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a b s t r a c t

This paper examines worst-case evaluation bounds for finding
weak minimizers in unconstrained optimization. For the cubic
regularization algorithm, Nesterov and Polyak (2006) [15] and
Cartis et al. (2010) [3] show that at most O(ϵ−3) iterations may
have to be performed for finding an iterate which is within ϵ of
satisfying second-order optimality conditions. We first show that
this bound can be derived for a version of the algorithm,which only
uses one-dimensional global optimization of the cubic model and
that it is sharp.We next consider the standard trust-regionmethod
and show that a bound of the same type may also be derived for
this method, and that it is also sharp in some cases. We conclude
by showing that a comparison of the bounds on the worst-case
behaviour of the cubic regularization and trust-region algorithms
favours the first of these methods.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider algorithms for the solution of the unconstrained (possibly nonconvex) optimization
problem

min
x

f (x) (1.1)

where we assume that f : Rn
→ R is smooth (in a sense to be specified later) and bounded below.

All methods for the solution of (1.1) are iterative and, starting from some initial guess x0, generate a
sequence {xk} of iterates approximating a critical point of f . Many such algorithms exist, and they are
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often classified according to their requirements in terms of computing derivatives of the objective
function. In this paper, we focus on second-order methods, that is, methods which evaluate the
objective function f (x), its gradient g(x) and its Hessian H(x) (or an approximation thereof) at every
iteration. The advantage of these methods is that they can be expected to converge to solutions x∗

satisfying the second-order optimality conditions
∇xf (x∗) = 0, and λmin(H(x∗)) ≥ 0 (1.2)

where λmin(A) is the smallest eigenvalue of the symmetric matrix A, rather than only satisfying first-
order optimality (i.e., the first of these relations). In practice, however, a second-order algorithm is
typically terminated as soon as an iterate xk is found which is within ϵ of satisfying (1.2), that is, such
that

∥∇xf (xk)∥ ≤ ϵg and λmin(H(xk)) ≥ −ϵH , (1.3)
for some user-specified tolerances ϵg , ϵH ∈ (0, 1), where ∥·∥ denotes the Euclidean norm. It is then of
interest to bound the number of iterations which may be necessary to find an iterate satisfying (1.3)
as a function of the thresholds ϵg and ϵH . It is the purpose of worst-case complexity analysis to derive
such bounds. Many results are available in the literature for the case where the objective function f
is convex (see, for instance, [13,14,12,1]). The convergence to approximate first-order points in the
nonconvex case has also been investigated for some time (see [16–18,15,10,3–5,8], or [19]).

Of particular interest here is the Adaptive Regularization with Cubics (ARC) algorithm
independently proposed by Griewank [11], Weiser et al. [20] and Nesterov and Polyak [15], whose
worst-case complexity was shown in the last of these references to be of O(ϵ

−3/2
g ) iterations for

finding an iterate xk satisfying the approximate first-order optimality conditions (the first relation
in (1.3) only) and of O(ϵ−3

H ) iterations for finding an iterate xk satisfying the whole of (1.3).1 These
results were extended by Cartis et al. [3] to an algorithm no longer requiring the computation of
exact second-derivatives (but merely of a suitably accurate approximation), nor an (also possibly
approximate) knowledge of the objective function’s Hessian’s Lipschitz constant. More importantly,
these authors showed that theO(ϵ

−3/2
g ) complexity bound for convergence to first-order critical points

can be achievedwithout requiringmulti-dimensional global optimization of the cubicmodel (see [6]).
However, such a global minimization on nested Krylov subspaces of increasing dimensions was still
required to obtain the O(ϵ−3

H ) convergence to second-order critical points.
The present paper focuses on worst-case complexity bounds for convergence to second-order

critical points and shows that, as in the first-order case, multi-dimensional global minimization of
the cubic model is unnecessary for obtaining the mentioned O(ϵ−3

H ) bound for the ARC algorithm.
This latter bound is also shown to be sharp. We also prove that a bound of the same type holds for the
standard trust-region method. Moreover, we show that it is also sharp for a range of relative values of
ϵg and ϵH . We finally compare the known bounds for the ARC and trust-region algorithms and show
that the ARC algorithm is always as good or better from this point of view.

The ARC algorithm is recalled in Section 2 and the associated complexity bounds are derived
without multi-dimensional global minimization. Section 3 then discusses an example showing that
the bound on convergence of the ARC algorithm to approximate second-order critical points is sharp. A
bound of this type is derived in Section 4 for the trust-regionmethods, its sharpness for suitable values
of ϵg and ϵH is demonstrated, and the comparison with the ARC algorithm discussed. Conclusions and
perspectives are finally presented in Section 5.

2. The ARC algorithm and its worst-case complexity

The Adaptive Regularization with Cubics (ARC) algorithm is based on the approximate
minimization, at iteration k, of the (possibly nonconvex) cubic model

mk(s) = ⟨gk, s⟩ +
1
2
⟨s, Bks⟩ +

1
3
σk∥s∥3, (2.1)

1 It appears that this latter result is the first worst-case complexity bound for convergence to approximate second-order
critical points ever proved.
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were ⟨·, ·⟩ denotes the Euclidean inner product. Here Bk is a symmetric n × n approximation of
H(xk)

def
= Hk, σk > 0 is a regularization weight and gk = ∇xmk(0) = ∇xf (xk). By ‘‘approximate

minimization’’, we mean that a step sk is computed to ensure the following conditions.
We first require that the step satisfies the conditions

⟨gk, sk⟩ + ⟨sk, Bksk⟩ + σk∥sk∥3
= 0 (2.2)

and

⟨sk, Bksk⟩ + σk∥sk∥3
≥ 0. (2.3)

As noted in [3], these conditions must hold if sk is a global minimizer of mk along the direction sk, that
is if argminα∈R mk(αsk) = 1 (see Lemma 3.2 in [2]). In order to guarantee convergence to first-order
critical points, we also require the familiar ‘‘Cauchy condition’’

mk(sk) ≤ mk(sCk) (2.4)

with

sCk = −αC
k gk and αC

k = argmin
α≥0

mk(−αgk). (2.5)

Because we are, in addition, interested in convergence to second-order critical points, we also
require the following variant of the ‘‘eigencondition’’ whenever Bk is not positive semi-definite (see
Section 6.6.1 in [9]): we require in that case that

mk(sk) ≤ mk(sEk), (2.6)

where

sEk = αE
kuk and αE

k = argmin
α≥0

mk(αuk), (2.7)

with uk being an approximate eigenvector of Bk associatedwith its smallest eigenvalue λmin(Bk)
def
= τk,

in the sense that

⟨gk, uk⟩ ≤ 0 and ⟨uk, Bkuk⟩ ≤ κsncτk∥uk∥
2 (2.8)

for some constant κsnc ∈ (0, 1]. The knowledge of τk and uk may be obtained, for instance, by applying
the (inverse) powermethod to Bk. Note thatwe require theminimization in (2.5) and (2.7) to be global,
whichmeans that (2.2) and (2.3) also holdwith sk replaced by sCk and sEk . Finally, wemay also optionally
require that

∥∇xmk(sk)∥ = ∥gk + Bksk + σk∥sk∥sk∥ ≤ κθ min[1, ∥sk∥]∥gk∥, (2.9)

for some given constant κθ ∈ (0, 1) if we wish to accelerate the convergence to first-order critical
points.

Remarkably, conditions (2.2)–(2.9) can all be ensured algorithmically and hold, in particular, if
sk is a global minimizer of mk (see [11,15], see also [2,7]) which can be computed in polynomial
time (see Section 5.1 of [15]). We also note that, if sk is computed as the global minimizer of mk in
a subspace Lk containing the gradient and satisfies (2.9), then all the above conditions also hold
with uk = Qkwk, where τk and wk are respectively the most negative eigenvalue of Q T

k BkQk and
its corresponding eigenvector, and Qk is an orthonormal basis of Lk. We also note that they require
global minimization of the cubic model along −gk, (possibly) uk and sk, but that global minimization
in subspaces of dimension larger than one is not necessary.

The ARC algorithm may then be stated as presented on the following page. In this description, we
assume that the constants satisfy 1 ≤ γ1 ≤ γ2, 0 < η1 ≤ η2 < 1 and σ0 ≥ σmin > 0.
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Algorithm 2.1: ARC algorithm

Step 0: A starting point x0, an initial and aminimal regularization parameter σ0 ≥ σmin, and user-
defined accuracy thresholds ϵg , ϵH ∈ (0, 1) are given. Set k = 0.

Step 1: If conditions (1.3) hold, terminate with approximate solution xk.
Step 2: Compute a Hessian approximation Bk and a step sk satisfying (2.2)–(2.9).
Step 3: Compute f (xk + sk) and

ρk =
f (xk) − f (xk + sk)

−mk(sk)
. (2.10)

Set xk+1 = xk + sk if ρk ≥ η1, or xk+1 = xk otherwise.
Step 4: Set

σk+1 ∈


[σmin, σk] if ρk > η2, [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.11)

Increment k by one and return to Step 1.

Let S denote the index set of all successful or very successful iterations in the sense of (2.11), and
define

Sj = {k ∈ S | k ≤ j} and Uj = {0, . . . , j} \ Sj, (2.12)

the sets of successful and unsuccessful iterations up to iteration j.
Wenow recall themain complexity results for thismethod, aswell as the assumptions underwhich

these hold. We first restate our assumptions.

A.1: The objective function f is twice continuously differentiable on Rn and its gradient and Hessian
are Lipschitz continuous on the path of iterates with Lipschitz constants Lg and LH , i.e., for all
k ≥ 0 and all α ∈ [0, 1],

∥∇xf (xk) − ∇xf (xk + αsk)∥ ≤ Lgα∥sk∥ (2.13)

and

∥∇xxf (xk) − ∇xxf (xk + αsk)∥ ≤ LHα∥sk∥. (2.14)

A.2: The objective function f is bounded below, i.e. there exists a constant flow such that, for all x ∈ Rn,

f (x) ≥ flow.

A.3: For all k ≥ 0, the Hessian approximation Bk satisfies

∥Bk∥ ≤ κB (2.15)

and

∥(∇xxf (xk) − Bk)sk∥ ≤ κBH∥sk∥2 (2.16)

for some constants κB > 1 and κBH > 0.

The complexity analysis presented below involves a number of constants which depend on the
problem formulation (but not on its dimension) and on the algorithm. More specifically, these
constants depend on (a subset of) the Lipschitz constants Lg and LH , the distance between the initial
objective value and a lower bound on the global optimum f (x0) − flow, the uniform upper bound κB
and κBH on the approximate Hessians Bk and on the difference ∥Hk − BK∥ respectively, and the user-
chosen algorithm parameters, namely γ1, γ2, η1, η2, σ0, σmin, κsnc and κθ , but we refrain from giving
the specific sublist for each considered constant for improved readability.

We start by noting that the formof the cubicmodel (2.1) and (2.2)–(2.3) ensure a remarkable bound
on the step norm and model decrease.
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Lemma 2.1 (Lemma 4.2 in [3]). We have that

mk(sk) ≤ −
1
6
σk∥sk∥3. (2.17)

Note that, since (2.2) and (2.3) hold with sk replaced by sCk and sEk and mentioned above, (2.17) thus
also holds with sk replaced by sCk and sEk . For our purposes it is also useful to consider the following
bounds on the value of the regularization parameter.

Lemma 2.2. Suppose that (2.13) and (2.15) hold. Then there exists a constant κσ > 0 such that, for all
k ≥ 0

σk ≤ max

σ0,

κσ

ϵg


. (2.18)

If, in addition, (2.14) and (2.16) also hold, then there exists a constant σmax > 0 independent of ϵg and
ϵH such that, for all k ≥ 0,

σk ≤ σmax. (2.19)

Proof. See Lemmas 3.2 and 3.3 in [3] for the proof of (2.18) and Lemma 5.2 in [2] for that of (2.19). �

A first complexity bound can then be derived.

Lemma 2.3 (Corollary 3.4 in [3]). Assume that (2.13), A.2 and (2.15) hold. Then there exists a constant
κ0
ARC,S > 0 such that N1

ARC,S, the total number of successful and very successful iterations of the ARC
algorithm with ∥gk∥ ≥ ϵg , is bounded above by ⌈κ0

ARC,Sϵ
−2
g ⌉.

If we are ready to strengthen our assumption by assuming (2.14) and to impose (2.9), then,
crucially, the step sk can then be proved to be sufficiently long compared to the gradient’s norm at
iteration k + 1.

Lemma 2.4 (Lemma 5.2 in [3]). Suppose that A.1,A.3 and (2.9) hold. Then, for all k ≥ 0, one has that,
for some κg > 0,

∥sk∥ ≥ κg


∥∇xf (xk + sk)∥. (2.20)

Combining (2.17) with this last result, it is then not difficult to show the second complexity result.

Lemma 2.5 (Corollary 5.3 in [3]). Suppose that A.1–A.3 and (2.9) hold. Then there exists a constant
κ1
ARC,S > 0 such that N1

ARC,S (as defined in Lemma 2.3) is bounded above by ⌈κ1
ARC,Sϵ

−3/2
g ⌉.

The final important observation in the first-order analysis is that the total number of iterations
required by the ARC algorithm to terminate may be bounded in terms of the number of successful
iterations needed.

Lemma 2.6 (Theorem 2.1 in [3]). For any fixed j ≥ 0, let Sj andUj be defined by (2.12). Then one has that

|Uj| ≤


(|Sj| + 1)

1
log γ1

log


σmax

σmin


. (2.21)

We may now use this last result with Lemmas 2.3 and 2.5, and deduce the following worst-case
bounds.

Theorem 2.7 (See Corollary 5.5 in [3]). Suppose that (2.13), A.2 and (2.15) hold. Then, the ARC algorithm
produces an iterate xk satisfying the first part of (1.3) after at most

⌈κ1st
ARC,Sϵ

−2
g ⌉ (2.22)
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successful iterations and at most

⌈κ1st
ARCϵ

−2
g ⌉ (2.23)

iterations in total, where κ1st
ARC,S and κ1st

ARC are positive constants. Moreover, if (2.9) and (2.14) also hold,
then the bounds (2.22) and (2.23) respectively become

⌈κ1st
ARC,Sϵ

−3/2
g ⌉ and ⌈κ1st

ARCϵ
−3/2
g ⌉. (2.24)

The bounds (2.24) are known to be qualitatively2 tight and optimal for a wide class of second-order
methods (see [4,5]).

After reviewing the complexity of convergence to first-order critical points, we now turn to the
analysis of the number of iterations necessary to ensure the second part of (1.3) under our present
assumptions (which do not require multi-dimensional global model minimization).

Lemma 2.8. Suppose that A.1–A.3 hold. Then there exists a constant κ2
ARC,S > 0 such that N2

ARC,S, the
total number of successful and very successful iterations of the ARC algorithm with τk < −ϵH , is bounded
above by ⌈κ2

ARC,Sϵ
−3
H ⌉.

Proof. We first note that, when τk < 0, sEk gives a minimizer of the model in the direction uk by (2.7),
from which we derive, using (2.3) for sEk , that, for all k ≥ 0,

σk∥sEk∥ ≥ −
⟨sEk, BksEk⟩

∥sEk∥2
≥ κsnc|τk|, (2.25)

where we have used (2.8) to derive the last inequality. Combining this bound with (2.17) applied for
sEk , and (2.19), we then obtain that

− mk(sk) ≥ −mk(sEk) ≥
κsnc|τk|

3

6σ 2
k

≥
κsnc

6σ 2
max

|τk|
3

≥
κsncϵ

3
H

6σ 2
max

(2.26)

for all k such that the second part of (1.3) fails. If we now restrict our attention to the subset of
those iterations which are successful or very successful, we obtain, using A.2 and the monotonically
decreasing nature of the sequence {f (xk)}, that

f (x0) − flow ≥


k=0,k∈S

(f (xk) − f (xk+1)) ≥ N2
ARC,S

η1κsncϵ
3
H

6σ 2
max

.

We therefore obtain the desired result with κ2
ARC,S

def
= 6σ 2

max(f (x0) − flow)/κsncη1. �

Aswas the case for convergence to first-order critical points,wemaynowcombine Lemmas 2.3 and 2.6
with our last result to obtain worst-case complexity bounds for convergence of the ARC algorithm to
approximate second-order critical points.

Theorem 2.9. Suppose that A.1–A.3 hold. Then, the ARC algorithm produces an iterate xk satisfy-
ing (1.3) (and thus terminates) after at most

⌈κ2nd
ARC,S max[ϵ−2

g , ϵ−3
H ]⌉ (2.27)

successful or very successful iterations and at most

⌈κ2nd
ARC max[ϵ−2

g , ϵ−3
H ]⌉ (2.28)

iterations in total, where κ2nd
ARC,S and κ2nd

ARC are positive constants. Moreover, if (2.9) also holds, then the
bounds (2.27) and (2.28) respectively become

2 The constants may not be optimal.
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⌈κ2nd
ARC,S max[ϵ−3/2

g , ϵ−3
H ]⌉ and ⌈κ2nd

ARC max[ϵ−3/2
g , ϵ−3

H ]⌉. (2.29)

Proof. Lemmas 2.3 and 2.8 yield that the total number of successful iterations such that the first or
the second part of (1.3) is violated cannot exceed

κ0
ARC,Sϵ

−2
g + κ2

ARC,Sϵ
−3
H .

We thus immediately deduce (2.27) with κ2nd
ARC,S

def
= κ0

ARC,S + κ2
ARC,S. The bound (2.28) follows by

applying Lemma 2.6, while (2.29) directly is obtained by using Lemma 2.5 instead of Lemma 2.3 in
this reasoning. �

3. An example of slow convergence of ARC

We now show by an example that the bounds (2.27) and (2.28) cannot be improved. Our example
is unidimensional and is inspired by the technique used in [4,5].

We first choose the starting point and sequences of gradient and Hessian values and steps to be,
for all k ≥ 0,

x0 = 0, gk = 0, sk =


1

k + 1

 1
3 +δ

and Bk = Hk = τk = −


1

k + 1

 1
3 +δ

(3.1)

where δ ∈ (0, 1) is a (small) positive constant. Because it is straightforward to verify that the
conditions (2.2)–(2.9) hold with this choice and σk = 1 for all k, we may consider these values as
produced by the kth iteration of the ARC algorithm at iterate xk = x0 +

k−1
j=0 sj. We also define

fk
def
= f (xk) for all k by the relations

f0 = ζ (1 + 3δ) and fk+1 = fk −


1

k + 1

1+3δ

, (3.2)

where ζ (t) def
=


∞

k=1 k
−t is the Riemann zeta function, which is finite for all t > 1 (and thus for

t = 1 + 3δ). Observe that, since (2.2) and (2.3) both hold as equalities, we have that

−mk(sk) =
1
6
∥sk∥3

=
1
6


1

k + 1

1+3δ

and (3.2) therefore implies that all iterations are very successful, allowing us to keep σk fixed to 1.
We now use Hermite interpolation to construct the objective function f on the successive intervals

[xk, xk+1], and define

f (x) = pk(x − xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0, (3.3)

where pk is the polynomial

pk(s) = c0,k + c1,ks + c2,ks2 + c3,ks3 + c4,ks4 + c5,ks5,

with coefficients defined by the interpolation conditions

pk(0) = fk − fk+1, pk(sk) = 0;
p′

k(0) = gk, p′

k(sk) = gk+1;

p′′

k (0) = Hk, p′′

k (sk) = Hk+1.
(3.4)

These conditions yield the following values for the first three coefficients

c0,k = fk − fk+1, c1,k = gk = 0, c2,k =
1
2
Hk;
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and the remaining coefficients satisfys3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k

c3,kc4,k
c5,k


=

1fk − gksk −
1
2
skHksk

1gk − Hksk
1Hk

 ,

where

1fk = fk+1 − fk, 1gk = gk+1 − gk and 1Hk = Hk+1 − Hk.

Hence we obtain, also from (3.1) and 1gk = 0, that

c3,k = 10
1fk
s3k

− 4
1gk
s2k

+
1Hk

2sk
− 10

gk
s2k

−
Hk

sk
= 10

1fk
s3k

+
1Hk

2sk
−

Hk

sk
;

c4,k = −15
1fk
s4k

+ 7
1gk
s3k

−
1Hk

s2k
+ 15

gk
s3k

+
Hk

2s2k
= −15

1fk
s4k

−
1Hk

s2k
+

Hk

2s2k
;

c5,k = 6
1fk
s5k

− 3
1gk
s4k

+
1Hk

2s3k
− 6

gk
s4k

= 6
1fk
s5k

+
1Hk

2s3k
.

(3.5)

It remains to show that the constructed f satisfies A.1–A.3. One easily sees from its construction that
f is twice continuously differentiable. Moreover its third derivative exists everywhere and, on the kth
interval, satisfies the bound

|f ′′′(xk + s)| = |p′′′

k (s)| ≤ 6|c3,k| + 24|c4,k|sk + 60|c5,k|s2k, s ∈ [0, sk].

But (3.1), (3.5) and the resulting inequality |1Hk| ≤ |Hk| imply that |c3,k|, |c4,k|sk and |c5,k|s2k are
uniformly bounded, and thus so is f ′′′. Moreover, |Hk|, and hence |c2,k|, are also bounded, which,
combined with the boundness of |sk|, implies that f ′′ is bounded above. As a consequence, f has
Lipschitz continuous gradient and Hessian, and A.1 holds. The definition (3.2) and the definition of
the Riemann function together imply that A.2 holds with flow = 03 and A.3 directly results from (3.1).
Fig. 3.1 shows plots of f and its first three derivatives for δ = 0.0001 and for k = 0, . . . , 15. The figure
reveals the objective functions’ nonconvexity and monotonically decreasing nature.

We have thus verified that the ARC algorithm applied on f (which satisfies A.1–A.3) starting from
x0 = 0 and σ0 = 1 produces iterates such that

λmin(Hk) = −


1

k + 1

 1
3 +δ

and for which the second part of (1.3) fails for exactly 1

ϵ
3

1+3δ
H

− 1

iterations, for any ϵH , ϵg and δ in (0, 1). Sincewe know from Cartis et al. [4] that the bound inO(ϵ
−3/2
g )

is sharp for obtaining a mere first-order approximate critical point, we deduce that the bound (2.29)
cannot be improved. As a consequence it is sharp as far as the ARC algorithm is concerned. Finally
note that the iterate at termination of the algorithm is finite for any ϵg and ϵH , and therefore f can
be prolongated smoothly beyond that iterate in such a way that it has a unique and finite global
minimizer. As a consequence, our reasoning also applies to such minimizers.

3 Note that we have shown that f (x) is bounded below for x ≥ 0, which is the domain of interest since xk ≥ 0; we may
extend f by continuity for x < 0.
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Fig. 3.1. The function f and its first three derivatives (from top to bottom and left to right) on the first 16 intervals.

4. Second-order complexity for the trust-region method

Wemaywonder if theworst-case complexity for convergence to approximate second-order points
is better or worse for the standard trust-region method than for ARC. Our first step is to establish
an upper bound on this complexity for the trust-region method, which requires revisiting some of
its convergence theory. For the sake of completeness, we briefly recall the basic formulation of this
method, as based on Section 6.1 of [9]. The main idea of the trust-region method is similar to that of
the ARC algorithm: at iteration k, a quadratic model

mk(s)
def
= ⟨gk, s⟩ +

1
2
⟨s, Bks⟩ (4.1)

is minimized in the ‘‘trust region’’ defined by

Bk
def
= {s ∈ Rn

| ∥s∥ ≤ ∆k}, (4.2)

where ∆k is the (dynamically updated) trust-region radius. The other conditions on the step sk are
again similar to what happens for the ARC method: one typically requires sk to satisfy (2.4)–(2.8)
where the model mk(s) is now defined by (4.1) instead of (2.1) and where minimization in (2.4) and
(2.6) is restricted to the trust region. Note that, in this context, global optimization of the model along
sCk or s

E
k within the trust region no longer implies (2.2) and (2.3). In practice, the condition (2.9) is often

replaced by

∥∇xmk(sk)∥ = ∥gk + Bksk∥ ≤ κθ min[1, ∥gk∥α
]∥gk∥, (4.3)

for some given constant κθ ∈ (0, 1) and some exponentα > 0, but this is irrelevant for the complexity
analysis developed below. Global optimization of the model along sk within the trust region is not
necessary.
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The basic trust-region algorithm may then be stated as follows.

Algorithm 4.1: Trust-region algorithm

Step 0: A starting point x0, an initial radius∆0 > 0 and user-defined accuracy thresholds ϵg , ϵH ∈

(0, 1) are given. Set k = 0.
Step 1: If conditions (1.3) hold, terminate with approximate solution xk.
Step 2: Compute a Hessian approximation Bk and a step sk ∈ Bk satisfying (2.4)–(2.8) and

(optionally) (4.3).
Step 3: Compute f (xk + sk) and ρk given by (2.10). Set xk+1 = xk + sk if ρk ≥ η1, or xk+1 = xk

otherwise.
Step 4: Set

∆k+1 ∈


[∆k, γ3∆k]) if ρk > η2, [very successful iteration]
[γ2∆k, ∆k] if η1 ≤ ρk ≤ η2, [successful iteration]
[γ1∆k, γ2∆k] otherwise. [unsuccessful iteration]

(4.4)

Increment k by one and return to Step 1.

In this algorithm, we have assumed that the constants satisfy the inequalities .5

∆0 ≤ ∆max, 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3 (4.5)

andwedefine the sets of very successful, successful andunsuccessful iterations just as in (2.12). Aswas
the case for the analysis of the ARC algorithm, the constants arising in the analysis below will depend
on the problem characteristics given by Lg and LH , the difference f (x0)− flow, the constants κB and κBH,
and on the algorithmic parameters, this last set now containing ∆0, ∆max, η1, η2, γ1, γ2, γ3, κsnc, κθ

and α.
In order to establish the desired complexity bound, we start by re-examining the size of the

discrepancy between the model and the objective function in the case where Lipschitz continuity
of the Hessian is assumed (an assumption never made in Chapter 6 of [9]).

Lemma 4.1. Suppose that A.1 and A.3 hold. Then, for each k ≥ 0,

|f (xk + sk) − f (xk) − mk(sk)| ≤ κfm∆3
k (4.6)

for some κfm > 0.

Proof. (See the proof of Lemma 6.4.1 in [9].) Using A.1, wemay apply themean-value theorem on the
objective function and obtain that

f (xk + sk) = f (xk) + ⟨gk, sk⟩ +
1
2
⟨sk,H(ξk)sk⟩

for some ξk in the segment [xk, xk + sk]. Subtracting (4.1), taking absolute values and using A.1, A.3,
the inequality ∥ξk − xk∥ ≤ ∥sk∥ and the Cauchy–Schwarz inequality yields that

|f (xk + sk) − f (xk) − mk(sk)| =
1
2
|⟨sk,H(ξk)sk⟩ − ⟨sk, Bksk⟩|

≤
1
2
|⟨sk, [H(ξk) − H(xk) + H(xk) − Bk]sk⟩|

≤
1
2
(LH∥sk∥3

+ κBH∥sk∥3)

and (4.6) with κfm =
1
2 (LH + κBH) then follows from the inequality ∥sk∥ ≤ ∆k. �

We then recall a standard result on the model decrease in the presence of significant gradient or
negative curvature.
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Lemma 4.2 (Theorems 6.3.1 and 6.6.1 in [9]). Suppose that mk is given by (4.1). Then, if ∥gk∥ > 0, we
have that

− mk(sk) ≥ −mk(sCk) ≥
1
2
∥gk∥min


∥gk∥
κB

, ∆k


(4.7)

while, if τk < 0 (where τk is given by (2.8)), then

− mk(sk) ≥ −mk(sEk) ≥
1
2
κsnc|τk|∆

2
k . (4.8)

From this result, we may deduce the following crucial lemma.

Lemma 4.3. Suppose that A.1 andA.2 hold and that mk is given by (4.1). Suppose furthermore that τk < 0
and that

∆k ≤
(1 − η2)κsnc|τk|

2κfm
. (4.9)

Then iteration k of the trust-region algorithm is very successful and ∆k+1 ≥ ∆k.

Proof. Suppose that (4.9) holds. We obtain from (4.6) and (4.8) that

|ρk − 1| =

 f (xk + sk) − mk(sk)
−mk(sk)

 ≤
κfm

1
2κsnc|τk|

∆k ≤ 1 − η2,

whereweused (4.9) to deduce the last inequality. Thusρk ≥ η2 and themechanismof the trust-region
algorithm then ensures that iteration k is very successful and, by (4.4), that ∆k+1 ≥ ∆k. �

Wemay thenuse this result to show that, as long as second-order optimality is not reached in the sense
of (1.3), then the trust-region radius is bounded away from zero. To make our result more precise we
first observe that

either ∥gk∥ ≥ ϵg or τk ≤ −ϵH (4.10)

as long as the trust-region algorithm does not terminate.

Lemma 4.4. Suppose that A.1 and A.2 hold and that mk is given by (4.1). Then,there exists a constant
κ∆ ∈ (0, 1) independent of k such that, if the trust-region algorithm does not terminate at iteration k,

∆k ≥ κ∆ min[ϵg , ϵH ]. (4.11)

Proof. Assume, for the purpose of deriving a contradiction, that iteration k is the first such that

∆k+1 ≤ γ1 min


1
2κB

,
κsnc

2κfm


(1 − η2) min[ϵg , ϵH ]. (4.12)

Then we have from (4.4) that, either

∆k ≤ min


1
2κB

,
κsnc

2κfm


(1 − η2) min[ϵg , ϵH ] ≤

(1 − η2)

2κB
ϵg ≤

(1 − η2)

2κB
∥gk∥

if the first part of (4.10) holds, or

∆k ≤ min


1
2κB

,
κsnc

2κfm


(1 − η2)min[ϵg , ϵH ] ≤

(1 − η2)κsnc

2κfm
ϵH ≤

(1 − η2)κsnc|τk|

2κfm

if the second part of (4.10) holds. In the first case, Theorem 6.4.3 in [9] implies that iteration k is very
successful and ∆k+1 ≥ ∆k. In the second case, the same conclusion follows from Lemma 4.3. Thus
∆k+1 ≥ ∆k in both cases and our assumption that iteration k is the first such that (4.12) holds must
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be false. As a consequence, there cannot be any iteration such that inequality (4.12) holds as long as
the algorithm does not terminate, and we obtain the desired conclusion with

κ∆
def
= γ1 min


1

2κB
,

κsnc

2κfm


(1 − η2) < 1, (4.13)

the last inequality following from the bound κB ≥ 1 and (4.5). �

Wemay now compute an upper bound on the number of successful or very successful iterations such
that (1.3) does not hold.

Lemma 4.5. Suppose that A.1 and A.2 hold and that mk is given by (4.1). Then there exists a constant
κ2nd
TR,S > 0 such that N2nd

TR,S, the number of successful or very successful iterations of the trust-region method
before (1.3) holds, is bounded above by ⌈κ2nd

TR,S max[ϵ−2
g ϵ−1

H , ϵ−3
H ]⌉.

Proof. Consider an iteration k of the trust-region algorithm (before it terminates). Then either ∥gk∥ >
ϵg or τk < −ϵH . In the first of these cases, (4.7), (4.11) and (4.13) yield that

−mk(sk) ≥
1
2
ϵg min


ϵg

κB
, κ∆ min[ϵg , ϵH ]


=

1
2
κ∆ϵg min[ϵg , ϵH ],

while we obtain, in the second case, that

−mk(sk) ≥
1
2
κsnc|τk|∆

2
k ≥

1
2
κsncκ

2
∆ϵH min[ϵg , ϵH ]

2

from (4.8) and (4.11). We thus obtain, using A.2 and the monotonically decreasing nature of the
sequence {f (xk)}, that

f (x0) − flow ≥

∞
k=0

[f (xk) − f (xk+1)]

≥


k=0,k∈S

[f (xk) − f (xk+1)]

≥
1
2
η1


k=0,k∈S

min[κ∆ϵg min[ϵg , ϵH ], κsncκ
2
∆ϵH min[ϵg , ϵH ]

2
]

≥
1
2
η1κsncκ

2
∆


k=0,k∈S

min[ϵg , ϵH ]min[ϵg , ϵHϵg , ϵ
2
H ]

=
1
2
N2nd

TR,Sη1κsncκ
2
∆ϵH min[ϵg , ϵH ]

2 (4.14)

where N2nd
TR,S is the total number of successful or very successful iterations such that (1.3) fails, and

where we used the inequalities κ∆ < 1, κsnc ≤ 1 and max[ϵg , ϵH ] < 1. The desired conclusion
follows from this last inequality with

κ2nd
TR,S

def
=

2(f (x0) − flow)

η1κsncκ
2
∆

. �

Before concluding, we still need an analogue of Lemma2.6 for the trust-region algorithm. Such a result
is also described in [10], but we formalize it for the sake of clarity.
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Lemma 4.6. Suppose that A.1 and A.3 hold and, for any fixed j ≥ 0, let Sj and Uj be defined in (2.12).
Then one has that

|Uj| ≤


log γ3

| log γ2|
|Sj| +

1
| log γ2|

log


∆0

κ∆ min[ϵg , ϵH ]


. (4.15)

Proof. It follows from the mechanism of the trust-region algorithm that

∆k+1 ≤ γ3∆k for all k ∈ Sj and ∆k+1 ≤ γ2∆k for all k ∈ Uj.

Thus we obtain that

∆j ≤ ∆0γ
|Uj|

2 γ
|Sj|

3 .

But Lemma 4.4 gives that, as long as the trust-region algorithm has not terminated, (4.11) must hold.
Therefore, we obtain that

|Sj| log γ3 + |Uj| log γ2 ≥ log


κ∆ min[ϵg , ϵH ]

∆0


.

Reorganizing this inequality using γ2 < 1 and taking into account that |Uj| is an integer then yields
(4.15). �

We may now state the final worst-case complexity bound for convergence of the trust-region
algorithm to approximate second-order critical points.

Theorem 4.7. Suppose that A.1–A.3 hold. Then, the trust-region algorithm produces an iterate xk
satisfying (1.3) (and thus terminates) after at most

⌈κ2nd
TR,S max[ϵ−2

g ϵ−1
H , ϵ−3

H ]⌉ (4.16)

successful iterations and at most

⌈κ2nd
TR max[ϵ−2

g ϵ−1
H , ϵ−3

H ]⌉ (4.17)

iterations in total, where κ2nd
TR,S and κ2nd

TR are positive constants.

Proof. The first part of the theorem immediately results from Lemma 4.5. The second bound follows
by applying Lemma 4.6 and noting that the term in log(1/ϵ) arising from the second term on the
left-hand side of (4.15) is dominated by the first as, obviously, log(1/ϵ) = O(ϵ−3) for ϵ ∈ (0, 1). �

As for the ARC algorithm, we now show that the bound stated in Theorem 4.7 cannot be improved.
Again this is achieved by exhibiting a unidimensional example where this bound is attained. The
example is itself a modification of that introduced in Section 3 and uses the definitions of x0, gk and
Bk = Hk = τk given by (3.1). We now define

sk = ∆k =


1

k + 1

 1
3 +δ

(4.18)

(which gives the same steps as in Section 3) and

f (x0) =
1
4
(η1 + η2)ζ (1 + 3δ) and fk+1 = fk −

1
4
(η1 + η2)


1

k + 1

1+3δ

(4.19)

and therefore the sequence {fk} is bounded below by zero. It is also clear from the derivation of the
example in Section 3 that we may use Hermite interpolation to define the objective function f on R
such that it is twice continuously differentiable and has a Lipschitz continuous Hessian. It therefore
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satisfies both A.1 and A.2. In order to verify that these functions and step values may be generated by
a trust-region algorithm, we first note, using (3.1), (4.18) and (4.19), that

fk+1 = fk −
1
4
(η1 + η2)|τk|∆

2
k .

Hence we obtain4 from (2.10) that

ρk =

1
4 (η1 + η2)|τk|∆

2
k

1
2 |τk|∆

2
k

=
1
2
(η1 + η2),

for each k ≥ 0. Every iteration is therefore successful (but not very successful). According to (4.4), we
may then choose ∆k+1 in the range [γ2∆,∆k] and our choice

∆k+1 =


k + 1
k + 2

 1
3 +δ

∆k

is thus acceptable assuming, without loss of generality, that γ2 ≤ ( 1
2 )

1
3 +δ .

As in Section 3, we have constructed an objective function f satisfying A.1–A.2 on which the trust-
region algorithmwill need, for any ϵg , ϵH and δ in (0, 1), at least of the order ofO(ϵ

−3/(1+3δ)
H ) successful

iterations to achieve approximate second-order optimality. The bounds given by (4.16) and (4.17) are
therefore sharp when ϵg ≥ ϵH . We have not been able to show that these bounds are sharp whenever
ϵg ≤ ϵH .

We conclude this paper by comparing the bounds for achieving (1.3) given for the ARC algorithm
by (2.29) in Theorem 2.9 and for the trust-region algorithm by (4.16)–(4.17) in Theorem 4.7.

• If one assumes that ϵH ≤ ϵg , then the two sets of bounds are qualitatively identical,5 and we have
seen that both are sharp.

• If ϵg < ϵH < ϵ
1/2
g , then the worst-case bound for the trust-region method is O(ϵ−2

g ϵ−1
H ) = O(ϵ−θ

H )
iterations at most for some θ ∈ (3, 5), while the corresponding (sharp) bound for the ARC
algorithm remains O(ϵ−3

H ), which is more favourable.
• Finally, if ϵ

1/2
g ≤ ϵH , the worst-case bound for the trust-region method is now O(ϵ−2

g ϵ−1
H ) =

O(ϵ
−5/2
g ) iterations at most, but Cartis et al. [4] show that it is also at least O(ϵ−2

g ). By comparison,
the worst-case bound for the ARC algorithm is shown to be no worse than O(ϵ−2

g ), while if (2.9)
holds this improves to O(ϵ

−3/2
g ), which, according to Cartis et al. [4] is sharp. The choice of ϵH of

the order of the square root of ϵg (which falls at the limit between this third case and the second)
makes sense if one wishes to ensure independence of the stopping rule (1.3) from the effect of
linear transformations of the problem’s variables, and we note that such a choice is also implied
by the definition of the measure of local optimality in [15].

We therefore see that the ARC algorithm has equal or better worst-case bounds than the trust-region
algorithm in all cases, and that the difference is largest for the most practically relevant choice of the
relative sizes of the first- and second-order stopping tolerances.

We conclude this section by observing that both presented examples are independent of the value
of ϵg relative to ϵH , disentangling the interaction between the first- and second-order optimality
measures. In particular, this is notable for the trust-region case, where Lemma 4.4 implies a strong
interaction between the measures, reflected in Theorem 4.7. Note however, that in both Lemma 4.4
and in Theorem 4.7, if ∥gk∥ ≤ ϵg for all k (which is the case of our example), then it must be that
τk < −ϵH for all k until termination. Furthermore, then (4.11) becomes ∆k ≥ κ∆ϵH , only the second-
ordermodel decrease applies in the proof of Lemma 4.5 and depends entirely on ϵH , yielding an upper
bound of order ϵ−3

H for the evaluation complexity of trust region. Thus, for the particular case when

4 Note that κsnc = 1 because our example is unidimensional.
5 The constants differ.



C. Cartis et al. / Journal of Complexity ( ) – 15

only the curvature condition needs to be satisfied, this upper bound is sharp for the trust-region
algorithm. (Similarly, when only the size of the gradient needs to be decreased, Theorem 4.7 yields
an upper bound of order ϵ−2

g , which was shown in [4] to be sharp for trust region.) These remarks
illustrate that it is not just the relationship between ϵg and ϵH which matters for the worst-case
bounds, but also how ‘‘close’’ ∥gk∥ and |τk| are to these thresholds.

5. Summary and perspectives

Wehave considered theworst-case complexity of achieving approximate second-order optimality
for the ARC and trust-region algorithms.We have started by showing that the known bound ofO(ϵ−3

H )
ARC iterations can be derived for a variant of the algorithm not requiring multi-dimensional global
optimization, and have then shown that the obtained bound is sharp. In addition, we have proved
that a bound of the same type also holds for the standard trust-region algorithm, and that this second
bound is also sharp whenever ϵH = O(ϵg). We finally showed that the worst-case bound for the ARC
algorithm is always as good or better than that for the trust-region method.

An obvious next step is to extend the worst-case analysis for second-order optimality to finite-
difference and derivative-free schemes, in the spirit of Cartis et al. [8], and to constrained problems,
possibly working along the lines of Cartis et al. [6]. It is also interesting to verify if the optimality
properties of the ARC algorithm for convergence to approximate first-order point [5] can be extended
to the ARC algorithm for the second-order case.
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