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The adaptive cubic regularization algorithm described in Catisl. (2009, Adaptive cubic regulari-
sation methods for unconstrained optimization. Part |: motivation, convergence and numerical results.
Math. Program, 127, 245-295; 2010, Adaptive cubic regularisation methods for unconstrained opti-
mization. Part Il: worst-case function- and derivative-evaluation complexity [oniMaih. Program.,

DOI: 10.1007/s10107-009-0337-y) is adapted to the problem of minimizing a nonlinear, possibly non-
convex, smooth objective function over a convex domain. Convergence to first-order critical points is
shown under standard assumptions, without any Lipschitz continuity requirement on the objective’s Hes-
sian. A worst-case complexity analysis in terms of evaluations of the problem’s function and derivatives is
also presented for the Lipschitz continuous case and for a variant of the resulting algorithm. This analysis
extends the best-known bound for general unconstrained problems to nonlinear problems with convex
constraints.
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1. Introduction

Adaptive cubic regularization has recently returned to the forefront of smooth nonlinear optimization as
a possible alternative to more standard globalization techniques for unconstrained optimization. Meth-
ods of this type—initiated independently Briewank(1981),Nesterov & Polyak2006) andWeiser

et al. (2007)—are based on the observation that a second-order model involving a cubic term can be
constructed that overestimates the objective function when the latter has a Lipschitz continuous Hessian
and a model parameter is chosen large enougi€drtiset al. (2011a), we have proposed updating

the parameter so that it merely estimates a local Lipschitz constant of the Hessian, as well as using
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approximatemnodel Hessians and approximate model minimizers, which makes this suitable for large-
scale problems. These adaptive regularization methods are not only globally convergent to first- and
second-order critical points with fast asymptotic spdéesterov & Polyak2006;Cartiset al, 2011a),

but also—unprecedentedly—enjoy better worst-case global complexity bounds than steepest descent
methods (Nesterov & PolyaR006; Cartiset al., 2011b), Newton’s method and trust-region methods
(Cartiset al., 2010). Furthermore, preliminary numerical experiments with basic implementations of
these techniques and of the trust region show encouraging performance of the cubic regularization ap-
proach (Carti®t al.,2011a).

Extending the approach to more general optimization problems is therefore attractive, as one may
hope that some of the qualities of the unconstrained methods can be transferred to a broader frame-
work. Nesterov(2006) has considered the extension of his cubic regularization method to problems
with a smooth convex objective function and convex constraints. In this paper we consider the exten-
sion of the adaptive cubic regularization methods to the case where minimization is subject to convex
constraints, but the smooth objective function is no longer assumed to be convex. The new algorithm
is strongly inspired by the unconstrained adaptive cubic regularization metGadssget al.,2011a,b)
and by the trust-region projection methods for the same constrained problem class that are fully de-
scribed in ofConnet al. (2000, Chapter 12). In particular, it makes significant use of the specialized
first-order criticality measure developed Gpnnet al. (1993) for the latter context. Firstly, global con-
vergence to first-order critical points is shown under mild assumptions on the problem class for a generic
adaptive cubic regularization framework that only requires a Cauchy-like decrease in the (constrained)
model subproblem. The latter can be efficiently computed using a generalized Goldstein linesearch,
suitable for the cubic model, provided projections onto the feasible set are inexpensive to calculate.
The associated worst-case global complexity—or equivalently, the total number of objective function
and gradient evaluations—required by this generic cubic regularization approach to reach approxi-
mate first-order optimality matches, in order, that of steepest descent for unconstrained (nonconvex)
optimization.

However, in order to improve the local and global rate of convergence of the algorithm, itis necessary
to advance beyond the Cauchy point when minimizing the model. To this end we propose an adaptive
cubic regularization variant that under certain assumptions on the algorithm, can be proved to satisfy the
desirable global evaluation complexity bound of its unconstrained counterpart, which, as mentioned in
the first paragraph, is better than for steepest descent methods. As in the unconstrained case we do not
rely on global model minimization and are content with only sequential line minimizations of the model
provided they ensure descent at each (inner) step. Possible descent paths of this type are suggested,
though more work is needed to transform these ideas into a computationally efficient model solution
procedure. Solving the (constrained) subproblem relies on the assumption that these piecewise linear
paths are uniformly bounded, which still requires both practical and theoretical validation.

Our complexity analysis here, in terms of the function-evaluations count, does not cover the total
computational cost of solving the problem as it ignores the cost of solving the (constrained) subproblem.
Note, however, that though the latter may be NP-hard computationally (Vau&$4), it does not
require any additional function evaluations. Furthermore, for many examples, the cost of these (black-
box) evaluations significantly dominates that of the internal computations performed by the algorithm.
Even so, effective step calculation is crucial for the practical computational efficiency of the algorithm
and will be given priority consideration in our future work.

The paper is organized as follows. Sectiutescribes the constrained problem more formally as well
as the new adaptive regularization algorithm for it, while SecBpnesents the associated convergence
theory (to first-order critical points). We then discuss a worst-case function-evaluation complexity result
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for the new algorithm and an improved result for a cubic regularization variant in Settiimally
some conclusions are presented in Sechion

2. The new algorithm

We consider the numerical solution of the constrained nonlinear optimization problem

)r(ry]r_] f(x), (2.1)
wherewe assume thaf : ®" — X is twice continuously differentiable, possibly nonconvex and
bounded below on the closed, convex and nonempty feasible dofhai".

Our algorithm for solving this problem follows the broad lines of the projection-based trust-region
algorithm of inConnet al. (2000, Chapter 12) with adaptations necessary to replace the trust-region
globalization mechanism by a cubic regularization of the type analys€ditiset al. (2011a). At an
iteratexy within the feasible regiotF, a cubic model of the form

mg(Xk + ) = f(X) + (g, S) + %<s, Bks) + %UKHS”B (2.2)
is defined, where-, -) denotes the Euclidean inner produgt,d¢f v f (xk), Bk is @ symmetric matrix
hopefully approximating the objective’s Hessiah(xk) 9¢f Vi f (Xk), ok is a positive regularization
parameter and - | stands for the Euclidean norm. The s&rom X, is then defined in two stages.
The first stage is to computegeneralized Cauchy poimf)? suchthatxlfC approximatelyminimizes
the model (2.2) along the Cauchy arc defined by the projection Bnbdd the negative gradient path;
that is

wherewe definePr to be the (unique) orthogonal projector orf o The approximate minimization is

carried out using a generalized Goldstein-like linesearch on the arc, as explaifedriet al. (2000,
Section 12.1). In particulagZ® = x + s°€ is determined such that

xC = Pr [xk - t,f‘cgk] for sometSC > 0, (2.3)
and
Mk (XE C) < F (%) + Kubs(Tk» SCC) (2.4)
andeither
Mk (XEC) > f (%) + xibs {0k, ST°) (2.5)
or

H Prxgc)[— k] H < Keppl(Ok, SO (2.6)

wherethe three constants satisfy

1
0< Kubs < Klps < 1 and K'epp € (0, 5) 5 (27)
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andwhereT (x) is the tangent cone t& atx. The conditions (2.4) and (2.5) are the familiar Goldstein
linesearch conditions adapted to our search along the Cauchy arc, while (2.6) is there to handle the
case where this arc ends before conditi@rb) is ever satisfied. Once the generalized Cauchy point
xZC is computed (which can be done by a suitable searctf6n> 0 inspired byConnet al., 2000,
Algorithm 12.2.2 , and discussed below), any stepuchthat

X X+ eF

andsuch that the model value zqf is below that obtained a«:f‘c, is acceptable.
Given the steps, the trial pointx,” is known and the value of the objective function at this point
computed. If the ratio

F o) — (67
— 7 VKR 2.8
K= F (%0) — mi(h) (28)

of the achieved reduction in the objective function compared to the predicted model reduction is larger
than some constamf; > 0, then the trial point is accepted as the next iterate and the regularization
parametewy is essentially unchanged or decreased, while the trial point is rejectedyandreased
if px < n1. Fortunately, the undesirable situation where the trial point is rejected cannot persist since
ok eventually becomes larger than some local Lipschitz constant associated with the Hessian of the
objective function (assuming it exists), which in turn guaranteesghat 1, as shown inGriewank
(1981),Nesterov & Polyak2006) orCartiset al. (2011a).

We now state our Adaptive Regularization using Cubics for COnvex Constraints (COCARC).

Algorithm 2.1. Adaptive Regularization with Cubics for Convex Constraints (COCARC).

Step 0. Initialization. An initial point Xg € F andan initial regularization parameteg > 0 are given.
Computef (xg) andsetk = 0.

Step 1. Determination of the generalized Cauchy pointlf x is first-order critical, terminate the al-
gorithm. Otherwise perform the following iteration.

Step 1.0. Initialization. Define the modelZ.2), choosédy > 0 and set

Step 1.1. Compute a point on the projected-gradient pathSetxx ; = Px[xx — tjgk] and
evaluatemg (X, j).

Step1.2. Check for the stopping conditions.If (2.4) is violated then setihax = tj andgo to
Step 1.3. Otherwise, if2(5) and 2.6) are violated, sdinn = tj andgo to Step 1.3.
Otherwise sexSC = x, ; andgo to Step 2.

Step 1.3. Find a new value of the arc parametenf tnax = oo, settj 1 = 2tj. Otherwise set
tjt1= %(tmin + tmax)- Incrementj by 1 and go to Step 1.2.
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Step 2. Step calculation.Compute a stepc anda trial pointxlzL def xi + s« € F suchthat
Mi(xd) < M (XEC) . (2.9)
Step 3. Acceptance of the trial point. Computef(xlj) andthe ratio @.8). If px > #1 thendefine
Xk+1 = Xk + S; otherwise definey,1 = X.

Step4. Regularization parameter update.Set

(0, 0] if pk = 12,

ok+1 € 1 ok, yaok] i pk € [1, m2),
[y10k, y201] if pk < n1.

Incrementk by 1 and go to Stefi.

Asin Cartiset al. (2011a) the constantg, 72, y1 andy; aregiven and satisfy the conditions
O<m<m<l and 1<y <y (2.10)

As for trust-region algorithms we say that iteratibis successful whenevek > #1 (andthusxgy1 =
x!) and very successful whenever > 2, in which case, additionally;1 < ox. We denote the index
set of all successful and very successful iterations by

As mentioned above, our technique for computing the generalized Cauchy point is inspired by the
Goldstein linesearch scheme, but it is most likely that techniques based on Armijo-like backtracking
(seeSartenaer1993) or on successive exploration of the active faceg afong the Cauchy arc (see
Connet al.,1988) are also possible, the latter being practical whés a polyhedron.

3. Global convergence to first-order critical points

We now consider the global convergence properties of Algorithm COCARC and show in this section :
that all the limit points of the sequence of its iterates must be first-order critical points for prahiEm (
Our analysis will be based on the first-order criticality measurseatF given by

def i Vy f(x),d 3.1
X (X) = X+den];md”<l< x F(x),d)|, (3.1)

(seeConnetal., 1993) and defingy %f v (xx). We say thak, is a first-order critical point for (2.1) if
x (X«) = 0 (seeConnet al.,2000Theorem 12.1.6).
For our analysis, we consider the following assumptions.

AS1. The feasible sef is closed, convex and nonempty.

AS2. The functionf is twice continuously differentiable on the (open and convex)&gt= {x :
X —yl|l < ofor somey e Fo} for givené € (0, 1) and whereFy C F is the closed, convex hull
of Xg andthe iterates + s, k > 0.

2102 ‘2T Afenuer uo 1s9nb Aq /Bio'sfeulnolpioixoeu few//:dny wouy papeojumoqg


http://imajna.oxfordjournals.org/

6 of 34 C.CARTISET AL.

AS3a. The functionf is bounded below byfoy, 0N Fo.
AS3h The setFy is bounded.
AS4. There exist constantg; > 1 andxg > 1 such that

IHX)|| <ky forallx e Fy, and |Bk|| <xkg forallk>0. (3.2)

Note that AS3b and AS2 imply AS3a, but some results will only require the weaker condition AS3a.

Suppose that AS1 and AS2 hold, andXet Fy. Fort > 0, let

X(t) € Pr[x —tVx f(x)] and 6O(x,t) % |x(t) — x|, (3.3)
while, for 8 > 0,
,0) def ' Vy f(x), d)|, 3.4
x (X, 0) < x+d$fﬂ'd”<e< x F(x), d) (3.4)
and
7(x, ) df @. (3.5)

Somealready-known properties of the projected gradient path and the above variants of the criticality

measure (3.1) are given next and will prove useful in what follows.
LEMMA 3.1

1. [Connet al,, 2000] Suppose that AS1 and AS2 hold anddet Fo andt > O such that) > O.
Then

(i) [Theorem 3.2.8P(x, 1), x(x,6) andz (X, ) are continuous with respect to their two
arguments,

(i) [Theorem 12.1.3p(x, t) is nondecreasing with respecttto
(iii) [Theorem 12.1.4] the poinx(t) — x is a solution of problem
[ Vy f d 3.6
x+d£3!ﬂ'd”<9< x F(x), d), (3.6)
wheref = ||x(t) — x|,
(iv) [Theorem 12.1.5(i), (ii)]x(x,8) is nondecreasing and(x, 8) is nonincreasing with
respect td@,
(v) [Theorem 12.1.5 (iii)] for any such thax + d e F, the inequality

holdsfor all @ > ||d||.
2. [Hiriart-Urruty and Lemé&echal, 1993, Proposition 5.3.5] For anye F andd € %", the follow-

ing limit holds:

lim

a— 0t

P d) —
PRUE DX ey (3.8)

2102 ‘2T Afenuer uo 1s9nb Aq /Bio'sfeulnolpioixoeu few//:dny wouy papeojumoqg


http://imajna.oxfordjournals.org/

ADAPTIVE CUBIC REGULARIZATION ALGORITHM FOR NONCONVEX OPTIMIZATION 70f34

The following result is a consequence of the above properties of the criticality me8siyeiid its
variants.

LEMMA 3.2 Suppose that AS1 and AS2 hold. Boe Fp,t > 0andé > 0, recall the measure8.Q3),
(3.4) and 8.5), and let

m3C el (x| $5)  and mf (s, (3.9)

wheresSC def xCC — x If [|sC|| > 1then

7 (% |$9)) = 0> =S, (3.10)

while if |sS€|| < 1then

7> > 1 (% |35°) (3.11)
Similarly, if ||| > 1then
x Ok, Il = x> @, (3.12)
while if ||| < 1then
T > k> 1 (s llscl). (3.13)
Moreover,
~{ok 589 = 7 (% |$5°]) = 0, (3.14)
1< 2 (% |59]) +2| Progo [-ad| (3.15)
and
O(X,t) > t || Prxayl=Vx f ]Il (3.16)
Proof. The inequalities (3.10) an@®(11) follow from the identity
ak = x (X, 1), (3.17)

(3.5) and Lemma3.1(iv). Precisely the same arguments gi&1R) and 8.13) as well since the
definition of s°© was not used in the above inequalities. To shawl4), apply Lemma.1(jii) with
t = S, which gives? = [|sSC||, and recalling the definition of(4), also

o 5899 = x (% |55 ) (3.18)

It remains to show thatgy, §<GC>I = — (0, SEC>, which follows from the monotonicity of the projection
operator, namely, we have

<xk — 8%k — x (tfc), Xk — X (tEC)> <0,
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or equivalently,
1 2
<gka SEC> < —taz HXk — X(tEC) H <0.
K

Next, (3.15) results from3.10) if [|sCC|| > 1; else, wheri|sSC|| < 1, (3.15) follows by lettingx = xy,
6 =1andd = q?c in (3.7) and employing3.18). We are left with proving3(16). We first note that if
u(x,t) = x(t) — x thend(x, t) = |Ju(x, t)|| and, denoting the right directional derivative bydd, , we
see that

du(x,
B TR UK0) (Pro=Ya f 001t 0) 3.19)
dt, lutx, Ol 0(x,t)

where to deduce the second equality, we uge8) (withx = x(t) andd = —Vy f (x). Moreover,
U(X, t) = =t Vy F(X) = [X = tVy F(X) = x(1)] 9 —tVy f(X) — z(x, 1) (3.20)

andbecause of the definition of(t), z(x, t) must belong toN(x(t)), the normal cone t¢F at x(t),
which by definition, comprises all directions such thatw, y — x(t)) < 0 for ally € F. Thus, since
this cone is the polar of (x(t)), we deduce that

<PT(X(I))[_VX f (X)]a Z(Xa t)> < 0 (321)
We now obtain, successively using;19), 3.20) and 8.21), that

do
6(X9 t)a(xa t) = (PT(X(t))[_VX f (X)]a U(X9 t))

= (Prixap[=Vx F ()], =tVx f(X) — z(x, 1))
=t (=Vx F(X), Prxanl=Vx f(X)]) = (Prxyl—Vx F (X)), z(x, 1))

>t Prxcey[—Vx FOONI1%. (3.22)
But (3.19) and the Cauchy—Schwarz inequality also imply that

do
E(X, t) < IPrxcy[=Vx FOOII

Combiningthis last bound with (3.22) finally yield8(16) as desired. d

We complete our analysis of the criticality measures by considering the Lipschitz continuity of the
measurey (x). We start by proving the following lemma. This result exteisngasarian & Rosen
(1964, Lemma 1) by allowing a general, possibly implicit, expression of the feasible set.

LEMMA 3.3 Suppose that AS1 holds and define

d_ef i d
P 2 x+der}]-'!T|]dH<l( »d)

for x € ®" andsome vectog € R". Theng (x) is a proper convex function on
Freiix e R" | (F—-x)NB +# 0}, (3.23)

whereB is the closed Euclidean unit ball.
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Proof. The result is trivial ifg = 0. Assume, therefore, that# 0. We first note that the definition
of F1 ensuregshat the feasible set @f(x) is nonempty and, therefore, that the parametric minimization
problem definings (x) is well defined for anyx e F;. Moreover, the minimum is always attained
because of the constraipd| < 1, and so—oco < ¢(x) for all x € F1. Henceg (x) is proper inFj. To
show thatp (x) is convex on (the convex sef), let x1, X € F1, and letds, d; € R" besuch that

d(x1) =(g,d1) and ¢(x2) = (g, d2).

Alsolet 1 € [0, 1], X 9&f Ax1 + (1 — )Xo anddg %€ Ad; + (1 — A)dp. Let us show thatl is feasible
for the ¢ (xg) problem.Sinced; andd; arefeasible for thep(x1) and¢ (x2) problemsyespectively, and
sincel € [0, 1], we have thafldg|| < 1. To showxg + dg € F, we have

Xo+do= (X1 +d)+ A —-AD)Xe+d2) e AF+(1—-AN)FCF,
wherewe used thafF is convex to obtain the set inclusion. Thds,is feasible forg (xg) andhence
¢ (X0) < (g, do) = 4(g, d1) + (1 — 4)(g, d2) = A¢(X1) + (1 — D)p(X2),
which proves thatp (x) is convex infj. O

We are now in position to prove that the criticality measy(®) is Lipschitz continuous on closed
and bounded subsets #t

THEOREM 3.4 Suppose that AS1, AS2 and AS3b hold. Suppose alsdvthétx) is Lipschitz contin-
uous onFo with constante 4. Then, there exists a constant, > 0 such that

lx () = x W < wLy lx =yl (3.24)
forall x, y € Fo.
Proof. We have from 8.1) that

_ - mi Vef(y),d)—  mi Vi F(x), d 3.25

x () = x(y) yrdamin < (Vx W), dr = gmin  (Vxf00, ), (3.25)
= mi Vy f d) — mi Vy f d
y+dermdu<1< xF ). d) y+defmd||<l< x 100, &)

mi Vy f d) — mi Vy f d). 3.26

Y+deF!Fd||<l< x 10, d) x+def!1|1d|\<l( x 00, &) (3.20)

Notethat the first two terms in3(26) have the same feasible set but different objectives, while the last
two have different feasible sets but the same objective. Consider the difference of the first two terms.
Letting

Vx f(y), dy) = min Vi f(y),d) and (Vxf(x),dy) = min Vx f(X), d),
(Vx f(y), dy) y+def!”d”<1< x f(y), d) (Vx f(x), dx) y+de.7—'!||d||<l< x f(x), d)

thefirst difference in (3.26) becomes
(Vi f(y), dy) = (Vi F(X), dx) = (Vx f(y), dy — dx) + (Vi F(y) = Vx F(X), dx)
< {(Vx f(y) = Vi f(X), dx)
<NV FQy) = Vx F OOl - okl
<xgllx = yll, (3.27)
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whereto obtain the first inequality above, we used that, by definitiotyainddy, dy is now feasible for
the constraints of the problem of whidl is the solution; the last inequality follows from the assumed
Lipschitz continuity ofV f and from the boungjdy| < 1.

Considemow the second difference i8.26) (where we have the same objective but different feasi-
ble sets). Employing the last displayed expressiofiRonkafellar(1970, p. 43), the sekp in AS2 can
be written as

Fo=Fo+B,

where B is the open Euclidean unit ball. It is straightforward to show that C F1, where Fy is
definedby (3.23). Thus, by Lemma&.3with g = Vy f (X), ¢ is a proper convex function of. This
and Rockafellar(1970, Theorem 10.4) now yield thétis Llpschltz continuous (with constamqﬁ,
say)on any closed and bounded subset of the relative interidfoofn particular onFo, since Fy is
full-dimensionaland open andrp C Fo.As a consequence we obtain fro1Z6) and 8.27) that

x(X) = x(y) < (kg +rLg)lIx =yl

Sincethe role ofx andy can be interchanged in the above argument, the conclusion of the theorem

follows by settinge, = x1g + kL. O

Thistheorem provides a generalization of a result already known for the special casefiketefined
by simple bounds and the norm used in the definitiory 6f) is the infinity norm (sed&srattonet al.,
2008a, Lemma 4.1).

Next, we prove a first crude upper bound on the length of any model descent step.

LEMMA 3.5 Suppose that AS4 holds and that a giggrields

M (X +8) < f(X0)- (3.28)
Then
3
sl < (8 + vVowligl) - (3.29)

Proof. The definition (2.2) and3.28) give that

1 1
Z(s, BkS) + —ox|Is|I® < 0
+2<, k>+30kll l

Hence,using the Cauchy—Schwarz inequality and (3.2), we deduce

(Ok, S)

1 1
0< §Uk||3||3 < okl - lisll + EKB”SHZ-

Thisin turn implies that

1 1 2 4
3B+ 355 + 3okllodl  xe+\/Foklladl 3
< (e + Varliadl).

2 S 2
30k 30k

lIsll <

O
Using this bound we next verify that Step 1 of Algorithm COCARC is well defined and delivers a
suitable generalized Cauchy point.
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LEMMA 3.6 Suppose that AS1, AS2 and AS4 hold. Then, for elaetith yx > O, the loop between
Steps 1.1, 1.2 and 1.3 of Algorithm COCARC is finite and produces a generalized Cauchykﬁﬁ)int
satisfying(2.4) and either4.5) or 2.6).

Proof. Observe first that the generalized Cauchy point resulting from Step 1 must satisfy conditions
(2.4), and 2.5) or @.6), if the loop onj internal to this step terminates finitely. Thus, we only need to
show (by contradiction) that this finite termination always occurs. We therefore assume that the loop is
infinite andj tends to infinity.

Suppose first thakax = oo for all j > 0. From LemméB.5, we know thal (xk, tj) = [IXk,j — X«l
is bounded above as a function pfbut yettj 1 = 2t; andthust; tendsto infinity. We may then apply
(3.16) to deduce that
0 (X, tj)

” PT(Xk,j)[_ gk] ” < tJ

andthus that

J-”_)moo IP7x pl=akl|| = O. (3.30)

But the same argument that ga14) in Lemma3.2implies that, for allj > 0,
= (O Xk.j — Xk) = (G, Xk, j — Xi) | = x (%, Xk, — Xicl])-

Therefore] emma3.1(iv) provides thak(gk, Xk,j — Xk)| is nondecreasing witl and also gives the first
inequality below

[{Ok» Xk,0 — Xk)| = x (X, 1 Xk,0 — Xkl) = min[1, [IXk,0 — Xkll]xk > O,

wherethe last inequality follows from the fact thag is not first-order critical. As a consequence,

[{Ok, Xk,j — Xk)| = min[1, [[Xk.0 — Xll]xk > O

for all j > 0. Combining this observation witt8(30), we conclude that2(6) must hold for all

j sufficiently large, and the loop inside Step 1 must then be finite, which contradicts our assumption.
Thus, our initial supposition oty is impossible andyax mustbe reset to a finite value. The continuity

of the modelmy andof the projection operatoP - thenimply, together with (2.7), the existence of an
interval | of X% of nonzero length, possibly nonunique, such that, fot alll

Mk (Pe[Xk — tok]) < f (%) + xubs(Ok, PF[Xk — tok] — X«)
and
Mk (Px[Xk — tok]) = f (%) + Kibs(Gk, PF[Xk — tOk] — Xk)-

But this interval is independent df and is always contained inpf, tmax] by construction, while the
length of this latter interval converges to zero whjetends to infinity. Hence, there must exist a finite
j such that both4.4) and 2.5) hold, leading to the desired contradiction. O

We now derive two finer upper bounds on the length of the generalized Cauchy step, depending on
two different criticality measures. These results are inspire@ényiset al. (2011a, Lemma 2.1).
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LEMMA 3.7 Suppose that AS1 and AS2 hold. Then, we have that

HSECH < J—imaX[IIBkII, (k) 2, (Ukz)(k)%], (3.31)

and

H H < = max[lBkII (aknfc) ] (3.32)

Proof. For brevity we omit the indek. From @.2), 3.14) and the Cauchy—Schwarz inequality,

m (XGC) — f(x) =(g,s%%) + %(SGC’ BsCY) + %a HSGCH3

1 2 1 3
> = (x.[s5]) - 5[] i+ 5

i bl = )] [3e - ). 29

Thus,sincem(x®€) < f(x), at least one of the bracketed expressions must be negative, i.e. either

|+

9 B
HsGCH <2 1Bl (3.34)
4 o
or
3 9
| < Sx (e [°9)): (339
o

thelatter is equivalent to

H GC” < 3( GC)2 (3.36)
o

from (3.5) wher¥ = ||sC€C|. In the case thats®C|| > 1, (3.10) then gives that

1

HSGCH <3 (i)? . (3.37)
o
Conversely, if||s®€|| < 1, we obtain from 8.11) and 8.35) that
24
HsGCH <3 (—) 3 (3.38)
o

Gathering(3.34), (3.37) and (3.38) we immediately obtaB131). Combining 3.34) and (3.36) gives
(3.32). O
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Similar results may then be derived for the length of the full step, as we show next.
LEMMA 3.8 Suppose that AS1 and AS2 hold. Then

3 1 1
Il < - max| I Bl, (o002, (007 (339)

and

3
Isdl < = max[n Bxll, \/Ukﬂ'EC:| . (3.40)

Proof. We start by proving3.39) and
3 +
lIskll < o max | || Bkll, / ok (3.41)

in a manner identical to that used for (3.31) and (3.32) \sﬂtheplacingqfc; instead of using (3.14)
in (3.33) we now employ the inequalitygk, s«) = —x X, I||l), which follows from @.1). Also, in
order to derive the analogues of (3.37) aBBB), we use3.12) and 8.13) instead o0f3.10) and 8.11),
respectively.

If sl < 1ISSC| then(3.40) immediately follows from3.32). Otherwise, i.e. sl > [ISSC| then
the nonincreasing nature af(xy, 8) gives tha’r;rlgL < nEC. Substituting the latter inequality ir8(41)
gives (3.40) in this case. |

Using the above results we may then derive the equivalent of the well-known Cauchy decrease
condition in our constrained case. Again, the exact expression of this condition depends on the criticality
measure being considered.

LEMMA 3.9 Suppose that AS1 and AS2 hold. £.6) holds and|sS|| < 1then

GC GC i ”EC ”I?C
f(xk)—mk<xk )>KGan min| e e | (3.42)

wherexg. 9 2xuns(1 — Kibs) € (0, 1). Otherwise, if (2.5) fails andsSC|l < 1, or if [|sSC|| > 1, then

f (Xx) — mg (XkGC) 2 KgoXk- (3.43)

If IsSC|l < 1then

f (%) — GC) > i A "GC 1 3.44
K) — Mk (%) = Kgexk Min 15 (B’ ;10 (3.44)

In all cases

. K [ xk
f (%) — my (XEC) > Kok MIN [m, Z—k, 1] . (3.45)
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Proof. Again, we omit the index for brevity. Note that, because of (2.4) arfgd14),
SGCH) = xubs(x, }sGC”) HSGCH . (3.46)

Assuméfirst that||sSC| > 1. Then, using8.10), we see that

f(x)—m (XGC) > Kubs’(Qa SGC)‘ = KubsX (Xa

f(X)—m (XGC) > Kubs) s (3.47)

which gives 8.43) in the cas@s®C|| > 1 sincexyps > x4.. Assume now, for the remainder of the proof,
that ||s®C|| < 1, which implies, by (3.11), that

f(X)—m (XGC) > Kubsy HSGCH , (3.48)

andfirst consider the case where (2.5) holds. Then, frar@)(and 2.5), the Cauchy—Schwarz inequality,
(3.14) and 8.5), we obtain that

2(1 — Kxips)

2(1 — xibs)
e 19559 = g7

BB o) = Hamepeee

2
SEAEE |
Il ||+30 1550 T

andhence that
HSGCH > 2(1 — xips)7 &€ .
IBIl + 20 1sCC|

Recalling(3.32) we thus deduce that

GcH S 21— Klbs)”GC

18Il +2max{ B, /a7 C]

Combiningthis inequality with (3.46) we obtain that

2 xCC 7 GC
f(x) —m(xCC) > Zxyps(l — GCmin J—
( ) ( ) SKUbS( K|b5)77: 1+ ”B”’ o ’

whichimplies (3.42).
If (2.5) does not hold (angsSC|| < 1) then @.6) must hold. Thus3(15) and 2.7) imply that

)]

Substitutingthis inequality in (3.46) then gives that

|

x < (L4 2xepp) x (X,

1
_ GC) - =
f(X) —m (x ) > Srubst. (3.49)
This in turn implies (3.43) for the case whe§) fails and|sC|| < 1. The inequality (3.44) results
from (3.42) and (3.11) in the case wheh¥g) holds and from (3.49) wheR.6) does not hold. Finally,
(3.45) follows from combining3.42) and 8.43) and using3.11) in the former. O

We next show that when the iteratg is sufficiently noncritical, then iteratiok must be very suc-
cessful and the regularization parameter does not increase.
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LEMMA 3.10 Suppose AS1, AS2 and AS4 hold, that> 0 and that

) 1 1 9(ky + xB)
min [Uk, (Jk){k)zs (Uzlk)a] Z dff
k 2(1 — n2)xee

wherex is defined just after3.42). Then, iteratiok is very successful and

Ksuc > 1, (350)

ok+1 < Ok. (3.51)

Proof. First, note that the last inequality in (3.50) follows from the facts that> 1, xg > 1 and
ke € (0,1). Again, we omit the index for brevity. The mean-value theorem gives that

1 1
FOH) = m(x*) = S(s, [H() - Bls) - Zollsl®
for somes e [x, xT]. Hence, using3.2),

f(xT) —m(x*) < = (kn + x8) ISl (3.52)

Vo NI

We also note that3(50) and AS4 imply tha(ta;()% IIB|l andhence, from (3.39), that

sl < ; max| (o )%, (021)%] = 3max[(£)% ’ (Kﬂ '

o o

Substitutingthis last bound in3.52) then gives that

) =moc) < 2 max| £, (£)7]. (353)

2 c \o

Assumenow that|s®¢| < 1 and @.6) holds but notZ.5), or that|s®C|| > 1. Then (2.9) and3.43)
also imply that

f(x) —mxT) > f(x)—m (XGC) > Kge -
Thus, using this bound an8.63),

_ f(xt) —m(xT)

1—p=
7T 00 = mec)
Om+re)  [x (g)%
S 2Kl o’ \o
9(ky + xB) 1 1
T T 2, o o
s (02y)3

wherethe last inequality results fron8(50). Assume alternatively th#$®¢|| < 1 and @.5) holds. We
then deduce from (3.11)3(0) and 8.2) that

VorCC > Joy > 1+|BJ. (3.55)
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Then(3.40) yields that

GC
/4
Isll <3/ —,
o

which can be substituted in (3.52) to give

9 GC
f(xT) —m(xt) < E(KH +Kg)—. (3.56)
o
Onthe other hand,2.9), (3.42) and 8.55) also imply
GC
f(x) —m(xT) > f(x) —m (XGC) > koG | T
o
Thus,using this last bound2(8), 3.56), 3.11) and 8.50), we obtain that
+y — +
1= FxXT) —mx™) _ 9 +x8) _ O(xH + xB) o, (3.57)

< < <1-
f(x) — m(x*) 2KV onGC 2Ke/O X

We then conclude from (3.54) an8.57) thatp > 52 wheneer (3.50) holds, which means that the
iteration is very successful and (3.51) follows. O

Our next result shows that the regularization parameter must remain bounded above unless a critical
point is approached. Note that this result does not depend on the objective’s Hessian being Lipschitz
continuous.

LEMMA 3.11 Suppose that AS1, AS2 and AS4 hold, and that there is a corstaf, 1] and an index
j < oo such that

Xk = € (3.58)
forallk =0,...,j. Then, forallk < j,
y2Kd
ok < max| og, =4 | defy (3.59)
€
wherexkgycis defined in 8.50).
Proof. Let us first show that the following implication holds, for aky= 0, ..., j,
2
ok > = =  okp1 <ok (3.60)

€

The left-hand side of §.60) impliesox > xsyc becausecsyc > 1 ande < 1. Moreover, one verifies
easily, using (3.58), that it also gives

1
2

1 1
(0k2K)2 > (0k€)2 = (K502 = Ksuo
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and

4

1
3
1 K, 1
(O'kz)(k)3 P (_zuc) P (ngu&s = Ksuc

Hence,we deduce that the left-hand side 8f§0) implies that (3.50) holds; and s&.%1) follows by
Lemma3.10, which is the right-hand side of the implicatiég0).

Thus, whersg < yar2,o/€, (3.60) providesik < yox2 /€ for all k < j, where we have introduced
the factory, for the case wheny is less thaic2 /e anditerationk is not very successful. Thus, (3.59)
holds. Lettingk = 0 in (3.60) gives (3.59) whe#g > yzxsque sinceyy > 1. O

We are now ready to prove our first-order convergence result. We first state it for the case where there
are only finitely many successful iterations.

LEMMA 3.12 Suppose that AS1, AS2 and AS4 hold and that there are only finitely many successful
iterations. Thenyx = x, for all sufficiently largek andx, is first-order critical.

Proof. Clearly, 3.61) holds if the algorithm terminates finitely, i.e. there exissuch thatyy = 0
(seeStep 1 of COCARC); hence, let us assume that> 0 for all k > 0. After the last successful
iterate is computed, indexed by say the construction of the COCARC algorithm implies thgf; 1 =
Xio+i 9" x, for alli > 1. Since all iteration& > ko + 1 are unsuccessfuby increasedy at least a
fraction y; sothatox — oo ask — oo. If yk,4+1 > Othenyx = yk+1 > Oforallk > ko + 1 and
SO yk = Min(xo, . . ., xko+1) %" € > 0 for all k. Lemma3.11with j = oo implies thatoy is bounded
above for allkk and we have reached a contradiction. O

[pJoyxoeufew//:dny wouy papeojumoq

feuIno

We conclude this section by showing the desired convergence when the number of successful itera-
tions is infinite. As for trust-region methods this is accomplished by first showing first-order criticality
along a subsequence of the iterates.

THEOREM 3.13 Suppose that AS1-AS3a and AS4 hold. Then, we have that
liminf yx = 0. (3.61)
k— o0

Hence at least one limit point of the sequenp&} (if any) is first-order critical.

Proof. Clearly, 3.61) holds if the algorithm terminates finitely, i.e. there exisssich thatyx = 0 (see
Step 1 of COCARC); hence, let us assume that- 0 for all k > 0. Furthermore, the conclusion also
holds when there are finitely many successful iterations because of L8ritheSuppose therefore that
there are infinitely many successful iterations. Assume also that (3.58) holds kofwéth j = o0).
The mechanism of the algorithm then implies that, if iterakias successful,

2702 /T Afenuer uo 1senb Aq /Blo's

f _f > [ f _ ] > inl %k Xk 4
(%) (%kt+1) = ma[ ) — mi(x)] nlkchkmln[l+||Bk||, i B

wherewe have used?(9) and 8.45) to obtain the last inequality. The boun8s2), (3.58) and3.59)
then yield that

. € €
f(xk) — f (Xk41) = n1Kgc€ Min [1+KB"/Z’ 1} def ke > 0. (3.62)
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Summingover all successful iterations from Oltove deduce that

k
foo) — Fin) = D [FOG) — F(Xj40)] > ke,
j=0,jeS

whereix denotesthe number of successful iterations up to iteratiorSinceiy tendsto infinity by
assumption, we obtain that the sequefi€éxy)} tendsto minus infinity, which is impossible because
f is bounded below otF due to AS3a andy € F for all k. Hence, (3.58) cannot hold for &l < oco;
sincee in (3.58) was arbitrary irf0, 1], (3.61) follows. O

We finally prove that the conclusion of the last theorem is not restricted to a subsequence but holds
for the complete sequence of iterates.

THEOREM 3.14 Suppose that AS1-AS4 hold. Then, we have that
lim yx =0, (3.63)
k— o0

andall limit points of the sequencixg} arefirst-order critical.

Proof. Clearly, if the algorithm has finite termination, i.g. = 0 for somek, the conclusion follows.
If S is finite the conclusion also follows, directly from LemrBdl2. Suppose therefore that there are
infinitely many successful iterations and that there exists a subseq{tgnCesS such that

x> 2¢ (3.64)

for somee > 0. From (3.61) we deduce the existence of another subsequénc€& S such that, for
alli, ¢; is the index of the first successful iteration after iteratijosuchthat

xk=eforti <k <{andy, <e. (3.65)
We then define
K:{keSlti<k<fi}. (3.66)

Thus,for eachk € I C S, we obtain from 8.45) and 8.65) that

— > — 1 > in|—< Xk ) .
050 = 05 > 060 = 5] > e min| - 23] (@)

Because f (xk)} is monotonically decreasing and bounded below, it must be convergent and we thus
deduce from (3.67) that

&k _o, (3.68)

k— o00,kelC ok

whichin turn implies, in view of 8.65), that

lim = . 3.69
k— 00,kelC ok +oo ( )
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As a consequence of this limi3.31), 3.2) and 8.65), we see that, fdr e IC,

e <omm 2. (2) " (2) ]

andthus||§fc|| converges to zero along. We therefore obtain that

CCl <1 forall k e K sufficiently large, (3.70)
|*]

which implies that (3.44) is applicable for thdseyielding, in view of 3.2) and 8.65), that, fokk € I
sufficiently large,

GC
. € T
f () — f (1) = mal () — M(6H)] = n1xgc€ min |:1+KB,,/ UL 1:| .

But the convergence of the sequeridéxy)} impliesthat the left-hand side of this inequality converges
to zero and hence that the minimum in the last right-hand side must be attained by its middle term for
k € K sufficiently large. We therefore deduce that, for thiese

7Z'GC
f (i) = f (Xer1) > nakgee GLk (3.71)

Returningto the sequence of iterates we see that

-1 -1
X =Xl < D Ixx—Xqall= D Il foreachl andt. (3.72)
k=tj ,ke/C k=tj ,ke/C

Recall now the upper boun®.40) on||s||, k > 0. It follows from (3.11) that;rfc > xk = €, so that

(3.69) implies,/akzrlfBC > kg for all k e KC sufficiently large. Hence 3(2) and 8.40) ensure the first
inequality below,

GC

3
Isll < 3 ”ULK S e lF00 = (] fork e K suficiently large,
GC

where the second inequality follows from (3.71). This last bound can then be us@2) {o obtain

ti—1
' 3
X, — X | < > o) — Fowa] < [f0q) — F0x)]
Wect i kek MKece

for all tj andl; sufiiciently large. Since f (xk)} is convergent, the right-hand side of this inequality tends
to zero as tends to infinity. Hencel|x;, — xy, || corverges to zero with, and, by Theorer.4, so does
|xe, — xt |- But this is impossible since(64) and (3.65) implyyxe, — x| = xy — xe; = €. Hence, no
subsequence can exist such that (3.64) holds and the proof is complete. O

Assumption AS3b in the above theorem is only mildly restrictive and is satisfied if for instance, the
feasible sefF itself is bounded, or if the constrained level set of the objective functiog, F| f (X) <
f(xo)}, is bounded. Note also that AS3b would not be required in Theordrh4
providedy (x) is uniformly continuous on the sequence of iterates.
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4. Worst-case function-evaluation complexity

This section is devoted to worst-case function-evaluation complexity bounds; that is bounds on the num-
ber of objective-function or gradient evaluations needed to achieve first-order convergence to prescribed
accuracy. Despite the obvious observation that such an analysis does not cover the total computational
cost of solving a problem, this type of complexity result is of special interest for nonlinear optimization
because there are many examples where the cost of these evaluations completely dwarfs that of the other
computations inside the algorithm itself.

Note that the construction of the COCARC basic framework implies that the total number of
COCARC iterations is the same as the number of objective-function evaluations as we also need to
evaluatef on unsuccessful iterations in order to be able to compyia (2.8); the number of success-
ful COCARC iterations is the same as the gradient-evaluation count.

Firstly, let us give a generic worst-case result regarding the number of unsuccessful COCARC
iterations, namely iterationswith p; < 51, that occur up to any given iteration. Given apy> 0,
denote the iteration index sets

Sj k< j:keS} and Uj % {i <j:iunsuccessful} 4.1)

whichform a partition of{0, ..., j}. Let|S;| and|i{; | denotetheir respective cardinalities. Concerning
ok We may require that on each very successful iteraki@ns, i.e. px > 72, ok+1 is chosen such that

ok+1 = y3ok for someysz € (0,1]. 4.2)

Note that (4.2) allowsgoy} to converge to zero on very successful iterations (but no faster{ﬂi%}m A
stronger condition oay is

ok 2 Omin, k 2 03 (43)

for someomin > 0. The conditions 4.2) and 4.3) will be employed in the complexity bounds for
COCARC and a second-order variant, respectively.

THEOREM4.1 For any fixedj > 0, letS; andi/; bedefined in ¢.1). Assume that4(2) holds andet
o > 0 be such that

ok <o forallk < j. (4.4)
Then,
| < [_'Og 7315 [+ — log (iﬂ (4.5)
P logyr T logya oo/ | '

In particular, ifoy satisfieg4.3), then it also achieves (4.2) with = omin/ @, and we have that

s

Proof. The proof follows identically to that ofartiset al. (2011b, Theorem 2.1). O
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4.1 Function-evaluation complexity for COCARC algorithm

We first consider the function- (and gradient-) evaluation complexity of a variant—COCARCthe
COCARC algorithm itself, only differing by the introduction of an approximate termination rule. More
specifically, we replace the criticality check in Step 1 of COCARC by the tgs{ ¢ (wheree is a

user-supplied threshold) and terminate if this inequality holds. The results presented for this algorithm

are inspired by complexity results for trust-region algorithms (Sesttonet al., 2008a,b) and for the
adaptive cubic regularization algorithm (dgartiset al.,2011b).

THEOREMA4.2 Suppose that AS1-AS3a, AS4 add) hold and that the approximate criticality thresh-
old € is small enough to ensure

00

2
e <min [1, @’} : (4.7)

wherexg,cis defined in 8.50). Assumingyg > ¢ there exists a constands € (0, 1) suchthat

f () — f(X1) > xare? (4.8)
for all k € S before Algorithm COCARE terminatesnamely, until it generates a first iterate, sgy,
suchthat yj,+1 < €. As a consequence this algorithm needs at most

[Ks€e ] (4.9)
successfuiterations and evaluations of the objective’s gradiégf to ensureyj,+1 < ¢, and further-
more,
j1 < [ewe™2] 4ef gy,

sothat the algorithm takes at modf iterationsand objective-function evaluations to terminate with
Xii+1 < €, Where

2
o def f (X0) — fiow and  r, def (1_ log Vs) . V2Ksuc
Kdf logy1 oologya

Proof. From the definition of the j; + 1)th iteration we must havgy > ¢ for all k < j;. This, (4.7)
and (3.59) imply that

2
ok < LZSUC forallk < i (4.10)
€

We may now use the same reasoning as in the proof of TheBr&®and employ (3.62) and}(10) to

deduce that
f(Xk) = F(Xk1) > 1K5c€ Min [1:_"5 \/ﬁ l}

; 1 1
2 N1Kge MIN [1+KH R Ksuc\/)TZiI
wherewe have used (4.7), namaly< 1, to derive the last inequality. This gives.8) with

Kdf 9" n1rge Min [;, 1 ] .
- 1+xn Ksue/72

€2 forallk e S,
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Thebound (4.8) and the fact thdtdoes not change on unsucccessful iterations imply

J1
fxo) = f(xjr1) = D (FO) = FOrn)) > ISjyleare’,
k=0,keS

which, due to AS3a, further gives
f(Xo0) — fIowe_z
Kdf '

This immediately provides4.9) since|Sj,| mustbe an integer. Finally, to bound the total number of
iterations up tgj1, recall @.2) and employ the upper bound @ngiven in @.10)asa in (4.5) to deduce

logys 1 o2
Ui, < | ——=22|S; lo sue )|,
Uil { |09V1| Jl|—|—|0§1y1 g €00

This, the bound 4.9) on|Sj, | andthe inequality log(yx2,o/ (€50)) < (y2x2,¢/ (€00)) now imply

: logys Lo VoKEe 4
1= S| + U, < (l—— kg€ 4 e |
: I I log ya oglogy1

1Sial < (4.12)

Thebound onj;1 now follows by usinge < 1. O

Because Algorithm COCARCdoesnot exploit more than first-order information (via the Cauchy
point definition), the above upper bound is, as expected, of the same ordexsithat obtained by
NesteroW2004, p. 29), and byavasis(1993), for the steepest descent method.

4.2 AnO(e~3/?) function-eraluation complexity bound

We now discuss a variant—COCARC-S—of the COCARC algorithm for which an interesting worst-
case function- (and derivatives-) evaluation complexity result can be shown. Algorithm COCARC-S
uses the user-supplied first-order accuracy threslaold 0. It differs from the basic COCARC frame-
work in that stronger conditions are imposed on the step.

Let us first mention some assumptions on the true and approximate Hessian of the objective that will
be required at various points in this section.

AS5. The Hessiami (xi) is well approximated byBy, in the sense that there exists a consigpt > 0
suchthat, for allk,

I[Bk — H(x)Iskll < xarlliscll®.

AS6. The Hessian of the objective function is ‘weakly’ uniformly Lipschitz continuous on the segments
[Xk, Xk + ], in the sense that there exists a constapt > 0 such that, for alk and all
Yy € [Xk, Xk +

ITH (y) = HOu0lskll < eww lisll®.
AS5 and AS6 are acceptable assumptions essentially corresponding to the cases andNgsterav

& Polyak (2006) andCartiset al. (2011b) for the unconstrained case, the only differences being that the
first authors assumBy = H (xx) insteadof the weaker AS5.
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4.2.1 Atermination condition for the model subproblenThe conditions on the step in COCARC-S

may require the (approximate) constrained model minimization to be performed to higher accuracy than
that provided by the Cauchy point. A common way to achieve this is to impose an appropriate termina-
tion condition for the inner iterations that perform the constrained model minimization as follows.

AS7: For allk the stepsc solves the subproblem

min - mg(Xk +S) (4.12)
seR", xx+seF

accuratelyenough to ensure that

x&"(xﬁ) < Min(xstop, IS¢ xks (4.13)

wherexstop € [0, 1) is a constant and where

M (x) def min Vsmi(X), d|. 4.14
Xk( ) = X+d€f,||d“<l< S k( )9 ) ( )

Note that y"(xx) = xk. The inequality (4.13) is an adequate stopping condition for the subproblem
solution sincey () is equal to zero i is a local minimizer of (4.12). Itis the constrained analogue
of the ‘s-stopping rule’ ofCartiset al. (2011b). Note that though ensuring AS7 may be NP-hard com-
putationally, it does not require any additional objective-function or gradient evaluations, and as such, it
will not worsen the global complexity bound for COCARC-S, which counts these evaluations.

An important consequence of AS5-AS7 is that they allow us to deduce the following crucial relation
between the local optimality measure and the step.

LEMMA 4.3 i) Suppose that AS1-AS2 and AS5-AS6 hold. Then

3
ok < maX|:0'o, EVZ(KBH + KLH )] def 5max  forallk > 0. (4.15)

i) Suppose that AS1-AS7 hold. Then

Iscll = xsi/xxk+1 forallk € S, (4.16)

for some constants € (0, 1) independenof k, whereyy is defined just after3.1).

Proof. (i) The proof of @.15) follows identically to that o€artiset al. (2011a, Lemma 5.2), as the
mechanism for updatingx andfor deciding the success or otherwise of iteratioare identical in the
COCARC and the (unconstrained) ARC frameworks.

(ii) Sincek € S and by definition of the trial point, we hawg.,1 = xlj = Xk + &, and
hence by (3.1)yk+1 = x (X ). Again, let us drop the indek for the proof, defing/* d¢f » (x}) and
g™ % g(x.), and derive by Taylor expansion gf,

2102 ‘2T Afenuer uo 1s9nb Aq /Bio'sfeulnolpioixoeu few//:dny wouy papeojumoqg


http://imajna.oxfordjournals.org/

24 0f 34 C.CARTISETAL.

1
lgt — Vsm(x))|l = Hg+/0 H(x+ts)sdt —g—[B— H(X)]s— H(X)s—a]|s|s

1
< /[H(x+ts)—H(x)]sdt + (ken + 0)s2
0

1
</0 IH X+ ts) — HOOIS It + (ke + o) ]2

2
< (kLH +xBH +0)IS]I<,

< (kLh + BH + omax ISl (4.17)
wherewe have used (2.2), AS5, AS6, the triangular inequality @ntl5). Assume first that
X+
lIsll = \/ . 4.18
2(1LH + kBH + Omax) (4.18)

In this case 4.16) follows withxg = ‘/M’ as desired. Assume therefore th&tl) fails
and observe that

x T E T, AT = —(g", dT) < HgT = Vsm(X), dT)| + [(Vsm(xT),dT)|,  (4.19)
wherethe first equality defines the vectdt with
ldt) < 1. (4.20)

But, using the Cauchy—Schwarz inequality, (4.20), (4.17), the failuré.aB) and the first part ofi(19)
successively, we obtain

(Vsm(x™), d¥) — (g, d¥) < (g™, d*) — (Vsm(xT), d™)]

gt — Vsm(x )]

(kLH + xBH + omax) [ISII?
1

2
=—3(gt,d*),

INCINCIN N

=X
+

whichin turn ensures that
1
(Vsm(x®),d") < S(g*.d") <0.
Moreover, x* 4+ d* e F by definition of y T, and hence, using}(20) and 4.14),
[(Vsm(xT), d*)| < x™(xF). (4.21)

We may then substitute this bound #h19) and use the Cauchy—Schwarz inequality @m2Q) again to
deduce that

2T <Gt = Vsmx D) + M (x) < lIgT = Vsm(x )|l + min(xstop, lISIDx, (4.22)

where the last inequality results from (4.13).
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We now observe that bothandx™ belongto Fo, whereF is defined in AS1. Moreover, the first
inequality in (3.2) provides thaiy f (x) is Lipschitz continuous otFp, with constant g = xy. Thus,
Theorem3.4 applies, ensuring that(x) is Lipschitz continuous otFp, with Lipschitz constank , ; it
follows from (3.24) applied ta andx™ that

x < X=X+ " =wylisl+ 1", (4.23)
which substituted in (4.22), gives
1T < lgT = Vsm(x)l + min(istop, ISl ISl + 271 < 197 — Vsm(xX)I| + 1, ISl + KstopX " »

wherethe second inequality follows by employing nigop, [ISl) < lIsll andmin(kstop, lISI) < «stop
respectrely. Now substituting4.17) into the last displayed inequality, we obtain

2T < (etn + kBH + oma [SI1% + KLy [1S1% + Kstopr
whichfurther gives
(1= kstopx T < (kL + 5Ly + KBH + omax) lISII%.
Therefore sincexstop € (0, 1), we deduce

Il > / (1= rsop)*

2
KLH + KLy + KBH + Omax

which gives @.16) with

1-—
Ks = \/ Fstop (4.24)

KLH + KLy + KBH + Omax

O

4.2.2 Ensuringthe model decrease.Similarly to the unconstrained case presente€artis et al.
(2011b), AS7 is unfortunately not sufficient to obtain the desired complexity result; in particular, this
may not ensure a model decrease of the form
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M) — M (X)) > xreqokliscll, (4.25)

for some constanteq > 0, independent ok, wheremy(xx) = f (xx). For x;r to be an acceptable trial

point, one also needs to verify that a cheap but too small model improvement cannot be obtained from
xlj. In the unconstrained case this was expressed by the requirement that the trial point is a stationary
point of the model at least in some subspace and that the step provides a descent direction. [To see
why these conditions imply a decrease of type6) in the unconstrained case, Sgtiset al.,2011a,

Lemma 3.3.] An even milder form of the former condition can be easily imposed in the constrained case
too, by requiring that the steqq satisfies

(Vsmi (%), ) <0, (4.26)
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feasible

T -6 -5 -4 -3 = -1 0 1 2 3

FiG. 1. An llustration when4.27) fails for the cubic modeh(x, y) = —x — 1&gy — 55x2 — 453 + 3[x? + y?]%/? at the iterate

xc = (0,0)"; the feasible seF is the polytope with vertice€l, —5)7, (= 32, 1)T, (=352 1)T and (- 318, —5)T. The pattPy
defined in (4.47) that satisfies AS8 is also represented.

which expresses the reasonable requirement that the step sizesattoes not exceed that correspond-
ing to the minimum of the modehy (X + ts«) for = > 0. Itis, for instance, satisfied if

le argmin  mg(Xk + 7).
720, X+ 1 EF

Note that 4.26) also holds at a local minimizer. Lemrhal below shows that4.25) is indeed satisfied
when @.26) holds, provided the stepis descent or the model is convex.

However, at variance with the unconstrained case, there is no longer any guarantee thatghe step
provides a descent direction in the presence of negative curvature, i.éVthat(xx), ) < 0 when
(&, Bksk) < 0; recall thatVsmg(xk) = gk. Figurel illustrates the latter situation; namely, the contours
of a particular modetni (xx + S) are plotted, as well as a polyhedral feasibleBgthe steepest descent
direction fromxy and the hyperplane orthogonal to it, i{&smg(xk), s) = 0. Note that all acceptable
feasible directions fronxk (pointing towards the feasible local model minimizer) are ascent locally,
as the (only) feasible local model minimizer lies on the ‘wrong side’ of the ‘mountain’, in a direction
such that4.27) fails. However, in this unsatisfactory situation, there may be a piecewise-linear feasible
descent path (towards the local model minimizer) that goes around the mountain, taking us downhill at
each step; see AS8 and the path determine@xpyxx a, Xk,c. xlj} in Fig. 1. In the latter case we will
show that the bound4(25) holds, provided the local path to the trial pojqj‘t contains a uniformly

bounded number of descent line segments. Let us now make these illustrations mathematically precise.

We begin by considering the easy case.
LEMMA 4.4 Suppose thati(26) holds and that

(Vsmk(xk), &) <0 or (s, Bk) > 0. (4.27)

2102 ‘2T Afenuer uo 1s9nb Aq /Bio'sfeulnolpioixoeu few//:dny wouy papeojumoqg


http://imajna.oxfordjournals.org/

ADAPTIVE CUBIC REGULARIZATION ALGORITHM FOR NONCONVEX OPTIMIZATION 270f 34
Then,
+ 1 3
Mk (Xi) — Mk (X)) = éokIISkII : (4.28)
Proof. (Dropping the indek again.) Condition4.26) is equivalent to
(9,8) + (s, Bs) +as|® < 0. (4.29)
If (s, Bs) > 0, we substitutég, s) from this inequality into (2.2) and deduce that

1 1 1 2
 _ _ 1 2 3. _=2 _ < 3
m(x™) — f(x) = (g,s) + 2(3, Bs) + 3UIISII < 2<S, Bs) 30||SI| ,

whichthen implies (4.28). If, on the other hand, Bs) < 0, then we substitute the inequality ¢s) Bs)
resulting from (4.29) intoZ.2) and obtain that

1 1 1 1
m(x™) — £(x) = (g, ) + 5(s, BS) + zolIsll” < 5(9,8) — o lsl
from which (4.28) again follows because @.27). O

Note that the following implication follows fron¥(29) andgk = Vsm(Xk),
(4.26) and (s Buex) 20 = (Vsmk(Xx), ) < 0. (4.30)

As we already mentioned, ensuringy25) is more complicated wheAd.g7) fails, namely, when the
step is ascent (af) rather than descent and of negative curvature. Our requirement on the trial point
is then essentially that it can be computed by a uniformly bounded sequence of (possibly incomplete)
line minimizations starting fronx,. More formally, we assume that there exists an intéger 0 and,
for eachk such that (4.27) fails, there exist feasible poifxg; }fio with 0 < ¢ < ¢, Xk,0 = Xk and
X0 = X, such that, foi = 1,..., &,

Mg (ki) < Me(Xi-1),  (VsM(Xki—1), Xki — Xki—1) <O and  (Vsmi(Xk,i), Xki — Xki—1) < 0.
(4.31)

Notethat these inequalities hold in particularqj’ is the first minimizer of the model along the piecewise
linear path

tk

Prc %" (X -1, Xkil;

i=1
sucha trial point exists sincé is continuous and the pafPx is compact. The conditions (4.31) subsume
the case addressed in Lemehd when (4.27) holds because one may then chdgse 1 and @.31)
then implies both (4.26) and 27); recall also (4.30). We can therefore comprehensively summarize all
these requirements in the following assumption.

AS8. For allk the steps, is such that (4.31) holds for sonfg }fio c Fwith0 < ¢ < ¢, Xk,0 = Xk
andxicq = X -

Obserne that we have not used global constrained optimization anywhere in the requirements imposed
on the step.

Using AS8 we may now obtain the essential lower bound on the model reduction. First, we give a
useful technical lemma.
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LEMMA 4.5 Suppose that there exist steps andsc , andpointSxy o = Xk + Sk,0 aNAXk e = Xk + Sk,e

suchthat, for somec € (0, 1],

Mi(Xk,0) < Mk(Xk) — KokllSk ol
Mk (Xk,e) < Mi(Xk,o),

(VsmMk(Xk,e), Xk, — Xk,0) < O,
and
(VsmMi(Xk,0), Xk,e — Xk,0) < 0.
Then,
M%) — Mk(Xe) > KimicoklIScell®

for some constanti, € (0, 1) independensdf k andx.

Proof. (Dropping the indeX again.) Suppose first that, for some= (0, 1),

sl = alisell-

Then,(4.32) and 4.33) give that

mM(x) — M(X,) = M(X) — M(X,) + M(x,) — M(x,) >« |s|° > koad|s |3,

Assumenow that ¢.37) fails; that is

ISl < alis]l.

We have that
1 1 3
f(X)+(9,s) + §<So, Bs,) = m(x,) — éUIISoII .

Usingthis identity we now see that

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

1 1 1
M) = f(X) +(9,S) + =(S, BS,) + (0 + Bs,, 8% —S) + =(Se — S, B(Ss — &) + §o||5.||3

2 2

1 1 1
=m(x.) + (g+ BS.,S% —S) + (S — S, B(s —S,)) + §a||s.||3 - éanson?’.

2
Moreover, (4.34) yields that

0= (g+ Bs,S — ) +0ISe]l{Se, Se — So)

=(0+ Bs,S —S) +(Se — S, B(Se = )) +0[ISe [l {Se, Se — So),

(4.41)
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and thus, 4.41) becomes

1 1 1 1
M%) < MO6) + 50+ B, S = 8) = Sollsllis, & =) + Zollsl® = Zolls P (4.42)
But we may also use4(35) and deduce that

02(g+Bs,ss —s)+olsli{s, s — ),

which, together with (4.42), gives that

1 1 1 3 1 3
M(X,) — M(X,) > EallsoH(so, Se —So) + EGIIS.H(S., Se —So) — §a||3.|| + éallsoll

1 2 1 3 1 3 1 2

wherewe have used the Cauchy—Schwarz inequality. Taking rb@2§ and (4.39) into account and
using the fact that < 1, we obtain that

m(X) — M(Xe) = M(Xs) — M(X,) > ko (_%az - %o@ + ?13 — %a) lIsell®. (4.44)

We now select the value af for which the lower bounds4(38) and 4.44) are equal, namely, ~
0.2418,the only real positive root ofé® + 3a? + 3o = 1. The desired result now follows frord-38)
and (4.44) witham % a3 ~ 0.0141. O

Next, we prove the required model decrease under AS8.

LEMMA 4.6 Suppose that AS8 holds at iteratiknThen, there exists a constaf$q > 0 independent
of k such that4.25) holds.

Proof. If Iy = 1 then the conclusion immediately follows from Lemrhd. Otherwise,4.31) ati = 1
andxy,0 = X« imply that Lemmad.4 applies withx,” = xy 1, giving

Mic(Xic) — Mic(Xk,1) > %Uk”Xk,l —xcl>.
AS8further implies that
Mk(Xk,2) < Mc(Xk,1)s  (VsMk(Xk2), Xk2 — Xk,1) <0, and  (VsMi(Xk.1), Xk,2 — Xk,1) < 0.
We may then apply Lemmé&5a first time withx, = xx 1 andX, = Xk 2 to deduce
Mic(Xi) — Mi(Xk,2) > %Klmo'k”Xk,Z — x|,
If £x > 2 we then apply the same technigfie— 1 times: fori = 2, ..., ¢k, we deduce from AS8 that

Mk (Xk,i) < Me(X,i-1),  (VsM(Xk,i), Xk,i — Xki—1) <0, and (Vemig(Xk,i—1), Xk,i — Xk,i—1) < 0,
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while we obtain by induction that
1, 3
Mk (X,i—1) < Mi(Xk) — &/Im oklXk,i-1 — X|I*.
Thisthen allows us to apply Lemm&a5with Xi . = Xk,j—1 andxg . = Xk,i, yielding that
14 3
Mg (Xk) — Mk(X,i) = 5¥im okl Xk,i — Xkll°.

After ¢k — 1 applications of Lemmd.5we obtain that

1, _
Mk (Xk) — Mi(Xk,¢) = ékﬁﬁ LoulIxk. e — Xl (4.45)
Sincexi ¢, = X andsq = X — X, (4.45) is the desired bound.@5) withxreq = %xl‘:n_l. O

4.2.3 Further comments on satisfying AS8In practice, verifying AS8 need not be too burdensome.
Firstly, the computation oxk+ couldbe performed by a sequence of line minimizations, and AS8 then
trivially holds provided the number of such minimizations remains uniformly bounded. If the trial step
has been determined by another technique one might proceed as follows; skdfkig. setxy p to be

the global minimizer of the model in the hyperplane orthogonal to the gradient, that is

Xk.b 9" agminmy (xk + ), (4.46)
(gk.s)=0

thenwe may also definey a5 asthe intersection of the segmend[ xx ] with the boundary ofF if
Xk,b & F andasxkp if xcp € F. Similarly we definexy  asthe intersection of the segmen],, x{]
with the boundary ofF if xxp & F andasxkp if xxp € F. We may now verify 4.31) with the set
X X a» X o> X }- If (4.31) fails, then there is a feasible local minimizer of the model along the path

Pr % [ %y % al U X a0 X o] U DXk co X1 (4.47)

(the middle segment being possibly reduced to the pgigtwhenit is feasible); further model mini-
mization may then be started from this point—namely from the feasible local minimizer alehQ)-
in order to achieve the termination condition AS7, ignoring the rest of the path and the triakpoint

Note that xk p in (4.46) is the solution of an essentially unconstrained model minimization (in the
hyperplane orthogonal tgy) and thus can be computed at reasonable cost, which makes checking this
version of (4.31) acceptable from the computational point of view, especially ging@eedsto be
computed only once even if sevebqj mustbe tested. Clearly, other choices fy, areacceptable,
as long as a suitable ‘descent pafty from xi to xlj canbe determined. Note that the purpose of the
descent path is to guarantee that the model decrda®®) (holds, wherg, = xlj — Xk; see also (4.45).
See Figl for an illustration of the pat®x given by @.47).

4.2.4 The improved complexity bound for COCARC-®e now have all the ingredients needed for
the improved function-evaluation complexity result for COCARC-S.
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THEOREM 4.7 Suppose that AS1-AS8 and.B) hold, and let e (0, 1]. Then there exists a constant
kgf2 € (0, 1) suchthat

f ) — F (k1) > dezxfﬁ forallk € S. (4.48)
Therefore the total number of successful iterations with

min(yk, xk+1) > € (4.49)

that occur when applying the COCARC-S algorithm is at most

[x526-3/ﬂ def |, (4.50)

wherexs, 97 (f (xo) — fiow)/kdr2. Assuming §.49) holds ak = 0, the COCARC-S algorithm takes at
mostl s, 4+ 1 successful iterations and evaluations/igff (andpossibly, ofH) until it generates a (first)
iterate, sayj,, such thatyj,1 < e. Furthermore,

j2 < (K*ze_s/z-‘ def Jp,

so that the algorithm takes at mogt iterationsand objective-function evaluations to terminate with

Xia+1 < €, Where
l0g(6max/omin)
Kip © s, + (1 + Ksz)—kr)ng ” et

andwhereomax is defined in 4.15).

Proof. Note that, due to4.45), the definition of the trial point, name;k)zL = Xk + S, and hence o$,
doesnot change even when the path defined by AS8 has more than one segment. Thus, eanmds
4.6 both apply. Recalling that (xx) = mk(xx) we obtain from @.3), @.25) and 4.16) that

1 3/2
f(x0) — mk(XJ) Z éﬂminkredkgxk_{_la

andthus, from the definition ok € S, (4.48) follows withxgs, 9¢f %nlammxredxg. Thus, we have

f(x) — f(Xep1) > kare’?  forall k e S satisfying (4.48). (4.51)

Letting |Smax/ denotethe number of successful iterations satisfyidgdQ), and summing4(51) over
all iterationsk from O to the last successful iteration satisfying (4.49), it follows from the fact that
f does not change on unsuccessful iterations and from AS3a&hatl < oo and)that

f (X0) — fiow = |8max|’fdf2€3/2,
which gives the bound4.50). This straightforwardly implies that (4.50) also bounds the number of
successful iterations up tjp, that conform to 4.1), we denote bySj,|. To bound the total number of
iterations up tojo, let j = j» in (4.6) and deduce, also from.8) and 4.15),

1 O'max—‘
U, < | 1+1Sj,))—— o .
I J2| ’7( | jzl)log 71 g

Omin
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Thisand the bound4.50) on|Sj,|, as well asj> = |Sj,| + |U/,|, imply the expression of total bount}
on jo, recalling also that < 1. [l

This result shows a worst-case complexity result in terms of evaluations of the problem’s func-
tion that is of the same order as that for the unconstrained caseNgsterov & Polyak 2006, or
Cartiset al.,2011b).

Note that global convergence to first-order critical points may be ensured for Algorithm COCARC-S
(even without AS5-AS8), if one simply ensures that the stgpgiarante@ model decrease, which is
larger than that obtained at the Cauchy point (as computed by Step 1 of Algorithm COCARC), which
means that4.9) must hold; a very acceptable condition. The convergence analysis presented for Algo-
rithm COCARC thus applies without modification.

Despite not requiring additional evaluations of the problem’s nonlinear objective, the subproblem
solution and its associated complexity are crucial aspects of an efficient COCARC-S algorithm. In par-
ticular, to ensure the better complexity bound of Theo#e) on each iteratiok, active-set techniques
may be applied starting a§ to approximately minimize the modehk(s) in F alonga uniformly
bounded number of line segments so as to ensure AS8, until the termination condlitidni¢ satis-
fied. A minimal and simple such approach is the basic COCAR&mework, whose iteration com-
plexity when applied to the model subproblem is addressed iCartiset al. (2009, Section 4.3). In
practice, a (much) more efficient active-set technique should be employed; but further investigations
into theoretical guarantees of finite termination for such methods are needed, which seem nontrivial to
derive in the context of AS7 and AS8 due to the combinatorial aspect of both the (nonconvex) objective
and the constraints.

5. Conclusions and perspectives

We have generalized the adaptive cubic regularization method for unconstrained optimization to the
case where convex constraints are present. Our method is based on the use of the orthogonal projector
onto the feasible domain and is therefore practically limited to situations where applying this projector

is computationally inexpensive. This is, for instance, the case if the constraints are simple lower and
upper bounds on the variables or if the feasible domain has a special shape such as a sphere, a cylinder
or the order simplex (se€onnet al, 2000, Section 12.1.2). The resulting COCARC algorithm has
been proved globally convergent to first-order critical points. This result has capitalized on the natural
definition of the first-order criticality measur8.(), which allows an extension of the unconstrained

proof techniques to the constrained case. As a by-product, the Lipschitz continuity of the criticality
measurey (x) has also been proved for bounded convex feasible sets.

A variant of Algorithm COCARC has then been presented for which a worst-case function-evaluation
complexity bound can be shown, which is of the same order as that known for the unconstrained case and
better than for steepest descent methods. Remarkably, this algorithm does not rely on global model min-
imization, but the result obtained is only in terms of the global number of iterations and the problem’s
function evaluations, leaving aside the complexity of solving the subproblem, even approximately.

The authors are well aware that many issues remain open at this stage, among which the details of
an effective step computation, the convergence to second-order points and its associated rate of con-
vergence, and the constraint identification properties, as well as the implications of the new complexity
result on optimization problems with equality and inequality constraints. Numerical experience is also
necessary to assess the practical potential of both algorithms.
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