof of (2.12) follows identically to that in the given reference; note
that the sets Sj and Uj are not identical to the usual ARC ones in [9], but the
mechanism for modifying σk in ARp coincides with the one in ARC on these iterations,
which why the proof of this lemma follows identically to [9, Theorem 2.1].

Now we comment on the construction of the ARp algorithm. Note that the model
minimization conditions (Step 2) and the definition of ρ in Step 4 are straightforward
generalizations of the approach in [3] to pth-order Taylor models regularized by dif-
ferent powers r of the norm of the step. Furthermore, recall that conditions (2.6),
(2.7) and (2.8) are approximate local optimality conditions for the nonconvex polyno-
mial model mk(xk + s) minimization over a convex set xk + s ∈ F ; in fact, they are
even weaker than that as they require a strict decrease (from the base point s = 0)
and approximate first-order criticality for the convexly constrained model. Thus, any
descent optimization method—even first-order algorithms such as the projected gra-
dient method—can be applied to ensure these conditions with ease (and no additional
derivatives evaluations are required other than those needed to set up the model mk

at xk). Designing efficient techniques specifically for the approximate minimization of
such regularized, nonconvex, high-order polynomial optimization problems is beyond
our scope here but an essential component of the success of such methods. Existing
regularization-related approaches are available for general nonconvex problems up to
third order [4, 5], or dedicated to convex regularized tensor models (see [24] and the
references therein) or specialized to nonlinear least-squares problems [17, 18]; these
complement classical references such as [26], where third- and fourth-order tensor
methods were proposed.

However, there are two main differences to the now standard approaches to (cubic
or higher order) regularization methods. Firstly, we check whether the gradient goes
below ε at each trial point, and, if so, terminate on possibly unsuccessful iterations
(Step 3). Secondly, when the step sk provides a sufficient decrease according to (2.9),
we check whether sk satisfies (2.10), and only allow steps that have such a carefully
monitored length to be taken by the algorithm; if (2.10) fails or ρk ≤ η1, σk is
increased. Note that, though the length of the step sk decreases as σk is increased,
this is not the case for the expression σk‖sk‖r−1 in (2.10), which increases with σk,
as Lemma 3.4 implies. These two additional ingredients—the gradient calculation at
each trial point and the step length condition (2.10)—are directly related to trying
to achieve universality of ARp, extending ideas from [19]. Further explanations and
discussions for the theoretical need, or otherwise, for condition (2.10) are given next,
in Remark 2.1, and later in the paper, in Remarks 3.2(b) and 3.4(b).

Remark 2.1. We further comment on condition (2.10), its connections to [19] and
existing literature, and possible alternatives.
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(a) We can replace condition (2.10) with the weaker requirement that σk‖sk‖r−1 ≥
αε; then, all subsequent results would remain unchanged. This choice, however, would
make the algorithm construction dependent on the accuracy ε (in places other than
in the termination condition), which is not numerically advisable.

(b) Instead of requiring (2.10) on each successful step, we could ask that each
model minimization step calculated in Step 2 satisfies (2.10); if (2.10) failed, σk would
be increased at the end of Step 2 and the model minimization step would be repeated.
This approach may result in an unnecessarily small step in practice, but the ensuing
ARp complexity bounds would remain qualitatively similar.

(c) Condition (2.10) does not appear as such in the algorithmic variants proposed
in [19], as those enforce sufficient decrease conditions on f in the algorithm for the
case when p = 2 and r = 3, which is the only case addressed in [19]. But (2.10)
(with r = 3) is a necessary ingredient for achieving the required sufficient decrease
conditions in [19]; see [19, Lemma 2.3] (in particular, equation (2.21)).

(d) Following [19], instead of (2.10), we could employ a different definition of
ρk in (2.9), namely, replacing the denominator in (2.9) by a rational function in ε
and σk, or by a function of σk and the gradient at the new point (see, for example,
[19, equation (6.5)]), to achieve the desired order of model/function decrease for uni-
versal complexity and behavior. According to our calculations, qualitatively similar
complexity bounds would again be obtained for such ARp variants.

We note that specific ρk definitions (namely, those with a denominator connected
to the length of the step) that enforce a particular sufficient decrease property for
the objective evaluations were also used in [14, 6] for trust-region and quadratic reg-
ularization variants, in order to achieve optimal complexity bounds for the ensuing
methods.

(e) According to our calculations, without the condition (2.10) on the length of
the step, or a similar measure of progress, the complexity of ARp would dramatically
(but continuously) worsen in the regime when r > p+ βp, as r increases. But, as we
clarify at the end of section 3, for the case when r ≤ p + βp, same-order complexity
bounds could be obtained for ARp without using (2.10); so in principle, for this
parameter regime, (2.10) could be removed from the construction of ARp. However,
note that, as βp is not generally known a priori, the regime of most interest—in terms
of both best complexity bounds and practicality—is when r is large, hence the need
for condition (2.10) in ARp, for both regimes.

3. Worst-case complexity analysis of ARp.

3.1. Some preliminary properties. We have the following simple consequence
of (2.7).

Lemma 3.1. On each iteration of Algorithm 2.1, we have the decrease

(3.1) f(xk)− Tp(xk, sk) ≥ σk
r
‖sk‖r.

Proof. Note that condition (2.7) and the definition of mk(s) in (2.2) immediately
give (3.1).

We have the following upper bound on sk.

Lemma 3.2. On each iteration of Algorithm 2.1, we have

(3.2) ‖sk‖ ≤ max
1≤j≤p

{(
pr

j!σk
‖∇jxf(xk)‖

) 1
r−j
}
.
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Proof. It follows from (2.7), (2.2), and (2.3) that

sTk∇xf(xk) +
1

2
∇2
xf(xk)[sk, sk] + · · ·+ 1

p!
∇pxf(xk)[sk, sk, . . . , sk] +

σk
r
‖sk‖r < 0,

which, from Cauchy–Schwarz and norm properties, further implies

−‖sk‖ · ‖∇xf(xk)‖ − 1

2
‖sk‖2 · ‖∇2

xf(xk)‖ − · · · − 1

p!
‖sk‖p · ‖∇pxf(xk)‖+

σk
r
‖sk‖r < 0

or, equivalently,
p∑
j=1

(
σk
pr
‖sk‖r −

1

j!
‖sk‖j · ‖∇jxf(xk)‖

)
< 0.

The inequality above cannot hold unless at least one of the terms on the left-hand
side is negative, which is equivalent to (3.2), using also that r > p ≥ 1.

Let us assume that f ∈ Cp,βp , namely,
(A.1) f ∈ Cp(F) and ∇pxf is Hölder continuous on the path of the iterates and trial

points; i.e.,

‖∇pxf(y)−∇pxf(xk)‖T ≤ (p− 1)!Lp‖y − xk‖βp

holds for all y ∈ [xk, xk+sk], k ≥ 0, and some constants Lp ≥ 0 and βp ∈ [0, 1],
where ‖ · ‖ is the Euclidean norm on Rn and ‖ · ‖T is recursively induced by
this norm on the space of the pth-order tensors.

A simple consequence of (A.1) is that

(3.3) |f(xk + sk)− Tp(xk, sk)| ≤ Lp
p
‖sk‖p+βp , k ≥ 0,

and

(3.4) ‖∇xf(xk + sk)−∇sTp(xk, sk)‖ ≤ Lp‖sk‖p+βp−1, k ≥ 0;

see [3] for a proof of (3.3) and (3.4), with (A.1) replacing Lipschitz continuity of the
pth derivative.

Remark 3.1. Note that throughout the paper we assume r > p ≥ 1, r ∈ R, and
p ∈ N; and that either p ≥ 1 and βp ∈ (0, 1] or p ≥ 2 and βp ∈ [0, 1]. Thus, in both
cases, p+ βp − 1 > 0.

Two useful preliminary lemmas follow.

Lemma 3.3. Assume that (A.1) holds. Then, on each iteration of Algorithm 2.1,
we have

(3.5) πf (xk + sk) ≤ Lp‖sk‖p+βp−1 + (σk + θ)‖sk‖r−1.

Proof. Using the triangle inequality and (2.1) with h
def
= f and h

def
= mk, we obtain

πf (xk + sk) = ‖PF [xk + sk −∇xf(xk + sk)]− PF [xk + sk −∇smk(xk + sk)]

+ PF [xk + sk −∇smk(xk + sk)]− (xk + sk)‖

≤ ‖PF [xk + sk −∇xf(xk + sk)]− PF [xk + sk −∇smk(xk + sk)]‖

+ πmk(xk + sk).
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The last inequality, the contractive property of the projection operator PF , and the
inner termination condition (2.8) give

(3.6) πf (xk + sk) ≤ ‖∇xf(xk + sk)−∇smk(xk + sk)‖+ θ‖sk‖r−1.

We have from (2.2) that

∇smk(xk + s) = ∇sTp(xk, s) + σk‖s‖r−1
s

‖s‖
and so
(3.7)
‖∇xf(xk + sk)−∇smk(xk + sk)‖ ≤ ‖∇xf(xk + sk)−∇sTp(xk, sk)‖+ σk‖sk‖r−1

≤ Lp‖sk‖p+βp−1 + σk‖sk‖r−1,

where we used (3.4) to obtain the second inequality. Now (3.5) follows from replacing
(3.7) in (3.6).

Lemma 3.4. Assume that (A.1) holds. If

(3.8) σk ≥ max{θ, κ2‖sk‖p+βp−r},

where

(3.9) κ2
def
=

rLp
p(1− η2)

,

then both ρk ≥ η2 and (2.10) hold, and so iteration k is very successful.

Proof. We assume that (3.8) holds, which implies that

(3.10) σk ≥ κ2‖sk‖p+βp−r.

The definition of ρk in (2.9) gives

|ρk − 1| = |f(xk + sk)− Tp(xk, sk)|
f(xk)− Tp(xk, sk)

,

whose numerator we upper bound by (3.3), and whose denominator we lower bound
by (3.1), to deduce

(3.11) |ρk − 1| ≤
Lp
p ‖sk‖

p+βp

σk
r ‖sk‖r

=
rLp
pσk
‖sk‖p+βp−r.

In (3.11), we employ (3.10) and the expression of κ2 in (3.9) to deduce that |1−ρk| ≤
1− η2, which ensures that ρk ≥ η2.

It remains to show that (3.8) also implies (2.10). From (3.8), we have that σk ≥ θ,
which, together with (3.5), gives

(3.12) πf (xk + sk) ≤ ‖sk‖p+βp−1(Lp + 2σk‖sk‖r−p−βp).

The definition (3.9) and requirements r > p and η2 ∈ (0, 1) imply that Lp ≤ κ2. This
and (3.12) give

(3.13) πf (xk + sk) ≤ ‖sk‖p+βp−1(κ2 + 2σk‖sk‖r−p−βp).

From (3.10), κ2 ≤ σk‖sk‖r−p−βp . We use this to bound κ2 in (3.13), which gives the
inequality

πf (xk + sk) ≤ ‖sk‖p+βp−1(3σk‖sk‖r−p−βp) = 3σk‖sk‖r−1.

Thus, σk‖sk‖r−1 ≥ 1
3πf (xk + sk), which implies (2.10) since α ≤ 1

3 .
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3.2. The case when r > p + βp. Using Lemmas 3.3 and 3.4, we have the
following result, which, together with its proof, was inspired by and generalizes the
result and proof in [19, Lemma 2.3].

Lemma 3.5. Let r > p + βp and assume (A.1). While Algorithm 2.1 has not
terminated, if

(3.14) σk ≥ max
{
θ, κ1ε

p+βp−r
p+βp−1

}
,

where

(3.15) κ1
def
= (3r−p−βpκr−12 )

1
p+βp−1 and κ2 is defined in (3.9),

then (3.8) holds, and so iteration k is very successful.

Proof. We will prove our result by contradiction. We assume that (3.8) does not
hold on iteration k, and so

(3.16) σk‖sk‖r−p−βp < κ2.

Note that while Algorithm 2.1 does not terminate we have πf (xk + sk) ≥ ε. Also,
from (3.14), σk ≥ θ. We substitute these two inequalities into (3.5) to deduce

(3.17) ε ≤ Lp‖sk‖p+βp−1 + 2σk‖sk‖r−1 = ‖sk‖p+βp−1(Lp + 2σk‖sk‖r−p−βp).

We now employ (3.16) to upper bound the second term in (3.17) by 2κ2, namely,

(3.18) ε < ‖sk‖p+βp−1(Lp + 2κ2).

We use (3.16) again to provide an upper bound on ‖sk‖, which is possible since
r > p+ βp. Thus,

(3.19) ‖sk‖ ≤
(
κ2
σk

) 1
r−p−βp

.

Using this bound in (3.18), which is possible since p + βp > 1, we obtain the first
inequality below,

(3.20) ε <

(
κ2
σk

) p+βp−1

r−p−βp

(Lp + 2κ2) <

(
κ2
σk

) p+βp−1

r−p−βp

· (3κ2),

where to obtain the second inequality, we use that Lp < κ2, which in turn follows from
(3.9), r > p, and η2 ∈ (0, 1). Finally, (3.20) and the definition of κ1 in (3.15) imply

that σk < κ1ε
p+βp−r
p+βp−1 , which contradicts (3.14). Thus, (3.8) must hold and Lemma 3.4

implies that ρk ≥ η2 and (2.10) hold, and so k is very successful.

Remark 3.2. (a)(Parameter regime.) The proof of Lemma 3.5 requires r > p+βp
and p + βp > 1 (to deduce (3.19) and (3.20), respectively). However, the result
of Lemma 3.5 remains true if r = p + βp, and it is proved together with the case
when r < p + βp in Lemma 3.10. Note that, when r = p + βp, (3.14) becomes
σk ≥ max{θ, κ2}, which precisely matches the corresponding expression (3.32) in
Lemma 3.10 for this same case.

(b) (Condition (2.10).) Without employing (2.10), we showed inequality (3.5),
which connects the length of the step to that of the projected gradient. The two
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terms on the right-hand side of (3.5) have similar forms as powers of ‖sk‖, with the
exponents crucially determined by Hölder continuity properties of the objective and
the power of the regularization term in the model, respectively. Lemmas 3.4 and 3.5
proved that if σk is sufficiently large, then the second term in (3.5), namely, σk‖sk‖r−1,
will be larger than the term that is a multiple of ‖sk‖p+βp−1, thus ensuring that (2.10)
holds. To further explain this point, note that in (3.5), when r > p+βp and ‖sk‖ ≤ 1
(which is the difficult case), the larger term on the right-hand side is a multiple of
‖sk‖p+βp−1 when σk is larger than a constant. Lemma 3.5 showed that if σk is further
increased, in an ε-dependent way, then the term that is a multiple of ‖sk‖r−1 in (3.5)
becomes the larger of the two terms.

Lemma 3.6. Let r > p + βp and assume (A.1). Then, while Algorithm 2.1 has
not terminated, we have

(3.21) σk ≤ max

{
σ0, γ2θ, γ2κ1ε

p+βp−r
p+βp−1

}
,

where κ1 is defined in (3.15).

Proof. Let the right-hand side of (3.14) be denoted by σ. It follows from Lemma
3.5 and the mechanism of the algorithm that

(3.22) σk ≥ σ =⇒ σk+1 ≤ σk.

Thus, when σ0 ≤ γ2σ, it follows that σk ≤ γ2σ, where the factor γ2 is introduced for
the case when σk is less than σ and the iteration k is not very successful. Letting
k = 0 in (3.22) gives (3.21) when σ0 ≥ γ2σ since γ2 > 1.

We are ready to establish an upper bound on the number of successful iterations
until termination.

Theorem 3.7. Let r > p+ βp, ε ∈ (0, 1], and assume (A.1) holds and {f(xk)} is
bounded below by flow. Then, for all successful iterations k until the termination of
Algorithm 2.1, we have

(3.23) f(xk)− f(xk+1) ≥ κs,pε
p+βp
p+βp−1 ,

where

(3.24) κs,p
def
=

η1
r

(
αr

σmax

) 1
r−1

, σmax
def
= max{σ0, γ2θ, γ2κ1},

and κ1 is defined in (3.15). Thus, Algorithm 2.1 takes at most

(3.25)

⌊
f(x0)− flow

κs,p
ε
− p+βp
p+βp−1

⌋
successful iterations/evaluations of derivatives of degree 2 and above of f until termi-
nation.

Proof. On every successful iteration k, we have ρk ≥ η1; this and Lemma 3.1
imply

(3.26)

f(xk)− f(xk+1) ≥ η1(f(xk)− Tp(xk, sk))

≥ η1
σk
r
‖sk‖r =

η1
r

(σk‖sk‖r−1)‖sk‖.
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On every successful iteration k we also have that (2.10) holds. Thus, while the algo-
rithm has not terminated we have

(3.27) σk‖sk‖r−1 ≥ αε and ‖sk‖ ≥
(
αε

σk

) 1
r−1

.

Substituting the first inequality and then the second inequality in (3.27) into (3.26),
we deduce

(3.28) f(xk)− f(xk+1) ≥ η1
r
αε‖sk‖ ≥

η1
r
αε

(
αε

σk

) 1
r−1

=
η1
r

(αε)
r
r−1

σ
1
r−1

k

.

We use that ε ∈ (0, 1] in (3.21) to deduce that

(3.29) σk ≤ σmaxε
p+βp−r
p+βp−1 ,

where σmax is defined in (3.24). We combine this upper bound with (3.28) to see that

f(xk)− f(xk+1) ≥ η1
r

(αε)
r
r−1σ

− 1
r−1

max ε
r−p−βp

(p+βp−1)(r−1) =
η1
r

(
αr

σmax

) 1
r−1

· ε
p+βp
p+βp−1 ,

which gives (3.23). Using that f(xk) = f(xk+1) on unsuccessful iterations, and that
f(xk) ≥ flow for all k, we can sum up over all successful iterations to deduce (3.25).

We are left with counting the number of unsuccessful iterations until termination,
and the total iteration and evaluation upper bounds.

Lemma 3.8. Let r > p + βp and ε ∈ (0, 1]. Then, for any fixed j ≥ 0 until
termination, Algorithm 2.1 satisfies

(3.30) |Uj | ≤
| log γ3|
log γ1

|Sj |+
1

log γ1
log

σmax

σ0
+

r − p− βp
(p+ βp − 1) log γ1

| log ε|,

where σmax is defined in (3.24).

Proof. We apply Lemma 2.1. To prove (3.30), we use ε ∈ (0, 1] and the upper
bound (3.29) in place of σup in (2.12).

Corollary 3.9. Let r > p+βp, ε ∈ (0, 1], and assume that (A.1) holds and that
{f(xk)} is bounded below by flow. Then Algorithm 2.1 takes at most
(3.31)⌊
f(x0)− flow

κs,p

(
1 +
| log γ3|
log γ1

)
ε
− p+βp
p+βp−1 +

r − p− βp
(p+ βp − 1) log γ1

| log ε|+ 1

log γ1
log

σmax

σ0

⌋
iterations/evaluations of f and its derivatives until termination, where κs,p and σmax

are defined in (3.24).

Proof. The proof follows from Theorem 3.7 and (3.30), where we let j denote the
first iteration with πf (xj + sj) < ε (i.e., the iteration where ARp terminates) and we
use j = |Sj |+ |Uj |.

Remark 3.3. (a) (Comment on σmin.) We note that the lower bound on σk,
σk ≥ σmin ≥ 0 for all k, imposed in (2.11), has not been employed in the above proofs
and it is also not needed when r = p+ βp. It seems that in the case when r ≥ p+ βp
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such a lower bound on σk may follow implicitly from (2.10). However, the requirement
involving σmin > 0 is needed for the case when r < p+ βp.

(b) (Comment on ε.) In our main complexity results (such as Corollary 3.9),
we have a restriction on the required accuracy tolerance ε ∈ (0, 1]; this restriction is
for simplicity and simplification of expressions, so as to capture dominating terms in
the complexity bounds. It is also intuitive, as we think of ε as (arbitrarily) “small”
compared to problem constants. Indeed, instead of an upper bound of 1 on ε, we
could have used a bound depending on problem constants such as Lp, which would
preserve the same dominating terms in the complexity bounds. However, as most
such problem constants are generally unknown, we prefer our approach, as it gives
the users/readers a concrete value they can use.

The constants in the bound (3.31) and their behavior with respect to increasing
values of p are discussed in section 3.4.

3.3. The case when p < r ≤ p+ βp. Note that p < r ≤ p+ βp imposes that
βp > 0 in this case. Also, note that the proof of Lemma 3.5 fails to hold for r ≤ p+βp.
Thus, we need a different approach to upper bounding σk here. In particular, we need
the following additional assumption (for the case when r < p+ βp).

(A.2) For j ∈ {1, . . . , p}, the derivative {∇jf(xk)} is uniformly bounded above with
respect to k, namely,

‖∇jf(xk)‖ ≤Mj for all k ≥ 0, j ∈ {1, . . . , p}.

We let

M
def
= max

1≤j≤p

{(
rp

j!σmin
Mj

) 1
r−j
}
,

where σmin is defined in (2.11).

Lemma 3.10. Let r ≤ p+ βp and assume (A.1). If r < p+ βp, assume also (A.2)
and σmin > 0. If

(3.32) σk ≥ max{θ, κ2Mp+βp−r},

where κ2 and M are defined in (3.9) and (A.2), respectively, then (3.8) holds, and so
iteration k is very successful.

Proof. If r = p+ βp, then (3.32) clearly implies (3.8) and so Lemma 3.4 applies.
If r < p + βp, then we upper bound ‖sk‖ by using (A.2) in (3.2), as well as

σk ≥ σmin, to deduce that ‖sk‖ ≤M , where M is defined in (A.2). Now (3.32) implies
(3.8) and so Lemma 3.4 again applies, yielding that iteration k is very successful.

We are ready to bound σk from above for all iterations.

Lemma 3.11. Let r ≤ p+ βp and assume (A.1). If r < p+ βp, assume also (A.2)
and σmin > 0. While Algorithm 2.1 has not terminated, we have

(3.33) σk ≤ max{σ0, γ2θ, γ2κ2Mp+βp−r} def
= σup,

where κ2 and M are defined in (3.9) and (A.2), respectively.

Proof. The proof follows a similar argument to that of Lemma 3.6, with (3.14)
replaced by (3.32). Note also that, as ε does not appear in the bound (3.32), (3.33)
yields a constant upper bound on σk that is valid for all k, irrespective of the required
accuracy level ε.
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We are now ready to upper bound the number of successful iterations of Algo-
rithm 2.1 until termination.

Theorem 3.12. Let r ≤ p+ βp, assume (A.1) and that {f(xk)} is bounded below
by flow. If r < p + βp assume also (A.2) and σmin > 0. Then for all successful
iterations k until the termination of Algorithm 2.1, we have

(3.34) f(xk)− f(xk+1) ≥ κs,rε
r
r−1 ,

where

(3.35) κs,r
def
=

η1
r

(
αr

σup

) 1
r−1

,

and σup is defined in (3.33). Thus, Algorithm 2.1 takes at most

(3.36)

⌊
f(x0)− flow

κs,r
ε−

r
r−1

⌋
successful iterations/evaluations of derivatives of degree 2 and higher of f until ter-
mination.

Proof. Note that (3.26), (3.27), and (3.28) continue to hold in this case (they only
use general ARp properties and the mechanism of the algorithm). Applying (3.33)
in (3.28), we deduce

(3.37) f(xk)− f(xk+1) ≥ η1
r

(αε)
r
r−1σ

− 1
r−1

up =
η1
r

(
αr

σup

) 1
r−1

· ε
r
r−1 ,

which gives (3.34).
Using that f(xk) = f(xk+1) on unsuccessful iterations, and that f(xk) ≥ flow for

all k, we can sum over all successful iterations to deduce (3.36).

We are left with counting the number of total iterations and evaluations.

Corollary 3.13. Let r ≤ p+ βp, and assume that (A.1) holds and that {f(xk)}
is bounded below by flow. If r < p + βp assume also (A.2) and σmin > 0. Then
Algorithm 2.1 takes at most

(3.38)

⌊
f(x0)− flow

κs,r

(
1 +
| log γ3|
log γ1

)
ε−

r
r−1 +

1

log γ1
log

σup
σ0

⌋
iterations/evaluations of f and its derivatives until termination, where κs,r and σup
are defined in (3.36) and (3.33), respectively.

Proof. We first upper bound the total number of unsuccessful iterations; for this,
we apply Lemma 2.1 to upper bound |Uj | with σup defined in (3.33). To prove (3.38)
holds, use (3.36) and (2.12), where we let j denote the first iteration with πf (xj+sj) <
ε (i.e., the iteration where ARp terminates), and we use j = |Sj |+ |Uj |.

Remark 3.4. (a) (Comment on σmin.) Note that σmin > 0 only appears/is used
in the complexity bounds for the regime r < p + βp (namely in the definition of the
constant M in (A.2)) and not for the case when r = p+ βp (see also our Remark 3.3
(a)).

(b) (Condition (2.10).) We used (2.10) in the proof of Theorem 3.12 (namely,
in the use of (3.28) to deduce (3.37)) and hence for obtaining the main complexity
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result in the regime p < r ≤ p + βp. This was, however, not strictly necessary
for obtaining same-order complexity bounds (albeit with different constants) in this
parameter regime, and was done for simplicity and coherence of the algorithm and
results with the regime r > p+βp (for which (2.10) is needed), and for practicality as
βp is not known a priori. Let us briefly outline how one could bypass the use of (2.10)
in the proof of Theorem 3.12. Note first that, in this regime, (2.10) implies, given the

constant upper bound (3.33), that ‖sk‖ ≥ constant × ε
1
r−1 . A similar lower bound

on sk can be obtained directly from (3.5) (rather than from (2.10)) as follows: when
‖sk‖ ≤ 1, (3.5) implies (σk+θ+κ2)‖sk‖r−1 ≥ ε; thus, using the constant upper bound

(3.33) on σk, ‖sk‖ ≥ min{1, constantnew×ε
1
r−1 }. Using the latter bound in (3.26), and

that σk ≥ σmin and ε ∈ (0, 1], we can deduce a same-order bound (in ε) as in (3.34).
This line of proof is remindful of techniques used in [3] (for the case when βp = 1 and
r = p+ 1).

(c) (The Lipschitz continuous case.) Letting βp = 1 (i.e., the pth-order derivative
is Lipschitz continuous) and r = p+ 1 recovers the complexity bounds in [3], namely,

O(ε−
p+1
p ) (albeit with different constants), and shows these bounds continue to hold

for any r ≥ p + 1. Note, however, that condition (2.10) is not needed in the ARp
algorithm in [3]. Part (b) above explains that (2.10) is not strictly needed for the
complexity bounds in the regime r ≤ p + βp (which includes the case when βp = 1
and r = p+ 1) for our ARp variant, which clarifies the connection with the algorithm
in [3].

(d) (The case when r = p+βp.) Despite their different proofs, when r = p+βp, the
complexity bound (3.38) is identical to the (limit of the) bound (3.31). Comparing the
expressions of these two bounds, we find that r = p+ βp implies that the | log ε| term
in (3.31) vanishes, and that the two complexity bounds clearly agree, provided κs,p =
κs,r and σmax = σup. Furthermore, the definitions (3.24) and (3.35) trivially imply
κs,p = κs,r if σmax = σup. Finally, to see the latter identity, use the corresponding
definitions in (3.24) and (3.33) and note that r = p + βp yields κ1 = κ2, where κ1 is
defined in (3.15).

The constants in the bound (3.38) and their behavior with respect to increasing
values of p are discussed in section 3.4.

3.4. The constants in the complexity bounds. In this section we extract
the key constants and expressions in the complexity bounds (3.31) and (3.38) with
respect to p and r and show that in important cases they stay finite as p grows, for
some suitable choices of algorithm parameters.

The case when r = p + 1, βp ∈ [0, 1], p ≥ 2. In this case, the complexity
bound (3.31) applies for βp ∈ [0, 1). When βp = 1 (the Lipschitz continuous case),
the bound (3.38) holds; however, in Remark 3.4(d), we showed that (3.38) and (the
limit of) (3.31) coincide when r = p + βp = p + 1. Hence, without loss of generality,
we focus on estimating (3.31) for any βp ∈ [0, 1]. Again without prejudice, we ignore
algorithm parameters (namely, γ1, γ2, and γ3) that are independent of p, as they can
easily be fixed. Then, (3.31) is a constant multiple of

(3.39)

⌊
f(x0)− flow

κs,p
ε
− p+βp
p+βp−1 +

(1− βp)| log ε|
p+ βp − 1

+ log
σmax

σ0

⌋
.

From (3.9) and (3.15), we deduce

(3.40) κ2 = O(Lp) and κ1 = 3
1−βp
p+βp−1κ

p
p+βp−1

2 = O
(
L

p
p+βp−1

p

)
,
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and hence, from (3.24),

(3.41)

σmax = max{σ0, γ2θ, γ2κ1} and

1

κs,p
= O

(
(p+ 1)σ

1
p
max

)
= O

(
(p+ 1) max

{
σ

1
p

0 , θ
1
p , L

1
p+βp−1

p

})
,

where we note that the term (p+1) arises from the denominator of (2.2) and r = p+1.
Note that, for simplicity of calculation, the Hölder constant Lp in (A.1) was scaled
by (p− 1)!. Thus, letting L denote the usual/unscaled Hölder constant, we have

(3.42) L
def
= (p− 1)!Lp,

where we assume that L is independent or stays bounded with p. (Of course, L and
Lp can have further implicit dependencies on p, which are difficult to make precise.)

Taking (3.42) explicitly into account and using Stirling’s formula {(p − 1)! ∼
[(p− 1)/e]p−1

√
2π(p− 1)}, we deduce

(3.43)

lim
p→∞

(p+ 1)L
1

p+βp−1

p = lim
p→∞

(p+ 1)

(
L

(p− 1)!

) 1
p+βp−1

= lim
p→∞

(p+ 1)L
1

p+βp−1 [2π(p− 1)]
− 1

2(p+βp−1)

(
p− 1

e

)− p−1
p+βp−1

= lim
p→∞

(
L√
2π

) 1
p+βp−1

× lim
p→∞

(p+ 1)(p− 1)
− 1

2(p+βp−1)

(
p− 1

e

)− p−1
p+βp−1

= 1× lim
p→∞

(p− 1)
− 1

2(p+βp−1) e
p−1

p+βp−1
p+ 1

(p− 1)
p−1

p+βp−1

= 1× e× 1 = e,

where we used the standard limits limu→∞ u
1
u = 1 and limu→∞ c

1
u = 1, where c > 0

is an arbitrary constant. This and (3.41) imply that

lim
p→∞

1

κs,p
<∞,

provided that

(3.44) (p+ 1)σ
1
p

0 <∞ and (p+ 1)θ
1
p <∞ as p→∞.

The limits in (3.44) can be achieved without difficulty by suitable choices/scalings of
σ0 and θ, which are user-chosen algorithm parameters. In particular, let

(3.45) σ0
def
=

σ0

(p− 1)!
and θ

def
=

θ

(p− 1)!

for any constants σ0 and θ independent of p; Stirling’s formula applied to (p−1)! and
similar calculations to (3.43) can be used to show that (3.45) satisfy (3.44).
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The second term in the sum (3.39) either vanishes when βp = 1 or converges to
zero as p→ 0. Proceeding to the third term in the sum (3.39), we have the following:
from (3.40) and (3.42), we deduce κ1 → 0 as p→∞ and so, irrespective of the scaling
of σ0 and θ, 1 ≤ σmax/σ0 <∞. Thus, the last term in (3.39) is finite.

We can safely conclude now that, as p→∞, all constants in (3.39) stay bounded
or converge to zero for appropriate choices of σ0 and θ, and so, using also that ε ∈ (0, 1],
the bound (3.31) approaches O(ε−1).

The above discussion of limiting constants can be easily extended, with similar
results, to any r = ap+ b with a, b > 0 independent of p, provided r > p+ βp.

Note also that the more practical case is when p is fixed and ε can be made
arbitrarily small; then, the bound (3.31) is well defined for all algorithm and problem
parameter choices, allowing the use of simplified constants and unscaled parameters
in the analysis.

The case when r = p+βp, βp ∈ [0, 1], p ≥ 2. In this case, the bound (3.38)
applies (note that the case when βp = 1 was already addressed in the first case of
this section). The constants in (3.38) stay bounded as p grows, provided σ0 and θ are
scaled according to (3.45). Indeed, one can show this very similarly to the case when
r = p+ 1 above, using (3.9), (3.35), and (3.42) to obtain the following estimates:

κ2 = O(Lp) = O
(

L

(p− 1)!

)
, σup = max{σ0, γ2θ, γ2κ2} = O(max{σ0, θ, Lp}).

Letting r = p+ βp in (3.35), we have

1

κs,r
= O

(
rσ

1
r−1
up

)
= O

(
(p+ βp)σ

1
p+βp−1

up

)

= O
(

(p+ βp)(max{σ0, θ, Lp})
1

p+βp−1

)
<∞ as p→∞,

where the limit follows similarly to (3.43), using also (3.45). As p grows and as a
function of ε, (3.38) approaches the same well-defined limit as (3.31), namely, O(ε−1).

The case when p < r < p+ βp, βp ∈ [0, 1], p ≥ 2. In this case, the bound
(3.38) applies. However, the limiting constants in (3.38) depend crucially on M in
(A.2), which grows unbounded with p.

4. Discussion of complexity bounds.

4.1. The cubic regularization algorithm. We now particularize our algo-
rithm and results to the case when p = 2 and r = p + 1, which yields a cubic
regularization model (2.2) and algorithm, with condition (2.10), namely,

(4.1) σk‖sk‖2 ≥ απf (xk + sk),

imposed on any successful step sk, and which allows σmin = 0 in (2.11).

Corollary 4.1. Let p = 2, r = 3, and ε ∈ (0, 1]. Assume that f ∈ C2(F), and
∇2
xf is Hölder continuous on the path of the iterates and trial points with exponent

β2 ∈ [0, 1]. Let {f(xk)} be bounded below by flow. Then, for all successful iterations
k until the termination of Algorithm 2.1, we have

(4.2) f(xk)− f(xk+1) ≥ κs,2ε
2+β2
1+β2 ,
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where

(4.3) κs,2
def
=

η1
3

(
α3

σmax

) 1
2

, σmax
def
= max {σ0, γ2θ, γ2κ1} ,

and κ1
def
= 3

3−β2
1+β2

[
L2

2(1−η2)

] 2
1+β2

. Thus, Algorithm 2.1 takes at most

(4.4)

⌊
f(x0)− flow

κs,2
ε−

2+β2
1+β2

⌋
successful iterations/evaluations of derivatives of degree 2 of f until termination, and
at most
(4.5)⌊

f(x0)− flow
κs,2

(
1 +
| log γ3|
log γ1

)
ε−

2+β2
1+β2 +

1− β2
(1 + β2) log γ1

| log ε|+ 1

log γ1
log

σmax

σ0

⌋
iterations/evaluations of f and its first and second derivatives until termination, where
κs,2 and σmax are defined in (4.3).

Proof. Clearly, the results follow from Corollary 3.9 for p = 2, r = 3, and β2 ∈
[0, 1), and from Corollary 3.13 for p = 2, r = 3, and β2 = 1. We note the key
ingredients that are needed to obtain (4.2), with the remaining results following from
standard telescopic sum arguments and from Lemma 2.1, respectively. Lemmas 3.6
and 3.11 provide the following upper bound on σk:

σk ≤ σmaxε
− 1−β2

1+β2 , k ≥ 0.

On successful steps, this bound and condition (4.1) (which is (2.10)) are then substi-
tuted into the objective decrease condition (3.26), which here takes the form

f(xk)− f(xk+1) ≥ η1
3
σk‖sk‖3 ≥

η1
3
αε

(
αε

σk

) 1
2

≥ η1
3

(
α3

σmax

) 1
2

ε
3
2 .

The impact of the value of β2 ∈ [0, 1] can be seen in the bound (4.5); for example,
when β2 = 1, the | log ε| term disappears, in agreement with known bounds for ARC
[9]. Note that, as a function of ε, Corollary 4.1 matches corresponding bounds in [19]
(for different cubic regularization variants) and extends them to convex constraints,
allowing inexact subproblem solutions. Our purpose here is also to allow p ≥ 2, and
a discussion of the bounds we obtained follows.

4.2. General discussion of the complexity bounds. Table 4.1 gives a sum-
mary of our complexity bounds as a function of r and q.

Several remarks and comparisons are in order concerning these bounds.
• The first-order case. Note that the case when p = 1 is also covered, with a more

general quadratic model and using a Cauchy analysis, in [11]; the same complexity
bounds as in Table 4.1 ensue (as a function of the accuracy) for p = 1; the case when
β1 = 0 is also not covered in [11].
• Sharpness. For unconstrained problems (F = Rn), the bound for the case when

p = 1 and r ≥ 1 + β1, β1 ∈ (0, 1], was shown to be sharp in [11]. Also, the bounds
for ARp with p = 2 and 2 < r ≤ 2 + β2, β2 ∈ (0, 1], are sharp and optimal for the
corresponding smoothness classes [10]. We also note that, for general p, r = p+1, and
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Table 4.1
Summary of complexity bounds for regularization methods for ranges of r. Recall that we

assumed ε ∈ (0, 1], r > p ≥ 1, r ∈ R, and p ∈ N; and either p ≥ 1 and βp ∈ (0, 1], or p ≥ 2 and
βp ∈ [0, 1]. Also, the ranges in the second column are functions of the dominating terms in ε and

varying r in the appropriate interval and plot the changing bound O(ε
r
r−1 ).

Algorithm p < r ≤ p+ βp p+ βp < r

ARp with p = 1 O
(
ε
− r
r−1

)
=
[
O
(
ε
− 1+β1

β1

)
,∞
)

O
(
ε
− 1+β1

β1

)
ARp with p = 2 O

(
ε
− r
r−1

)
=
[
O
(
ε
− 2+β2

1+β2

)
,O
(
ε−2
))

O
(
ε
− 2+β2

1+β2

)
ARp with p = 3 O

(
ε
− r
r−1

)
=
[
O
(
ε
− 3+β3

2+β3

)
,O
(
ε−

3
2

))
O
(
ε
− 3+β3

2+β3

)
...

...
...

ARp with p ≥ 2 O
(
ε
− r
r−1

)
=
[
O
(
ε
− p+βp
p+βp−1

)
,O
(
ε
− p
p−1

))
O
(
ε
− p+βp
p+βp−1

)

βp = 1 (the Lipschitz continuous case), [7] shows the bounds for (possibly randomized)
ARp variants (in [3]) are sharp and optimal. The difficult example functions in [7]
increase in dimension with p, in contrast to the uni- or bivariate examples in [11, 10].
• Continuity. All bounds vary continuously with r and βp ∈ [0, 1]. In particular,

when r = p+ βp, the complexity bounds in the second and third columns match (for
a given p and βp) (see also Remark 3.4(d)).
• Universality [21, 23, 19]. For fixed p and βp, the best complexity bounds are

obtained when r ≥ p+ βp. These bounds do not depend on the regularization power
r, and even though the smoothness parameter βp is (usually) unknown, its value is
captured accurately in the complexity, even for the case when βp = 0 and p ≥ 2. Note
that the values of the complexity bounds as a function of the accuracy indicate that
one should choose r ≥ p+ 1 to achieve the best complexity when βp is unknown; and
there seems to be little reason, from an evaluation complexity point of view, to pick
anything other than r = p+ 1. (But, note that, as a benefit of using (2.10), one can
simplify ARp’s construction by not imposing a lower bound σmin in the σk update
(2.11).)
• Complexity values in the order of the accuracy. Table 4.1 shows the increasingly

good complexity obtained as p grows and βp ∈ [0, 1], namely, as more derivatives
become available and the smoother these derivatives are. In particular, purely as a
function of ε and as r varies, we obtain the following ranges of complexity powers:
[ε−2,∞) (p = 1); [ε−

3
2 , ε−2] (p = 2); [ε−

4
3 , ε−

3
2 ] (p = 3); [ε−

5
4 , ε−

4
3 ] (p = 4); and so on.

• The Lipschitz continuous case. Letting βp = 1 (namely, the pth-order derivative
is Lipschitz continuous) and r = p+ 1 in Table 4.1 recovers the complexity bounds in

[3], namely, O(ε−
p+1
p ); see also Remark 3.4(c). Furthermore, the results here show that

for our ARp variant this complexity bound continues to hold for any regularization
power r ≥ p+ 1.
• Loss of smoothness. Note that, for fixed p ≥ 2, βp = 0 corresponds to the case

when the objective has the highest level of nonsmoothness compared to βp ∈ (0, 1].
Then ARp can still be applied, and the good complexity bounds for the case when
r ≥ p+ βp ≥ 2 hold.
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• Constants in the complexity bounds. The constants in the complexity bounds
for r ≥ p+βp stay bounded (above) as p grows, provided some user-chosen algorithm
parameters are suitably scaled and that r = O(p) (see section 3.4). Thus, these
complexity bounds remain valid with growing p and approach O(ε−1).

5. Conclusions. We have generalized and modified the regularization methods
in [3] to allow for varying regularization power, accuracy of Taylor polynomials, and
different (Hölder) smoothness levels of derivatives. Our results show the robustness
of the evaluation complexity bounds with respect to such perturbations. We found
that complexity bounds of regularization methods improve with growing accuracy of
the Taylor models and increasing smoothness levels of the objective. Furthermore,
when the regularization power r is sufficiently large (say r ≥ p+ 1) our modification
to ARp in the spirit of [19] allows ARp’s worst-case behavior to be independent of the
regularization power and to accurately reflect the (often unknown) smoothness level
of the objective. We have also generalized [3, 19] to problems with convex constraints
and inexact subproblem solutions. The question as to whether the complexity bounds
we obtained are sharp remains open when r 6= p + βp and p ≥ 3. This question is
particularly poignant in the case when p < r < p+ βp: could a suitable modification
of ARp achieve an (improved) evaluation complexity bound that is independent of
the regularization power in this case as well?
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