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The adaptive cubic regularization algorithm described in Cartiset al. (2009, Adaptive cubic regulari-
sation methods for unconstrained optimization. Part I: motivation, convergence and numerical results.
Math. Program., 127, 245–295; 2010, Adaptive cubic regularisation methods for unconstrained opti-
mization. Part II: worst-case function- and derivative-evaluation complexity [online].Math. Program.,
DOI: 10.1007/s10107-009-0337-y) is adapted to the problem of minimizing a nonlinear, possibly non-
convex, smooth objective function over a convex domain. Convergence to first-order critical points is
shown under standard assumptions, without any Lipschitz continuity requirement on the objective’s Hes-
sian. A worst-case complexity analysis in terms of evaluations of the problem’s function and derivatives is
also presented for the Lipschitz continuous case and for a variant of the resulting algorithm. This analysis
extends the best-known bound for general unconstrained problems to nonlinear problems with convex
constraints.

Keywords: nonlinear optimization; convex constraints; cubic regularization/regularization; numerical
algorithms; global convergence; worst-case complexity.

1. Introduction

Adaptive cubic regularization has recently returned to the forefront of smooth nonlinear optimization as
a possible alternative to more standard globalization techniques for unconstrained optimization. Meth-
ods of this type—initiated independently byGriewank(1981),Nesterov & Polyak(2006) andWeiser
et al. (2007)—are based on the observation that a second-order model involving a cubic term can be
constructed that overestimates the objective function when the latter has a Lipschitz continuous Hessian
and a model parameter is chosen large enough. InCartiset al. (2011a), we have proposed updating
the parameter so that it merely estimates a local Lipschitz constant of the Hessian, as well as using
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approximatemodel Hessians and approximate model minimizers, which makes this suitable for large-
scale problems. These adaptive regularization methods are not only globally convergent to first- and
second-order critical points with fast asymptotic speed (Nesterov & Polyak,2006;Cartiset al., 2011a),
but also—unprecedentedly—enjoy better worst-case global complexity bounds than steepest descent
methods (Nesterov & Polyak,2006;Cartiset al., 2011b), Newton’s method and trust-region methods
(Cartiset al., 2010). Furthermore, preliminary numerical experiments with basic implementations of
these techniques and of the trust region show encouraging performance of the cubic regularization ap-
proach (Cartiset al.,2011a).

Extending the approach to more general optimization problems is therefore attractive, as one may
hope that some of the qualities of the unconstrained methods can be transferred to a broader frame-
work. Nesterov(2006) has considered the extension of his cubic regularization method to problems
with a smooth convex objective function and convex constraints. In this paper we consider the exten-
sion of the adaptive cubic regularization methods to the case where minimization is subject to convex
constraints, but the smooth objective function is no longer assumed to be convex. The new algorithm
is strongly inspired by the unconstrained adaptive cubic regularization methods (Cartiset al.,2011a,b)
and by the trust-region projection methods for the same constrained problem class that are fully de-
scribed in ofConnet al. (2000, Chapter 12). In particular, it makes significant use of the specialized
first-order criticality measure developed byConnet al. (1993) for the latter context. Firstly, global con-
vergence to first-order critical points is shown under mild assumptions on the problem class for a generic
adaptive cubic regularization framework that only requires a Cauchy-like decrease in the (constrained)
model subproblem. The latter can be efficiently computed using a generalized Goldstein linesearch,
suitable for the cubic model, provided projections onto the feasible set are inexpensive to calculate.
The associated worst-case global complexity—or equivalently, the total number of objective function
and gradient evaluations—required by this generic cubic regularization approach to reach approxi-
mate first-order optimality matches, in order, that of steepest descent for unconstrained (nonconvex)
optimization.

However, in order to improve the local and global rate of convergence of the algorithm, it is necessary
to advance beyond the Cauchy point when minimizing the model. To this end we propose an adaptive
cubic regularization variant that under certain assumptions on the algorithm, can be proved to satisfy the
desirable global evaluation complexity bound of its unconstrained counterpart, which, as mentioned in
the first paragraph, is better than for steepest descent methods. As in the unconstrained case we do not
rely on global model minimization and are content with only sequential line minimizations of the model
provided they ensure descent at each (inner) step. Possible descent paths of this type are suggested,
though more work is needed to transform these ideas into a computationally efficient model solution
procedure. Solving the (constrained) subproblem relies on the assumption that these piecewise linear
paths are uniformly bounded, which still requires both practical and theoretical validation.

Our complexity analysis here, in terms of the function-evaluations count, does not cover the total
computational cost of solving the problem as it ignores the cost of solving the (constrained) subproblem.
Note, however, that though the latter may be NP-hard computationally (Vavasis, 1991), it does not
require any additional function evaluations. Furthermore, for many examples, the cost of these (black-
box) evaluations significantly dominates that of the internal computations performed by the algorithm.
Even so, effective step calculation is crucial for the practical computational efficiency of the algorithm
and will be given priority consideration in our future work.

The paper is organized as follows. Section2describes the constrained problem more formally as well
as the new adaptive regularization algorithm for it, while Section3 presents the associated convergence
theory (to first-order critical points). We then discuss a worst-case function-evaluation complexity result
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for the new algorithm and an improved result for a cubic regularization variant in Section4. Finally
some conclusions are presented in Section5.

2. The new algorithm

We consider the numerical solution of the constrained nonlinear optimization problem

min
x∈F

f (x), (2.1)

wherewe assume thatf : <n → < is twice continuously differentiable, possibly nonconvex and
bounded below on the closed, convex and nonempty feasible domainF ⊆ <n.

Our algorithm for solving this problem follows the broad lines of the projection-based trust-region
algorithm of inConnet al. (2000, Chapter 12) with adaptations necessary to replace the trust-region
globalization mechanism by a cubic regularization of the type analysed inCartiset al. (2011a). At an
iteratexk within the feasible regionF , a cubic model of the form

mk(xk + s) = f (xk) + 〈gk, s〉 +
1

2
〈s, Bks〉 +

1

3
σk‖s‖3 (2.2)

is defined, where〈∙, ∙〉 denotes the Euclidean inner product,gk =
def ∇x f (xk), Bk is a symmetric matrix

hopefully approximating the objective’s HessianH(xk) =
def ∇xx f (xk), σk is a positive regularization

parameter and‖ ∙ ‖ stands for the Euclidean norm. The stepsk from xk is then defined in two stages.
The first stage is to compute ageneralized Cauchy point xGC

k suchthat xGC
k approximatelyminimizes

the model (2.2) along the Cauchy arc defined by the projection ontoF of the negative gradient path;
that is

{x ∈ F | x = PF [xk − tgk], t > 0},

wherewe definePF to be the (unique) orthogonal projector ontoF . The approximate minimization is
carried out using a generalized Goldstein-like linesearch on the arc, as explained inConnet al. (2000,
Section 12.1). In particular,xGC

k = xk + sGC
k is determined such that

xGC
k = PF

[
xk − tGC

k gk

]
for some tGC

k > 0, (2.3)

and

mk

(
xGC

k

)
6 f (xk) + κubs

〈
gk, sGC

k

〉
(2.4)

andeither

mk

(
xGC

k

)
> f (xk) + κlbs

〈
gk, sGC

k

〉
(2.5)

or
∥
∥
∥PT(xGC

k )[−gk]
∥
∥
∥ 6 κepp

∣
∣〈gk, sGC

k

〉∣∣, (2.6)

wherethe three constants satisfy

0 < κubs < κlbs < 1 and κepp ∈
(

0,
1

2

)
, (2.7)
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andwhereT(x) is the tangent cone toF at x. The conditions (2.4) and (2.5) are the familiar Goldstein
linesearch conditions adapted to our search along the Cauchy arc, while (2.6) is there to handle the
case where this arc ends before condition (2.5) is ever satisfied. Once the generalized Cauchy point
xGC

k is computed (which can be done by a suitable search ontGC
k > 0 inspired byConnet al., 2000,

Algorithm 12.2.2 , and discussed below), any stepsk suchthat

x+
k =

def xk + sk ∈ F

andsuch that the model value atx+
k is below that obtained atxGC

k , is acceptable.
Given the stepsk, the trial pointx+

k is known and the value of the objective function at this point
computed. If the ratio

ρk =
f (xk) − f (x+

k )

f (xk) − mk(x
+
k )

(2.8)

of the achieved reduction in the objective function compared to the predicted model reduction is larger
than some constantη1 > 0, then the trial point is accepted as the next iterate and the regularization
parameterσk is essentially unchanged or decreased, while the trial point is rejected andσk increased
if ρk < η1. Fortunately, the undesirable situation where the trial point is rejected cannot persist since
σk eventually becomes larger than some local Lipschitz constant associated with the Hessian of the
objective function (assuming it exists), which in turn guarantees thatρk > 1, as shown inGriewank
(1981),Nesterov & Polyak(2006) orCartiset al. (2011a).

We now state our Adaptive Regularization using Cubics for COnvex Constraints (COCARC).

Algorithm 2.1. Adaptive Regularization with Cubics for Convex Constraints (COCARC).

Step 0. Initialization. An initial point x0 ∈ F andan initial regularization parameterσ0 > 0 are given.
Computef (x0) andsetk = 0.

Step 1. Determination of the generalized Cauchy point.If xk is first-order critical, terminate the al-
gorithm. Otherwise perform the following iteration.

Step 1.0. Initialization. Define the model (2.2), chooset0 > 0 and set
tmin = 0, tmax = ∞ and j = 0.

Step 1.1. Compute a point on the projected-gradient path.Set xk, j = PF [xk − t j gk] and
evaluatemk(xk, j ).

Step1.2. Check for the stopping conditions.If (2.4) is violated then settmax = t j andgo to
Step 1.3. Otherwise, if (2.5) and (2.6) are violated, settmin = t j andgo to Step 1.3.
Otherwise setxGC

k = xk, j andgo to Step 2.

Step 1.3. Find a new value of the arc parameter.If tmax = ∞, sett j +1 = 2t j . Otherwise set
t j +1 = 1

2(tmin + tmax). Incrementj by 1 and go to Step 1.2.
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Step 2. Step calculation.Compute a stepsk anda trial pointx+
k =

def xk + sk ∈ F suchthat

mk(x
+
k ) 6 mk

(
xGC

k

)
. (2.9)

Step3. Acceptance of the trial point. Compute f (x+
k ) and the ratio (2.8). If ρk > η1 then define

xk+1 = xk + sk; otherwise definexk+1 = xk.

Step4. Regularization parameter update.Set

σk+1 ∈






(0,σk] if ρk > η2,

[σk, γ1σk] if ρk ∈ [η1, η2),

[γ1σk, γ2σk] if ρk < η1.

Incrementk by 1 and go to Step1.

As in Cartiset al. (2011a) the constantsη1, η2, γ1 andγ2 aregiven and satisfy the conditions

0 < η1 6 η2 < 1 and 1< γ1 6 γ2. (2.10)

As for trust-region algorithms we say that iterationk is successful wheneverρk > η1 (andthusxk+1 =
x+

k ) and very successful wheneverρk > η2, in which case, additionally,σk+1 6 σk. We denote the index
set of all successful and very successful iterations byS.

As mentioned above, our technique for computing the generalized Cauchy point is inspired by the
Goldstein linesearch scheme, but it is most likely that techniques based on Armijo-like backtracking
(seeSartenaer,1993) or on successive exploration of the active faces ofF along the Cauchy arc (see
Connet al.,1988) are also possible, the latter being practical whenF is a polyhedron.

3. Global convergence to first-order critical points

We now consider the global convergence properties of Algorithm COCARC and show in this section
that all the limit points of the sequence of its iterates must be first-order critical points for problem (2.1).
Our analysis will be based on the first-order criticality measure atx ∈ F given by

χ(x) =
def

∣
∣
∣
∣ min
x+d∈F ,‖d‖61

〈∇x f (x), d〉

∣
∣
∣
∣ , (3.1)

(seeConnet al., 1993) and defineχk =
def χ(xk). We say thatx∗ is a first-order critical point for (2.1) if

χ(x∗) = 0 (seeConnet al.,2000Theorem 12.1.6).
For our analysis, we consider the following assumptions.

AS1. The feasible setF is closed, convex and nonempty.

AS2. The function f is twice continuously differentiable on the (open and convex) setF̂0 = {x :
‖x − y‖ < δ for somey ∈ F0} for givenδ ∈ (0,1) and whereF0 ⊆ F is the closed, convex hull
of x0 andthe iteratesxk + sk, k > 0.
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AS3a. The function f is bounded below byflow onF0.

AS3b. The setF0 is bounded.

AS4. There exist constantsκH > 1 andκB > 1 such that

‖H(x)‖ 6 κH for all x ∈ F0, and ‖Bk‖ 6 κB for all k > 0. (3.2)

Note that AS3b and AS2 imply AS3a, but some results will only require the weaker condition AS3a.
Suppose that AS1 and AS2 hold, and letx ∈ F0. For t > 0, let

x(t) =
def PF [x − t∇x f (x)] and θ(x, t) =

def ‖x(t) − x‖, (3.3)

while, for θ > 0,

χ(x, θ) =
def

∣
∣
∣
∣ min
x+d∈F ,‖d‖6θ

〈∇x f (x), d〉

∣
∣
∣
∣ , (3.4)

and

π(x, θ) =
def

χ(x, θ)

θ
. (3.5)

Somealready-known properties of the projected gradient path and the above variants of the criticality
measure (3.1) are given next and will prove useful in what follows.

LEMMA 3.1

1. [Connet al., 2000] Suppose that AS1 and AS2 hold and letx ∈ F0 andt > 0 such thatθ > 0.
Then

(i) [Theorem 3.2.8]θ(x, t), χ(x, θ) andπ(x, θ) are continuous with respect to their two
arguments,

(ii) [Theorem 12.1.3]θ(x, t) is nondecreasing with respect tot ,

(iii) [Theorem 12.1.4] the pointx(t) − x is a solution of problem

min
x+d∈F ,‖d‖6θ

〈∇x f (x), d〉, (3.6)

whereθ = ‖x(t) − x‖,

(iv) [Theorem 12.1.5(i), (ii)]χ(x, θ) is nondecreasing andπ(x, θ) is nonincreasing with
respect toθ ,

(v) [Theorem 12.1.5 (iii)] for anyd such thatx + d ∈ F , the inequality

χ(x, θ) 6 |〈∇x f (x), d〉| + 2θ‖PT(x+d)[−∇x f (x)]‖ (3.7)

holdsfor all θ > ‖d‖.

2. [Hiriart-Urruty and Lemárechal,1993, Proposition 5.3.5] For anyx ∈ F andd ∈ <n, the follow-
ing limit holds:

lim
α→0+

PF (x + αd) − x

α
= PT(x)[d]. (3.8)
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The following result is a consequence of the above properties of the criticality measure (3.1) and its
variants.

LEMMA 3.2 Suppose that AS1 and AS2 hold. Forx ∈ F0, t > 0 andθ > 0, recall the measures (3.3),
(3.4) and (3.5), and let

πGC
k =

def π
(

xk,
∥
∥
∥sGC

k

∥
∥
∥
)

and π+
k =

def π(xk, ‖sk‖), (3.9)

wheresGC
k =

def xGC
k − xk. If ‖sGC

k ‖ > 1 then

χ
(

xk,
∥
∥
∥sGC

k

∥
∥
∥
)
> χk > πGC

k , (3.10)

while if ‖sGC
k ‖ 6 1 then

πGC
k > χk > χ

(
xk,

∥
∥
∥sGC

k

∥
∥
∥
)

. (3.11)

Similarly, if ‖sk‖ > 1 then

χ(xk, ‖sk‖) > χk > π+
k , (3.12)

while if ‖sk‖ 6 1 then

π+
k > χk > χ(xk, ‖sk‖). (3.13)

Moreover,

−
〈
gk, sGC

k

〉
= χ

(
xk,

∥
∥
∥sGC

k

∥
∥
∥
)
> 0, (3.14)

χk 6 χ
(

xk,
∥
∥
∥sGC

k

∥
∥
∥
)

+ 2
∥
∥
∥PT(xGC

k )[−gk]
∥
∥
∥ (3.15)

and

θ(x, t) > t ‖PT(x(t))[−∇x f (x)]‖. (3.16)

Proof. The inequalities (3.10) and (3.11) follow from the identity

χk = χ(xk, 1), (3.17)

(3.5) and Lemma3.1(iv). Precisely the same arguments give (3.12) and (3.13) as well since the
definition of sGC

k was not used in the above inequalities. To show (3.14), apply Lemma3.1(iii) with
t = tGC

k , which givesθ = ‖sGC
k ‖, and recalling the definition of (3.4), also

∣
∣
∣
〈
gk, sGC

k

〉∣∣
∣ = χ

(
xk,

∥
∥
∥sGC

k

∥
∥
∥
)

. (3.18)

It remains to show that|〈gk, sGC
k 〉| = −〈gk, sGC

k 〉, which follows from the monotonicity of the projection
operator, namely, we have

〈
xk − tGC

k gk − x
(
tGC
k

)
, xk − x

(
tGC
k

)〉
6 0,
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or equivalently,
〈
gk, sGC

k

〉
6 −

1

tGC
k

∥
∥
∥xk − x

(
tGC
k

)∥∥
∥

2
6 0.

Next, (3.15) results from (3.10) if ‖sGC
k ‖ > 1; else, when‖sGC

k ‖ < 1, (3.15) follows by lettingx = xk,
θ = 1 andd = sGC

k in (3.7) and employing (3.18). We are left with proving (3.16). We first note that if
u(x, t) = x(t) − x thenθ(x, t) = ‖u(x, t)‖ and, denoting the right directional derivative by d/dt+, we
see that

dθ

dt+
(x, t) =

〈du(x,t)
dt+

, u(x, t)
〉

‖u(x, t)‖
=

〈PT(x(t))[−∇x f (x)], u(x, t)〉

θ(x, t)
, (3.19)

where to deduce the second equality, we used (3.8) withx = x(t) andd = −∇x f (x). Moreover,

u(x, t) = −t∇x f (x) − [x − t∇x f (x) − x(t)] =
def − t∇x f (x) − z(x, t) (3.20)

andbecause of the definition ofx(t), z(x, t) must belong toN(x(t)), the normal cone toF at x(t),
which by definition, comprises all directionsw such that〈w, y − x(t)〉 6 0 for all y ∈ F . Thus, since
this cone is the polar ofT(x(t)), we deduce that

〈PT(x(t))[−∇x f (x)], z(x, t)〉 6 0. (3.21)

We now obtain, successively using (3.19), (3.20) and (3.21), that

θ(x, t)
dθ

dt+
(x, t) = 〈PT(x(t))[−∇x f (x)], u(x, t)〉

= 〈PT(x(t))[−∇x f (x)], −t∇x f (x) − z(x, t)〉

= t 〈−∇x f (x), PT(x(t))[−∇x f (x)]〉 − 〈PT(x(t))[−∇x f (x)], z(x, t)〉

> t ‖PT(x(t))[−∇x f (x)]‖2. (3.22)

But (3.19) and the Cauchy–Schwarz inequality also imply that

dθ

dt+
(x, t) 6 ‖PT(x(t))[−∇x f (x)]‖.

Combiningthis last bound with (3.22) finally yields (3.16) as desired. �

We complete our analysis of the criticality measures by considering the Lipschitz continuity of the
measureχ(x). We start by proving the following lemma. This result extendsMangasarian & Rosen
(1964, Lemma 1) by allowing a general, possibly implicit, expression of the feasible set.

LEMMA 3.3 Suppose that AS1 holds and define

φ(x) =
def min

x+d∈F ,‖d‖61
〈g, d〉

for x ∈ <n andsome vectorg ∈ <n. Thenφ(x) is a proper convex function on

F1 =
def {x ∈ <n | (F − x) ∩ B 6= ∅}, (3.23)

whereB is the closed Euclidean unit ball.
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Proof. The result is trivial ifg = 0. Assume, therefore, thatg 6= 0. We first note that the definition
of F1 ensuresthat the feasible set ofφ(x) is nonempty and, therefore, that the parametric minimization
problem definingφ(x) is well defined for anyx ∈ F1. Moreover, the minimum is always attained
because of the constraint‖d‖ 6 1, and so−∞ < φ(x) for all x ∈ F1. Hence,φ(x) is proper inF1. To
show thatφ(x) is convex on (the convex set)F1, let x1, x2 ∈ F1, and letd1, d2 ∈ <n besuch that

φ(x1) = 〈g, d1〉 and φ(x2) = 〈g, d2〉.

Also let λ ∈ [0, 1], x0 =
def λx1 + (1 − λ)x2 andd0 =

def λd1 + (1 − λ)d2. Let us show thatd0 is feasible
for theφ(x0) problem.Sinced1 andd2 arefeasible for theφ(x1) andφ(x2) problems,respectively, and
sinceλ ∈ [0, 1], we have that‖d0‖ 6 1. To showx0 + d0 ∈ F , we have

x0 + d0 = λ(x1 + d1) + (1 − λ)(x2 + d2) ∈ λF + (1 − λ)F ⊆ F ,

wherewe used thatF is convex to obtain the set inclusion. Thus,d0 is feasible forφ(x0) andhence

φ(x0) 6 〈g, d0〉 = λ〈g, d1〉 + (1 − λ)〈g, d2〉 = λφ(x1) + (1 − λ)φ(x2),

whichproves thatφ(x) is convex inF1. �

We are now in position to prove that the criticality measureχ(x) is Lipschitz continuous on closed
and bounded subsets ofF .

THEOREM 3.4 Suppose that AS1, AS2 and AS3b hold. Suppose also that∇x f (x) is Lipschitz contin-
uous onF0 with constantκLg. Then, there exists a constantκLχ > 0 such that

|χ(x) − χ(y)| 6 κLχ ‖x − y‖ (3.24)

for all x, y ∈ F0.

Proof. We have from (3.1) that

χ(x) − χ(y) = min
y+d∈F ,‖d‖61

〈∇x f (y), d〉 − min
x+d∈F ,‖d‖61

〈∇x f (x), d〉, (3.25)

= min
y+d∈F ,‖d‖61

〈∇x f (y), d〉 − min
y+d∈F ,‖d‖61

〈∇x f (x), d〉

+ min
y+d∈F ,‖d‖61

〈∇x f (x), d〉 − min
x+d∈F ,‖d‖61

〈∇x f (x), d〉. (3.26)

Notethat the first two terms in (3.26) have the same feasible set but different objectives, while the last
two have different feasible sets but the same objective. Consider the difference of the first two terms.
Letting

〈∇x f (y), dy〉 = min
y+d∈F ,‖d‖61

〈∇x f (y), d〉 and 〈∇x f (x), dx〉 = min
y+d∈F ,‖d‖61

〈∇x f (x), d〉,

thefirst difference in (3.26) becomes

〈∇x f (y), dy〉 − 〈∇x f (x), dx〉 = 〈∇x f (y), dy − dx〉 + 〈∇x f (y) − ∇x f (x), dx〉

6 〈∇x f (y) − ∇x f (x), dx〉

6 ‖∇x f (y) − ∇x f (x)‖ ∙ ‖dx‖

6 κLg‖x − y‖, (3.27)
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whereto obtain the first inequality above, we used that, by definition ofdy anddx, dx is now feasible for
the constraints of the problem of whichdy is the solution; the last inequality follows from the assumed
Lipschitz continuity of∇ f and from the bound‖dx‖ 6 1.

Considernow the second difference in (3.26) (where we have the same objective but different feasi-
ble sets). Employing the last displayed expression onRockafellar(1970, p. 43), the set̂F0 in AS2 can
be written as

F̂0 = F0 + δB,

whereB is the open Euclidean unit ball. It is straightforward to show thatF̂0 ⊆ F1, whereF1 is
definedby (3.23). Thus, by Lemma3.3 with g = ∇x f (x), φ is a proper convex function on̂F0. This
and Rockafellar(1970, Theorem 10.4) now yield thatφ is Lipschitz continuous (with constantκLφ ,
say)on any closed and bounded subset of the relative interior ofF̂0, in particular onF0, sinceF̂0 is
full-dimensionaland open andF0 ⊆ F̂0. As a consequence we obtain from (3.26) and (3.27) that

χ(x) − χ(y) 6 (κLg + κLφ )‖x − y‖.

Sincethe role ofx and y can be interchanged in the above argument, the conclusion of the theorem
follows by settingκLχ = κLg + κLφ . �

This theorem provides a generalization of a result already known for the special case whereF is defined
by simple bounds and the norm used in the definition ofχ(x) is the infinity norm (seeGrattonet al.,
2008a, Lemma 4.1).

Next, we prove a first crude upper bound on the length of any model descent step.

LEMMA 3.5 Suppose that AS4 holds and that a givens yields

mk(xk + s) 6 f (xk). (3.28)

Then

‖s‖ 6
3

σk

(
κB +

√
σk‖gk‖

)
. (3.29)

Proof. The definition (2.2) and (3.28) give that

〈gk, s〉 +
1

2
〈s, Bks〉 +

1

3
σk‖s‖3 6 0.

Hence,using the Cauchy–Schwarz inequality and (3.2), we deduce

06
1

3
σk‖s‖3 6 ‖gk‖ ∙ ‖s‖ +

1

2
κB‖s‖2.

This in turn implies that

‖s‖ 6
1
2κB +

√
1
4κ2

B + 4
3σk‖gk‖

2
3σk

6
κB +

√
4
3σk‖gk‖

2
3σk

6
3

σk

(
κB +

√
σk‖gk‖

)
.

�
Using this bound we next verify that Step 1 of Algorithm COCARC is well defined and delivers a
suitable generalized Cauchy point.
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LEMMA 3.6 Suppose that AS1, AS2 and AS4 hold. Then, for eachk with χk > 0, the loop between
Steps 1.1, 1.2 and 1.3 of Algorithm COCARC is finite and produces a generalized Cauchy pointxGC

k
satisfying(2.4) and either (2.5) or (2.6).

Proof. Observe first that the generalized Cauchy point resulting from Step 1 must satisfy conditions
(2.4), and (2.5) or (2.6), if the loop onj internal to this step terminates finitely. Thus, we only need to
show (by contradiction) that this finite termination always occurs. We therefore assume that the loop is
infinite and j tends to infinity.

Suppose first thattmax = ∞ for all j > 0. From Lemma3.5, we know thatθ(xk, t j ) = ‖xk, j − xk‖
is bounded above as a function ofj , but yett j +1 = 2t j andthust j tendsto infinity. We may then apply
(3.16) to deduce that

∥
∥PT (xk, j )[−gk]

∥
∥ 6

θ(xk, t j )

t j
,

andthus that

lim
j →∞

∥
∥PT (xk, j )[−gk]

∥
∥ = 0. (3.30)

But the same argument that gave (3.14) in Lemma3.2 implies that, for allj > 0,

−〈gk, xk, j − xk〉 = |〈gk, xk, j − xk〉| = χ(xk, ‖xk, j − xk‖).

Therefore,Lemma3.1(iv) provides that|〈gk, xk, j − xk〉| is nondecreasing withj and also gives the first
inequality below

|〈gk, xk,0 − xk〉| = χ(xk, ‖xk,0 − xk‖) > min[1,‖xk,0 − xk‖]χk > 0,

wherethe last inequality follows from the fact thatxk is not first-order critical. As a consequence,

|〈gk, xk, j − xk〉| > min[1,‖xk,0 − xk‖]χk > 0

for all j > 0. Combining this observation with (3.30), we conclude that (2.6) must hold for all
j sufficiently large, and the loop inside Step 1 must then be finite, which contradicts our assumption.
Thus, our initial supposition ontmax is impossible andtmax mustbe reset to a finite value. The continuity
of the modelmk andof the projection operatorPF thenimply, together with (2.7), the existence of an
interval I of <+ of nonzero length, possibly nonunique, such that, for allt ∈ I ,

mk(PF [xk − tgk]) 6 f (xk) + κubs〈gk, PF [xk − tgk] − xk〉

and

mk(PF [xk − tgk]) > f (xk) + κlbs〈gk, PF [xk − tgk] − xk〉.

But this interval is independent ofj and is always contained in [tmin, tmax] by construction, while the
length of this latter interval converges to zero whenj tends to infinity. Hence, there must exist a finite
j such that both (2.4) and (2.5) hold, leading to the desired contradiction. �

We now derive two finer upper bounds on the length of the generalized Cauchy step, depending on
two different criticality measures. These results are inspired byCartiset al. (2011a, Lemma 2.1).
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LEMMA 3.7 Suppose that AS1 and AS2 hold. Then, we have that

∥
∥
∥sGC

k

∥
∥
∥ 6

3

σk
max

[
‖Bk‖, (σkχk)

1
2 , (σ 2

k χk)
1
3

]
, (3.31)

and

∥
∥
∥sGC

k

∥
∥
∥ 6

3

σk
max

[
‖Bk‖,

(
σkπ

GC
k

) 1
2
]

, (3.32)

Proof. For brevity we omit the indexk. From (2.2), (3.14) and the Cauchy–Schwarz inequality,

m
(

xGC
)

− f (x) =
〈
g, sGC〉+

1

2

〈
sGC, BsGC〉+

1

3
σ
∥
∥
∥sGC

∥
∥
∥

3

>−χ
(

x,
∥
∥
∥sGC

∥
∥
∥
)

−
1

2

∥
∥
∥sGC

∥
∥
∥

2
‖B‖ +

1

3
σ
∥
∥
∥sGC

∥
∥
∥

3

=
[

1

9
σ
∥
∥
∥sGC

∥
∥
∥

3
− χ

(
x,
∥
∥
∥sGC

∥
∥
∥
)]

+
[

2

9
σ
∥
∥
∥sGC

∥
∥
∥

3
−

1

2

∥
∥
∥sGC

∥
∥
∥

2
‖B‖

]
, (3.33)

Thus,sincem(xGC) 6 f (x), at least one of the bracketed expressions must be negative, i.e. either

∥
∥
∥sGC

∥
∥
∥ 6

9

4
∙
‖B‖

σ
(3.34)

or

∥
∥
∥sGC

∥
∥
∥

3
6

9

σ
χ
(

x,
∥
∥
∥sGC

∥
∥
∥
)

; (3.35)

thelatter is equivalent to

∥
∥
∥sGC

∥
∥
∥ 6 3

(
πGC

σ

) 1
2

(3.36)

from (3.5) whenθ = ‖sGC‖. In the case that‖sGC‖ > 1, (3.10) then gives that

∥
∥
∥sGC

∥
∥
∥ 6 3

(χ

σ

) 1
2
. (3.37)

Conversely, if‖sGC‖ < 1, we obtain from (3.11) and (3.35) that

∥
∥
∥sGC

∥
∥
∥ 6 3

(χ

σ

) 1
3
. (3.38)

Gathering(3.34), (3.37) and (3.38) we immediately obtain (3.31). Combining (3.34) and (3.36) gives
(3.32). �
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Similar results may then be derived for the length of the full step, as we show next.

LEMMA 3.8 Suppose that AS1 and AS2 hold. Then

‖sk‖ 6
3

σk
max

[
‖Bk‖, (σkχk)

1
2 , (σ 2

k χk)
1
3

]
(3.39)

and

‖sk‖ 6
3

σk
max

[
‖Bk‖,

√
σkπ

GC
k

]
. (3.40)

Proof. We start by proving (3.39) and

‖sk‖ 6
3

σk
max

[
‖Bk‖,

√
σkπ

+
k

]
(3.41)

in a manner identical to that used for (3.31) and (3.32) withsk replacingsGC
k ; instead of using (3.14)

in (3.33) we now employ the inequality〈gk, sk〉 > −χ(xk, ‖sk‖), which follows from (3.1). Also, in
order to derive the analogues of (3.37) and (3.38), we use (3.12) and (3.13) instead of (3.10) and (3.11),
respectively.

If ‖sk‖ 6 ‖sGC
k ‖ then(3.40) immediately follows from (3.32). Otherwise, i.e. if‖sk‖ > ‖sGC

k ‖ then
thenonincreasing nature ofπ(xk, θ) gives thatπ+

k 6 πGC
k . Substituting the latter inequality in (3.41)

gives (3.40) in this case. �

Using the above results we may then derive the equivalent of the well-known Cauchy decrease
condition in our constrained case. Again, the exact expression of this condition depends on the criticality
measure being considered.

LEMMA 3.9 Suppose that AS1 and AS2 hold. If (2.5) holds and‖sGC
k ‖ 6 1 then

f (xk) − mk

(
xGC

k

)
> κGCπGC

k min



 πGC
k

1 + ‖Bk‖
,

√
πGC

k

σk



 , (3.42)

whereκGC =
def 1

2κubs(1 − κlbs) ∈ (0,1). Otherwise, if (2.5) fails and‖sGC
k ‖ 6 1, or if ‖sGC

k ‖ > 1, then

f (xk) − mk

(
xGC

k

)
> κGCχk. (3.43)

If ‖sGC
k ‖ 6 1 then

f (xk) − mk

(
xGC

k

)
> κGCχk min



 χk

1 + ‖Bk‖
,

√
πGC

k

σk
, 1



 . (3.44)

In all cases

f (xk) − mk

(
xGC

k

)
> κGCχk min

[
χk

1 + ‖Bk‖
,

√
χk

σk
, 1

]
. (3.45)
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Proof. Again, we omit the indexk for brevity. Note that, because of (2.4) and (3.14),

f (x) − m
(

xGC
)
> κubs

∣
∣
∣
〈
g, sGC〉

∣
∣
∣ = κubsχ

(
x,
∥
∥sGC

∥
∥
)

= κubs

(
x,
∥
∥sGC

∥
∥
) ∥∥
∥sGC

∥
∥
∥ . (3.46)

Assumefirst that‖sGC‖ > 1. Then, using (3.10), we see that

f (x) − m
(

xGC
)
> κubsχ, (3.47)

which gives (3.43) in the case‖sGC‖ > 1 sinceκubs > κGC. Assume now, for the remainder of the proof,
that‖sGC‖ 6 1, which implies, by (3.11), that

f (x) − m
(

xGC
)
> κubsχ

∥
∥
∥sGC

∥
∥
∥ , (3.48)

andfirst consider the case where (2.5) holds. Then, from (2.2) and (2.5), the Cauchy–Schwarz inequality,
(3.14) and (3.5), we obtain that

‖B‖ +
2

3
σ
∥
∥
∥sGC

∥
∥
∥ >

2(1 − κlbs)

‖sGC‖2

∣
∣
∣
〈
g, sGC〉

∣
∣
∣ =

2(1 − κlbs)

‖sGC‖2
χ
(

x,
∥
∥
∥sGC

∥
∥
∥
)

=
2(1 − κlbs)

‖sGC‖
πGC,

andhence that
∥
∥
∥sGC

∥
∥
∥ >

2(1 − κlbs)π
GC

‖B‖ + 2
3σ‖sGC‖

.

Recalling(3.32) we thus deduce that

∥
∥
∥sGC

∥
∥
∥ >

2(1 − κlbs)π
GC

‖B‖ + 2 max
[
‖B‖,

√
σπGC

] .

Combiningthis inequality with (3.46) we obtain that

f (x) − m
(

xGC
)
>

2

3
κubs(1 − κlbs)π

GC min



 πGC

1 + ‖B‖
,

√
πGC

σ



 ,

which implies (3.42).
If (2.5) does not hold (and‖sGC

k ‖ 6 1) then (2.6) must hold. Thus, (3.15) and (2.7) imply that

χ 6 (1 + 2κepp)χ
(

x,
∥
∥
∥sGC

∥
∥
∥
)
6 2χ

(
x,
∥
∥
∥sGC

∥
∥
∥
)

.

Substitutingthis inequality in (3.46) then gives that

f (x) − m
(

xGC
)
>

1

2
κubsχ. (3.49)

This in turn implies (3.43) for the case when (2.5) fails and‖sGC
k ‖ 6 1. The inequality (3.44) results

from (3.42) and (3.11) in the case when (2.5) holds and from (3.49) when (2.5) does not hold. Finally,
(3.45) follows from combining (3.42) and (3.43) and using (3.11) in the former. �

We next show that when the iteratexk is sufficiently noncritical, then iterationk must be very suc-
cessful and the regularization parameter does not increase.
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LEMMA 3.10 Suppose AS1, AS2 and AS4 hold, thatχk > 0 and that

min
[
σk, (σkχk)

1
2 , (σ 2

k χk)
1
3

]
>

9(κH + κB)

2(1 − η2)κGC
=

def κsuc > 1, (3.50)

whereκGC is defined just after (3.42). Then, iterationk is very successful and

σk+1 6 σk. (3.51)

Proof. First, note that the last inequality in (3.50) follows from the facts thatκH > 1, κB > 1 and
κGC ∈ (0,1). Again, we omit the indexk for brevity. The mean-value theorem gives that

f (x+) − m(x+) =
1

2
〈s, [H(ξ) − B]s〉 −

1

3
σ‖s‖3

for someξ ∈ [x, x+]. Hence, using (3.2),

f (x+) − m(x+) 6
1

2
(κH + κB)‖s‖2. (3.52)

We also note that (3.50) and AS4 imply that(σχ)
1
2 > ‖B‖ andhence, from (3.39), that

‖s‖ 6
3

σ
max

[
(σχ)

1
2 , (σ 2χ)

1
3

]
= 3max

[(χ

σ

) 1
2
,
(χ

σ

) 1
3
]

.

Substitutingthis last bound in (3.52) then gives that

f (x+) − m(x+) 6
9(κH + κB)

2
max

[
χ

σ
,
(χ

σ

) 2
3
]

. (3.53)

Assumenow that‖sGC‖ 6 1 and (2.6) holds but not (2.5), or that‖sGC‖ > 1. Then (2.9) and (3.43)
also imply that

f (x) − m(x+) > f (x) − m
(

xGC
)
> κGCχ.

Thus, using this bound and (3.53),

1 − ρ =
f (x+) − m(x+)

f (x) − m(x+)

6
9(κH + κB)

2κGCχ
max

[
χ

σ
,
(χ

σ

) 2
3
]

=
9(κH + κB)

2κGC

max

[
1

σ
,

1

(σ 2χ)
1
3

]

6 1 − η2, (3.54)

wherethe last inequality results from (3.50). Assume alternatively that‖sGC‖ 6 1 and (2.5) holds. We
then deduce from (3.11), (3.50) and (3.2) that

√
σπGC >

√
σχ > 1 + ‖B‖. (3.55)
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Then(3.40) yields that

‖s‖ 6 3

√
πGC

σ
,

whichcan be substituted in (3.52) to give

f (x+) − m(x+) 6
9

2
(κH + κB)

πGC

σ
. (3.56)

On the other hand, (2.9), (3.42) and (3.55) also imply

f (x) − m(x+) > f (x) − m
(

xGC
)
> κGCπGC

√
πGC

σ
.

Thus,using this last bound, (2.8), (3.56), (3.11) and (3.50), we obtain that

1 − ρ =
f (x+) − m(x+)

f (x) − m(x+)
6

9(κH + κB)

2κGC

√
σπGC

6
9(κH + κB)

2κGC

√
σχ
6 1 − η2. (3.57)

We then conclude from (3.54) and (3.57) thatρ > η2 whenever (3.50) holds, which means that the
iteration is very successful and (3.51) follows. �

Our next result shows that the regularization parameter must remain bounded above unless a critical
point is approached. Note that this result does not depend on the objective’s Hessian being Lipschitz
continuous.

LEMMA 3.11 Suppose that AS1, AS2 and AS4 hold, and that there is a constantε ∈ (0,1] and an index
j 6∞ such that

χk > ε (3.58)

for all k = 0, . . . , j . Then, for allk 6 j ,

σk 6 max

[

σ0,
γ2κ

2
suc

ε

]

=
def κσ , (3.59)

whereκsuc is defined in (3.50).

Proof. Let us first show that the following implication holds, for anyk = 0, . . . , j ,

σk >
κ2

suc

ε
=⇒ σk+1 6 σk. (3.60)

The left-hand side of (3.60) impliesσk > κsuc becauseκsuc > 1 andε < 1. Moreover, one verifies
easily, using (3.58), that it also gives

(σkχk)
1
2 > (σkε)

1
2 = (κ2

suc)
1
2 = κsuc,
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and

(σ 2
k χk)

1
3 >

(
κ4

suc

ε

) 1
3

> (κ3
suc)

1
3 = κsuc.

Hence,we deduce that the left-hand side of (3.60) implies that (3.50) holds; and so (3.51) follows by
Lemma3.10, which is the right-hand side of the implication (3.60).

Thus, whenσ0 6 γ2κ
2
suc/ε, (3.60) providesσk 6 γ2κ

2
suc/ε for all k 6 j , where we have introduced

the factorγ2 for the case whenσk is less thatκ2
suc/ε anditerationk is not very successful. Thus, (3.59)

holds. Lettingk = 0 in (3.60) gives (3.59) whenσ0 > γ2κ
2
suc/ε sinceγ2 > 1. �

We are now ready to prove our first-order convergence result. We first state it for the case where there
are only finitely many successful iterations.

LEMMA 3.12 Suppose that AS1, AS2 and AS4 hold and that there are only finitely many successful
iterations. Then,xk = x∗ for all sufficiently largek andx∗ is first-order critical.

Proof. Clearly, (3.61) holds if the algorithm terminates finitely, i.e. there existsk such thatχk = 0
(seeStep 1 of COCARC); hence, let us assume thatχk > 0 for all k > 0. After the last successful
iterate is computed, indexed by sayk0, the construction of the COCARC algorithm implies thatxk0+1 =
xk0+i =

def x∗ for all i > 1. Since all iterationsk > k0 + 1 are unsuccessful,σk increasesby at least a
fractionγ1 so thatσk → ∞ ask → ∞. If χk0+1 > 0 thenχk = χk0+1 > 0 for all k > k0 + 1 and
soχk > min(χ0, . . . , χk0+1) =

def ε > 0 for all k. Lemma3.11with j = ∞ implies thatσk is bounded
above for allk and we have reached a contradiction. �

We conclude this section by showing the desired convergence when the number of successful itera-
tions is infinite. As for trust-region methods this is accomplished by first showing first-order criticality
along a subsequence of the iterates.

THEOREM 3.13 Suppose that AS1–AS3a and AS4 hold. Then, we have that

lim inf
k→∞

χk = 0. (3.61)

Hence,at least one limit point of the sequence{xk} (if any) is first-order critical.

Proof. Clearly, (3.61) holds if the algorithm terminates finitely, i.e. there existsk such thatχk = 0 (see
Step 1 of COCARC); hence, let us assume thatχk > 0 for all k > 0. Furthermore, the conclusion also
holds when there are finitely many successful iterations because of Lemma3.12. Suppose therefore that
there are infinitely many successful iterations. Assume also that (3.58) holds for allk (with j = ∞).
The mechanism of the algorithm then implies that, if iterationk is successful,

f (xk) − f (xk+1) > η1[ f (xk) − mk(x
+
k )] > η1κGCχk min

[
χk

1 + ‖Bk‖
,

√
χk

σk
, 1

]
,

wherewe have used (2.9) and (3.45) to obtain the last inequality. The bounds (3.2), (3.58) and (3.59)
then yield that

f (xk) − f (xk+1) > η1κGCε min

[
ε

1 + κB
,

√
ε

κσ
, 1

]

=
def κε > 0. (3.62)
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Summingover all successful iterations from 0 tok we deduce that

f (x0) − f (xk+1) =
k∑

j =0, j ∈S

[ f (xj ) − f (xj +1)] > i kκε,

where i k denotesthe number of successful iterations up to iterationk. Since i k tendsto infinity by
assumption, we obtain that the sequence{ f (xk)} tendsto minus infinity, which is impossible because
f is bounded below onF due to AS3a andxk ∈ F for all k. Hence, (3.58) cannot hold for allk < ∞;
sinceε in (3.58) was arbitrary in(0,1], (3.61) follows. �

We finally prove that the conclusion of the last theorem is not restricted to a subsequence but holds
for the complete sequence of iterates.

THEOREM 3.14 Suppose that AS1–AS4 hold. Then, we have that

lim
k→∞

χk = 0, (3.63)

andall limit points of the sequence{xk} arefirst-order critical.

Proof. Clearly, if the algorithm has finite termination, i.e.χk = 0 for somek, the conclusion follows.
If S is finite the conclusion also follows, directly from Lemma3.12. Suppose therefore that there are
infinitely many successful iterations and that there exists a subsequence{ti } ⊆ S such that

χti > 2ε (3.64)

for someε > 0. From (3.61) we deduce the existence of another subsequence{`i } ⊆ S such that, for
all i , `i is the index of the first successful iteration after iterationti suchthat

χk > ε for ti 6 k < `i andχ`i 6 ε. (3.65)

We then define

K =
{
k ∈ S | ti 6 k < `i

}
. (3.66)

Thus,for eachk ∈ K ⊆ S, we obtain from (3.45) and (3.65) that

f (xk) − f (xk+1) > η1[ f (xk) − mk(x
+
k )] > η1κGCε min

[
ε

1 + ‖Bk‖
,

√
χk

σk
, 1

]
. (3.67)

Because{ f (xk)} is monotonically decreasing and bounded below, it must be convergent and we thus
deduce from (3.67) that

lim
k→∞,k∈K

χk

σk
= 0, (3.68)

which in turn implies, in view of (3.65), that

lim
k→∞,k∈K

σk = +∞. (3.69)
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As a consequence of this limit, (3.31), (3.2) and (3.65), we see that, fork ∈ K,

∥
∥
∥sGC

k

∥
∥
∥ 6 3max

[
κB

σk
,

(
χk

σk

) 1
2

,

(
χk

σk

) 2
3
]

,

andthus‖sGC
k ‖ converges to zero alongK. We therefore obtain that

∥
∥
∥sGC

k

∥
∥
∥ < 1 for all k ∈ K sufficiently large, (3.70)

which implies that (3.44) is applicable for thesek, yielding, in view of (3.2) and (3.65), that, fork ∈ K
sufficiently large,

f (xk) − f (xk+1) > η1[ f (xk) − mk(x
+
k )] > η1κGCε min



 ε

1 + κB
,

√
πGC

k

σk
, 1



 .

But the convergence of the sequence{ f (xk)} impliesthat the left-hand side of this inequality converges
to zero and hence that the minimum in the last right-hand side must be attained by its middle term for
k ∈ K sufficiently large. We therefore deduce that, for thesek,

f (xk) − f (xk+1) > η1κGCε

√
πGC

k

σk
. (3.71)

Returningto the sequence of iterates we see that

‖x`i − xti ‖ 6
`i −1∑

k=ti ,k∈K

‖xk − xk+1‖ =
`i −1∑

k=ti ,k∈K

‖sk‖ for eachl i andti . (3.72)

Recall now the upper bound (3.40) on‖sk‖, k > 0. It follows from (3.11) thatπGC
k > χk > ε, so that

(3.69) implies
√

σkπ
GC
k > κB for all k ∈ K sufficiently large. Hence, (3.2) and (3.40) ensure the first

inequality below,

‖sk‖ 6 3

√
πGC

k

σk
6

3

η1κGCε
[ f (xk) − f (xk+1)] for k ∈ K sufficiently large,

where the second inequality follows from (3.71). This last bound can then be used in (3.72) to obtain

‖x`i − xti ‖ 6
3

η1κGCε

`i −1∑

k=ti ,k∈K

[ f (xk) − f (xk+1)] 6
3

η1κGCε
[ f (xti ) − f (x`i )]

for all ti andl i sufficiently large. Since{ f (xk)} is convergent, the right-hand side of this inequality tends
to zero asi tends to infinity. Hence,‖x`i − xti ‖ converges to zero withi , and, by Theorem3.4, so does
|χ`i − χti |. But this is impossible since (3.64) and (3.65) imply|χ`i − χti | > χti − χ`i > ε. Hence, no
subsequence can exist such that (3.64) holds and the proof is complete. �

Assumption AS3b in the above theorem is only mildly restrictive and is satisfied if for instance, the
feasible setF itself is bounded, or if the constrained level set of the objective function,{x ∈ F | f (x) 6
f (x0)}, is bounded. Note also that AS3b would not be required in Theorem3.14
providedχ(x) is uniformly continuous on the sequence of iterates.
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4. Worst-case function-evaluation complexity

This section is devoted to worst-case function-evaluation complexity bounds; that is bounds on the num-
ber of objective-function or gradient evaluations needed to achieve first-order convergence to prescribed
accuracy. Despite the obvious observation that such an analysis does not cover the total computational
cost of solving a problem, this type of complexity result is of special interest for nonlinear optimization
because there are many examples where the cost of these evaluations completely dwarfs that of the other
computations inside the algorithm itself.

Note that the construction of the COCARC basic framework implies that the total number of
COCARC iterations is the same as the number of objective-function evaluations as we also need to
evaluatef on unsuccessful iterations in order to be able to computeρk in (2.8); the number of success-
ful COCARC iterations is the same as the gradient-evaluation count.

Firstly, let us give a generic worst-case result regarding the number of unsuccessful COCARC
iterations, namely iterationsi with ρi < η1, that occur up to any given iteration. Given anyj > 0,
denote the iteration index sets

S j =
def {k 6 j : k ∈ S} and U j =

def {i 6 j : i unsuccessful}, (4.1)

which form a partition of{0, . . . , j }. Let |S j | and|U j | denotetheir respective cardinalities. Concerning
σk wemay require that on each very successful iterationk ∈ S, i.e.ρk > η2, σk+1 is chosen such that

σk+1 > γ3σk for someγ3 ∈ (0,1]. (4.2)

Note that (4.2) allows{σk} to converge to zero on very successful iterations (but no faster than{γ k
3 }). A

stronger condition onσk is

σk > σmin, k > 0, (4.3)

for someσmin > 0. The conditions (4.2) and (4.3) will be employed in the complexity bounds for
COCARC and a second-order variant, respectively.

THEOREM 4.1 For any fixedj > 0, letS j andU j bedefined in (4.1). Assume that (4.2) holds andlet
σ > 0 be such that

σk 6 σ for all k 6 j . (4.4)

Then,

|U j | 6
⌈
−

logγ3

logγ1
|S j | +

1

logγ1
log

(
σ

σ0

)⌉
. (4.5)

In particular, ifσk satisfies(4.3), then it also achieves (4.2) withγ3 = σmin/ σ , and we have that

|U j | 6
⌈
(|S j | + 1)

1

logγ1
log

(
σ

σmin

)⌉
. (4.6)

Proof. The proof follows identically to that ofCartiset al. (2011b, Theorem 2.1). �
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4.1 Function-evaluation complexity for COCARC algorithm

We first consider the function- (and gradient-) evaluation complexity of a variant—COCARCε—of the
COCARC algorithm itself, only differing by the introduction of an approximate termination rule. More
specifically, we replace the criticality check in Step 1 of COCARC by the testχk 6 ε (whereε is a
user-supplied threshold) and terminate if this inequality holds. The results presented for this algorithm
are inspired by complexity results for trust-region algorithms (seeGrattonet al., 2008a,b) and for the
adaptive cubic regularization algorithm (seeCartiset al.,2011b).

THEOREM4.2 Suppose that AS1–AS3a, AS4 and (4.2) hold and that the approximate criticality thresh-
old ε is small enough to ensure

ε 6 min

[

1,
γ2κ

2
suc

σ0

]

, (4.7)

whereκsuc is defined in (3.50). Assumingχ0 > ε there exists a constantκdf ∈ (0,1) suchthat

f (xk) − f (xk+1) > κdfε
2 (4.8)

for all k ∈ S before Algorithm COCARCε terminates,namely, until it generates a first iterate, sayxj1,
suchthatχ j1+1 6 ε. As a consequence this algorithm needs at most

dκSε−2e (4.9)

successfuliterations and evaluations of the objective’s gradient∇x f to ensureχ j1+1 6 ε, and further-
more,

j1 6 dκ∗ε
−2e =

def J1,

so that the algorithm takes at mostJ1 iterationsand objective-function evaluations to terminate with
χ j1+1 6 ε, where

κS =
def

f (x0) − flow

κdf
and κ∗ =

def

(
1 −

logγ3

logγ1

)
κS +

γ2κ
2
suc

σ0 logγ1
.

Proof. From the definition of the( j1 + 1)th iteration we must haveχk > ε for all k 6 j1. This, (4.7)
and (3.59) imply that

σk 6
γ2κ

2
suc

ε
for all k 6 j1. (4.10)

We may now use the same reasoning as in the proof of Theorem3.13and employ (3.62) and (4.10) to
deduce that

f (xk) − f (xk+1)> η1κGCε min

[
ε

1+κB
,
√

ε
γ2κ2

suc/ε
, 1

]

> η1κGC min
[

1
1+κH

, 1
κsuc

√
γ2

]
ε2 for all k ∈ S j1,

wherewe have used (4.7), namelyε 6 1, to derive the last inequality. This gives (4.8) with

κdf =
def η1κGC min

[
1

1 + κH
,

1

κsuc
√

γ2

]
.
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Thebound (4.8) and the fact thatf does not change on unsucccessful iterations imply

f (x0) − f (xj1+1) =
j1∑

k=0,k∈S

( f (xk) − f (xk+1)) > |S j1|κdfε
2,

which,due to AS3a, further gives

|S j1| 6
f (x0) − flow

κdf
ε−2. (4.11)

This immediately provides (4.9) since|S j1| mustbe an integer. Finally, to bound the total number of
iterations up toj1, recall (4.2) and employ the upper bound onσk given in (4.10)asσ in (4.5) to deduce

|U j1| 6

⌈

−
logγ3

logγ1
|S j1| +

1

logγ1
log

(
γ2κ

2
suc

εσ0

)⌉

.

This, the bound (4.9) on|S j1| andthe inequality log(γ2κ
2
suc/(εσ0)) 6 (γ2κ

2
suc/(εσ0)) now imply

j1 = |S j1| + |U j1| 6

⌈(
1 −

logγ3

logγ1

)
κSε−2 +

γ2κ
2
suc

σ0 logγ1
ε−1

⌉

.

Thebound onj1 now follows by usingε 6 1. �

Because Algorithm COCARCε doesnot exploit more than first-order information (via the Cauchy
point definition), the above upper bound is, as expected, of the same order inε as that obtained by
Nesterov(2004, p. 29), and byVavasis(1993), for the steepest descent method.

4.2 AnO(ε−3/2) function-evaluation complexity bound

We now discuss a variant—COCARC-S—of the COCARC algorithm for which an interesting worst-
case function- (and derivatives-) evaluation complexity result can be shown. Algorithm COCARC-S
uses the user-supplied first-order accuracy threshold,ε > 0. It differs from the basic COCARC frame-
work in that stronger conditions are imposed on the step.

Let us first mention some assumptions on the true and approximate Hessian of the objective that will
be required at various points in this section.

AS5. The HessianH(xk) is well approximated byBk, in the sense that there exists a constantκBH > 0
suchthat, for allk,

‖[Bk − H(xk)]sk‖ 6 κBH‖sk‖
2.

AS6. The Hessian of the objective function is ‘weakly’ uniformly Lipschitz continuous on the segments
[xk, xk + sk], in the sense that there exists a constantκLH > 0 such that, for allk and all
y ∈ [xk, xk + sk],

‖[H(y) − H(xk)]sk‖ 6 κLH‖sk‖
2.

AS5 and AS6 are acceptable assumptions essentially corresponding to the cases analysed inNesterov
& Polyak(2006) andCartiset al.(2011b) for the unconstrained case, the only differences being that the
first authors assumeBk = H(xk) insteadof the weaker AS5.
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4.2.1 A termination condition for the model subproblem.The conditions on the step in COCARC-S
may require the (approximate) constrained model minimization to be performed to higher accuracy than
that provided by the Cauchy point. A common way to achieve this is to impose an appropriate termina-
tion condition for the inner iterations that perform the constrained model minimization as follows.

AS7: For allk the stepsk solves the subproblem

min
s∈IRn,xk+s∈F

mk(xk + s) (4.12)

accuratelyenough to ensure that

χm
k (x+

k ) 6 min(κstop, ‖sk‖)χk, (4.13)

whereκstop ∈ [0, 1) is a constant and where

χm
k (x) =

def

∣
∣
∣
∣ min
x+d∈F ,‖d‖61

〈∇smk(x), d〉

∣
∣
∣
∣ . (4.14)

Note that χm
k (xk) = χk. The inequality (4.13) is an adequate stopping condition for the subproblem

solution sinceχm
k (x∗

k ) is equal to zero ifx∗
k is a local minimizer of (4.12). It is the constrained analogue

of the ‘s-stopping rule’ ofCartiset al. (2011b). Note that though ensuring AS7 may be NP-hard com-
putationally, it does not require any additional objective-function or gradient evaluations, and as such, it
will not worsen the global complexity bound for COCARC-S, which counts these evaluations.

An important consequence of AS5–AS7 is that they allow us to deduce the following crucial relation
between the local optimality measure and the step.

LEMMA 4.3 i) Suppose that AS1–AS2 and AS5–AS6 hold. Then

σk 6 max

[
σ0,

3

2
γ2(κBH + κLH)

]

=
def σmax for all k > 0. (4.15)

ii) Suppose that AS1–AS7 hold. Then

‖sk‖ > κs
√

χk+1 for all k ∈ S, (4.16)

for some constantκs ∈ (0,1) independentof k, whereχk is defined just after (3.1).

Proof. (i) The proof of (4.15) follows identically to that ofCartiset al. (2011a, Lemma 5.2), as the
mechanism for updatingσk andfor deciding the success or otherwise of iterationk are identical in the
COCARC and the (unconstrained) ARC frameworks.

(ii) Since k ∈ S and by definition of the trial point, we havexk+1 = x+
k = xk + sk, and

hence by (3.1),χk+1 = χ(x+
k ). Again, let us drop the indexk for the proof, defineχ+

=
def χ(x+

k ) and
g+

=
def g(x+

k ), and derive by Taylor expansion ofg+,
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‖g+ − ∇sm(x+
k )‖ =

∥
∥
∥
∥
∥
g +

∫ 1

0
H(x + ts)sdt − g − [B − H(x)]s − H(x)s − σ‖s‖s

∥
∥
∥
∥
∥

6

∥
∥
∥
∥
∥

∫ 1

0
[H(x + ts) − H(x)]s dt

∥
∥
∥
∥
∥

+ (κBH + σ)‖s‖2

6
∫ 1

0
‖[H(x + ts) − H(x)]s‖dt + (κBH + σ)‖s‖2

6 (κLH + κBH + σ)‖s‖2,

6 (κLH + κBH + σmax)‖s‖2, (4.17)

wherewe have used (2.2), AS5, AS6, the triangular inequality and (4.15). Assume first that

‖s‖ >

√
χ+

2(κLH + κBH + σmax)
. (4.18)

In this case (4.16) follows withκs =
√

1
2(κLH+κBH+σmax)

, as desired. Assume therefore that (4.18) fails

and observe that

χ+
=

def |〈g+, d+〉| = −〈g+, d+〉 6 |〈g+ − ∇sm(x+), d+〉| + |〈∇sm(x+), d+〉|, (4.19)

wherethe first equality defines the vectord+ with

‖d+‖ 6 1. (4.20)

But, using the Cauchy–Schwarz inequality, (4.20), (4.17), the failure of (4.18) and the first part of (4.19)
successively, we obtain

〈∇sm(x+), d+〉 − 〈g+, d+〉6 |〈g+, d+〉 − 〈∇sm(x+), d+〉|

6 ‖g+ − ∇sm(x+)‖

6 (κLH + κBH + σmax)‖s‖2

6 1
2χ+

= −1
2〈g+, d+〉,

which in turn ensures that

〈∇sm(x+), d+〉 6
1

2
〈g+, d+〉 < 0.

Moreover,x+ + d+ ∈ F by definition ofχ+, and hence, using (4.20) and (4.14),

|〈∇sm(x+), d+〉| 6 χm(x+). (4.21)

We may then substitute this bound in (4.19) and use the Cauchy–Schwarz inequality and (4.20) again to
deduce that

χ+ 6 ‖g+ − ∇sm(x+)‖ + χm(x+) 6 ‖g+ − ∇sm(x+)‖ + min(κstop, ‖s‖)χ, (4.22)

where the last inequality results from (4.13).
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We now observe that bothx andx+ belongto F0, whereF0 is defined in AS1. Moreover, the first
inequality in (3.2) provides that∇x f (x) is Lipschitz continuous onF0, with constantκLg = κH. Thus,
Theorem3.4applies, ensuring thatχ(x) is Lipschitz continuous onF0, with Lipschitz constantκLχ ; it
follows from (3.24) applied tox andx+ that

χ 6 κLχ ‖x − x+‖ + χ+ = κLχ ‖s‖ + χ+, (4.23)

whichsubstituted in (4.22), gives

χ+ 6 ‖g+ − ∇sm(x+)‖ + min(κstop, ‖s‖)[κLχ ‖s‖ + χ+] 6 ‖g+ − ∇sm(x+)‖ + κLχ ‖s‖2 + κstopχ
+,

wherethe second inequality follows by employing min(κstop, ‖s‖) 6 ‖s‖ andmin(κstop, ‖s‖) 6 κstop,
respectively. Now substituting (4.17) into the last displayed inequality, we obtain

χ+ 6 (κLH + κBH + σmax)‖s‖2 + κLχ ‖s‖2 + κstopχ
+,

which further gives

(1 − κstop)χ
+ 6 (κLH + κLχ + κBH + σmax)‖s‖2.

Therefore,sinceκstop ∈ (0,1), we deduce

‖s‖ >

√
(1 − κstop)χ+

κLH + κLχ + κBH + σmax
,

whichgives (4.16) with

κs =

√
1 − κstop

κLH + κLχ + κBH + σmax
. (4.24)

�

4.2.2 Ensuringthe model decrease.Similarly to the unconstrained case presented inCartis et al.
(2011b), AS7 is unfortunately not sufficient to obtain the desired complexity result; in particular, this
may not ensure a model decrease of the form

mk(xk) − mk(x
+
k ) > κredσk‖sk‖

3, (4.25)

for some constantκred > 0, independent ofk, wheremk(xk) = f (xk). For x+
k to be an acceptable trial

point, one also needs to verify that a cheap but too small model improvement cannot be obtained from
x+

k . In the unconstrained case this was expressed by the requirement that the trial point is a stationary
point of the model at least in some subspace and that the step provides a descent direction. [To see
why these conditions imply a decrease of type (4.25) in the unconstrained case, seeCartiset al.,2011a,
Lemma 3.3.] An even milder form of the former condition can be easily imposed in the constrained case
too, by requiring that the stepsk satisfies

〈∇smk(x
+
k ), sk〉 6 0, (4.26)
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FIG. 1. An illustration when (4.27) fails for the cubic modelm(x, y) = −x − 42
100y− 3

10x2 − 1
10y3 + 1

3[x2 + y2]3/2 at the iterate

xk = (0,0)T; the feasible setF is the polytope with vertices(1,−5)T, (− 32
100, 1)T, (− 355

100, 1)T and(− 510
100, −5)T. The pathPk

defined in (4.47) that satisfies AS8 is also represented.

which expresses the reasonable requirement that the step size alongsk does not exceed that correspond-
ing to the minimum of the modelmk(xk + τsk) for τ > 0. It is, for instance, satisfied if

1 ∈ argmin
τ>0,xk+τsk∈F

mk(xk + τsk).

Note that (4.26) also holds at a local minimizer. Lemma4.4below shows that (4.25) is indeed satisfied
when (4.26) holds, provided the stepsk is descent or the model is convex.

However, at variance with the unconstrained case, there is no longer any guarantee that the stepsk

provides a descent direction in the presence of negative curvature, i.e. that〈∇smk(xk), sk〉 6 0 when
〈sk, Bksk〉 < 0; recall that∇smk(xk) = gk. Figure1 illustrates the latter situation; namely, the contours
of a particular modelmk(xk + s) are plotted, as well as a polyhedral feasible setF , the steepest descent
direction fromxk and the hyperplane orthogonal to it, i.e.〈∇smk(xk), s〉 = 0. Note that all acceptable
feasible directions fromxk (pointing towards the feasible local model minimizer) are ascent locally,
as the (only) feasible local model minimizer lies on the ‘wrong side’ of the ‘mountain’, in a direction
such that (4.27) fails. However, in this unsatisfactory situation, there may be a piecewise-linear feasible
descent path (towards the local model minimizer) that goes around the mountain, taking us downhill at
each step; see AS8 and the path determined by{xk, xk,a, xk,c, x+

k } in Fig. 1. In the latter case we will
show that the bound (4.25) holds, provided the local path to the trial pointx+

k contains a uniformly
bounded number of descent line segments. Let us now make these illustrations mathematically precise.
We begin by considering the easy case.

LEMMA 4.4 Suppose that (4.26) holds and that

〈∇smk(xk), sk〉 6 0 or 〈sk, Bksk〉 > 0. (4.27)
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Then,

mk(xk) − mk(x
+
k ) >

1

6
σk‖sk‖

3. (4.28)

Proof. (Dropping the indexk again.) Condition (4.26) is equivalent to

〈g, s〉 + 〈s, Bs〉 + σ‖s‖3 6 0. (4.29)

If 〈s, Bs〉 > 0, we substitute〈g, s〉 from this inequality into (2.2) and deduce that

m(x+) − f (x) = 〈g, s〉 +
1

2
〈s, Bs〉 +

1

3
σ‖s‖3 6 −

1

2
〈s, Bs〉 −

2

3
σ‖s‖3,

whichthen implies (4.28). If, on the other hand,〈s, Bs〉 < 0, then we substitute the inequality on〈s, Bs〉
resulting from (4.29) into (2.2) and obtain that

m(x+) − f (x) = 〈g, s〉 +
1

2
〈s, Bs〉 +

1

3
σ‖s‖3 6

1

2
〈g, s〉 −

1

6
σ‖s‖3

from which (4.28) again follows because of (4.27). �

Note that the following implication follows from (4.29) andgk = ∇smk(xk),

(4.26) and 〈sk, Bksk〉 > 0 =⇒ 〈∇smk(xk), sk〉 6 0. (4.30)

As we already mentioned, ensuring (4.25) is more complicated when (4.27) fails, namely, when the
step is ascent (atxk) rather than descent and of negative curvature. Our requirement on the trial point
is then essentially that it can be computed by a uniformly bounded sequence of (possibly incomplete)
line minimizations starting fromxk. More formally, we assume that there exists an integerˉ̀ > 0 and,
for eachk such that (4.27) fails, there exist feasible points{xk,i }

`k
i =0 with 0 < `k 6 ˉ̀, xk,0 = xk and

xk,`k = x+
k , such that, fori = 1, . . . , `k,

mk(xk,i ) 6 mk(xk,i −1), 〈∇smk(xk,i −1), xk,i − xk,i −1〉 6 0 and 〈∇smk(xk,i ), xk,i − xk,i −1〉 6 0.
(4.31)

Notethat these inequalities hold in particular ifx+
k is the first minimizer of the model along the piecewise

linear path

Pk =
def

`k⋃

i =1

[xk,i −1, xk,i ];

sucha trial point exists sincef is continuous and the pathPk is compact. The conditions (4.31) subsume
the case addressed in Lemma4.4 when (4.27) holds because one may then choose`k = 1 and (4.31)
then implies both (4.26) and (4.27); recall also (4.30). We can therefore comprehensively summarize all
these requirements in the following assumption.

AS8. For allk the stepsk is such that (4.31) holds for some{xk,i }
`k
i =0 ⊂ F with 0 < `k 6 ˉ̀, xk,0 = xk

andxk,`k = x+
k .

Observe that we have not used global constrained optimization anywhere in the requirements imposed
on the stepsk.

UsingAS8 we may now obtain the essential lower bound on the model reduction. First, we give a
useful technical lemma.

 by guest on January 17, 2012
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


28of 34 C. CARTIS ET AL.

LEMMA 4.5 Suppose that there exist stepssk,◦ andsk,• andpointsxk,◦ = xk + sk,◦ andxk,• = xk + sk,•
suchthat, for someκ ∈ (0,1],

mk(xk,◦) 6 mk(xk) − κσk‖sk,◦‖
3, (4.32)

mk(xk,•) 6 mk(xk,◦), (4.33)

〈∇smk(xk,•), xk,• − xk,◦〉 6 0, (4.34)

and

〈∇smk(xk,◦), xk,• − xk,◦〉 6 0. (4.35)

Then,

mk(xk) − mk(xk,•) > κlmκσk‖sk,•‖
3 (4.36)

for some constantκlm ∈ (0,1) independentof k andκ.

Proof. (Dropping the indexk again.) Suppose first that, for someα ∈ (0,1),

‖s◦‖ > α‖s•‖. (4.37)

Then,(4.32) and (4.33) give that

m(x) − m(x•) = m(x) − m(x◦) + m(x◦) − m(x•) > κσ‖s◦‖
3 > κσα3‖s•‖

3. (4.38)

Assumenow that (4.37) fails; that is

‖s◦‖ < α‖s•‖. (4.39)

We have that

f (x) + 〈g, s◦〉 +
1

2
〈s◦, Bs◦〉 = m(x◦) −

1

3
σ‖s◦‖

3. (4.40)

Usingthis identity we now see that

m(x•) = f (x) + 〈g, s◦〉 +
1

2
〈s◦, Bs◦〉 + 〈g + Bs◦, s• − s◦〉 +

1

2
〈s• − s◦, B(s• − s◦)〉 +

1

3
σ‖s•‖

3

= m(x◦) + 〈g + Bs◦, s• − s◦〉 +
1

2
〈s• − s◦, B(s• − s◦)〉 +

1

3
σ‖s•‖

3 −
1

3
σ‖s◦‖

3. (4.41)

Moreover, (4.34) yields that

0> 〈g + Bs•, s• − s◦〉 + σ‖s•‖〈s•, s• − s◦〉

= 〈g + Bs◦, s• − s◦〉 + 〈s• − s◦, B(s• − s◦)〉 + σ‖s•‖〈s•, s• − s◦〉,
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and thus, (4.41) becomes

m(x•) 6 m(x◦) +
1

2
〈g + Bs◦, s• − s◦〉 −

1

2
σ‖s•‖〈s•, s• − s◦〉 +

1

3
σ‖s•‖

3 −
1

3
σ‖s◦‖

3. (4.42)

But we may also use (4.35) and deduce that

0> 〈g + Bs◦, s• − s◦〉 + σ‖s◦‖〈s◦, s• − s◦〉,

which, together with (4.42), gives that

m(x◦) − m(x•)>
1

2
σ‖s◦‖〈s◦, s• − s◦〉 +

1

2
σ‖s•‖〈s•, s• − s◦〉 −

1

3
σ‖s•‖

3 +
1

3
σ‖s◦‖

3

> σ

(
−

1

2
‖s◦‖

2‖s•‖ −
1

6
‖s◦‖

3 +
1

6
‖s•‖

3 −
1

2
‖s•‖

2‖s◦‖
)

, (4.43)

wherewe have used the Cauchy–Schwarz inequality. Taking now (4.32) and (4.39) into account and
using the fact thatκ 6 1, we obtain that

m(x) − m(x•) > m(x◦) − m(x•) > κσ

(
−

1

2
α2 −

1

6
α3 +

1

6
−

1

2
α

)
‖s•‖

3. (4.44)

We now select the value ofα for which the lower bounds (4.38) and (4.44) are equal, namelyα∗ ≈
0.2418,the only real positive root of 7α3 + 3α2 + 3α = 1. The desired result now follows from (4.38)
and (4.44) withκlm =

def α3
∗ ≈ 0.0141. �

Next, we prove the required model decrease under AS8.

LEMMA 4.6 Suppose that AS8 holds at iterationk. Then, there exists a constantκred > 0 independent
of k such that (4.25) holds.

Proof. If lk = 1 then the conclusion immediately follows from Lemma4.4. Otherwise, (4.31) ati = 1
andxk,0 = xk imply that Lemma4.4applies withx+

k = xk,1, giving

mk(xk) − mk(xk,1) >
1

6
σk‖xk,1 − xk‖

3.

AS8 further implies that

mk(xk,2) 6 mk(xk,1), 〈∇smk(xk,2), xk,2 − xk,1〉 6 0, and 〈∇smk(xk,1), xk,2 − xk,1〉 6 0.

We may then apply Lemma4.5a first time withx◦ = xk,1 andx• = xk,2 to deduce

mk(xk) − mk(xk,2) >
1

6
κlmσk‖xk,2 − xk‖

3.

If `k > 2 we then apply the same technique`k − 1 times: fori = 2, . . . , `k, we deduce from AS8 that

mk(xk,i ) 6 mk(xk,i −1), 〈∇smk(xk,i ), xk,i − xk,i −1〉 6 0, and 〈∇smk(xk,i −1), xk,i − xk,i −1〉 6 0,
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while we obtain by induction that

mk(xk,i −1) 6 mk(xk) −
1

6
κ i −2

lm σk‖xk,i −1 − xk‖
3.

This then allows us to apply Lemma4.5with xk,◦ = xk,i −1 andxk,• = xk,i , yielding that

mk(xk) − mk(xk,i ) >
1

6
κ i −1

lm σk‖xk,i − xk‖
3.

After `k − 1 applications of Lemma4.5we obtain that

mk(xk) − mk(xk,`k) >
1

6
κ

`k−1
lm σk‖xk,`k − xk‖

3. (4.45)

Sincexk,`k = x+
k andsk = x+

k − xk, (4.45) is the desired bound (4.25) withκred = 1
6κ

ˉ̀−1
lm . �

4.2.3 Further comments on satisfying AS8.In practice, verifying AS8 need not be too burdensome.
Firstly, the computation ofx+

k couldbe performed by a sequence of line minimizations, and AS8 then
trivially holds provided the number of such minimizations remains uniformly bounded. If the trial step
has been determined by another technique one might proceed as follows; see Fig.1; if we setxk,b to be
the global minimizer of the model in the hyperplane orthogonal to the gradient, that is

xk,b =
def argmin

〈gk,s〉=0

mk(xk + s), (4.46)

thenwe may also definexk,a asthe intersection of the segment [xk, xk,b] with the boundary ofF if
xk,b 6∈ F andasxk,b if xk,b ∈ F . Similarly we definexk,c asthe intersection of the segment [xk,b, x+

k ]
with the boundary ofF if xk,b 6∈ F andasxk,b if xk,b ∈ F . We may now verify (4.31) with the set
{xk, xk,a, xk,c, x+

k }. If (4.31) fails, then there is a feasible local minimizer of the model along the path

Pk =
def [xk, xk,a] ∪ [xk,a, xk,c] ∪ [xk,c, x+

k ] (4.47)

(the middle segment being possibly reduced to the pointxk,b whenit is feasible); further model mini-
mization may then be started from this point—namely from the feasible local minimizer along (4.47)—
in order to achieve the termination condition AS7, ignoring the rest of the path and the trial pointx+

k .
Note that xk,b in (4.46) is the solution of an essentially unconstrained model minimization (in the

hyperplane orthogonal togk) and thus can be computed at reasonable cost, which makes checking this
version of (4.31) acceptable from the computational point of view, especially sincexk,b needsto be
computed only once even if severalx+

k mustbe tested. Clearly, other choices forxk,b areacceptable,
as long as a suitable ‘descent path’Pk from xk to x+

k canbe determined. Note that the purpose of the
descent path is to guarantee that the model decrease (4.25) holds, wheresk = x+

k − xk; see also (4.45).
See Fig.1 for an illustration of the pathPk given by (4.47).

4.2.4 The improved complexity bound for COCARC-SWe now have all the ingredients needed for
the improved function-evaluation complexity result for COCARC-S.
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THEOREM 4.7 Suppose that AS1–AS8 and (4.3) hold, and letε ∈ (0,1]. Then there exists a constant
κdf2 ∈ (0,1) suchthat

f (xk) − f (xk+1) > κdf2χ
3/2
k+1 for all k ∈ S. (4.48)

Therefore the total number of successful iterations with

min(χk, χk+1) > ε (4.49)

that occur when applying the COCARC-S algorithm is at most
⌈
κS2ε

−3/2
⌉

=
def IS2, (4.50)

whereκS2 =
def ( f (x0) − flow)/κdf2. Assuming (4.49) holds atk = 0, the COCARC-S algorithm takes at

mostIS2 + 1 successful iterations and evaluations of∇x f (andpossibly, ofH ) until it generates a (first)
iterate, sayxj2, such thatχ j2+1 6 ε. Furthermore,

j2 6
⌈
κ∗2ε

−3/2
⌉

=
def J2,

so that the algorithm takes at mostJ2 iterationsand objective-function evaluations to terminate with
χ j2+1 6 ε, where

κ∗2 =
def κS2 + (1 + κS2)

log(σmax/σmin)

logγ1
,

andwhereσmax is defined in (4.15).

Proof. Note that, due to (4.45), the definition of the trial point, namelyx+
k = xk + sk, and hence ofsk,

doesnot change even when the path defined by AS8 has more than one segment. Thus, Lemmas4.3and
4.6both apply. Recalling thatf (xk) = mk(xk) weobtain from (4.3), (4.25) and (4.16) that

f (xk) − mk(x
+
k ) >

1

6
σminκredκ

3
sχ

3/2
k+1,

andthus, from the definition ofk ∈ S, (4.48) follows withκdf2 =
def 1

6η1σminκredκ
3
s . Thus, we have

f (xk) − f (xk+1) > κdf2ε
3/2 for all k ∈ S satisfying (4.48). (4.51)

Letting |Smax| denotethe number of successful iterations satisfying (4.49), and summing (4.51) over
all iterationsk from 0 to the last successful iteration satisfying (4.49), it follows from the fact that
f does not change on unsuccessful iterations and from AS3a (that|Smax| < ∞ and)that

f (x0) − flow > |Smax|κdf2ε
3/2,

which gives the bound (4.50). This straightforwardly implies that (4.50) also bounds the number of
successful iterations up toj2, that conform to (4.1), we denote by|S j2|. To bound the total number of
iterations up toj2, let j = j2 in (4.6) and deduce, also from (4.3) and (4.15),

|U j2| 6
⌈
(1 + |S j2|)

1

logγ1
log

σmax

σmin

⌉
.
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Thisand the bound (4.50) on|S j2|, as well asj2 = |S j2| + |U j2|, imply the expression of total boundJ2
on j2, recalling also thatε 6 1. �

This result shows a worst-case complexity result in terms of evaluations of the problem’s func-
tion that is of the same order as that for the unconstrained case (seeNesterov & Polyak, 2006, or
Cartiset al.,2011b).

Note that global convergence to first-order critical points may be ensured for Algorithm COCARC-S
(even without AS5–AS8), if one simply ensures that the stepssk guaranteea model decrease, which is
larger than that obtained at the Cauchy point (as computed by Step 1 of Algorithm COCARC), which
means that (2.9) must hold; a very acceptable condition. The convergence analysis presented for Algo-
rithm COCARC thus applies without modification.

Despite not requiring additional evaluations of the problem’s nonlinear objective, the subproblem
solution and its associated complexity are crucial aspects of an efficient COCARC-S algorithm. In par-
ticular, to ensure the better complexity bound of Theorem4.7, on each iterationk, active-set techniques
may be applied starting atxk to approximately minimize the modelmk(s) in F along a uniformly
bounded number of line segments so as to ensure AS8, until the termination condition (4.13) is satis-
fied. A minimal and simple such approach is the basic COCARCε framework, whose iteration com-
plexity when applied to the model subproblemmk is addressed inCartiset al. (2009, Section 4.3). In
practice, a (much) more efficient active-set technique should be employed; but further investigations
into theoretical guarantees of finite termination for such methods are needed, which seem nontrivial to
derive in the context of AS7 and AS8 due to the combinatorial aspect of both the (nonconvex) objective
and the constraints.

5. Conclusions and perspectives

We have generalized the adaptive cubic regularization method for unconstrained optimization to the
case where convex constraints are present. Our method is based on the use of the orthogonal projector
onto the feasible domain and is therefore practically limited to situations where applying this projector
is computationally inexpensive. This is, for instance, the case if the constraints are simple lower and
upper bounds on the variables or if the feasible domain has a special shape such as a sphere, a cylinder
or the order simplex (seeConn et al., 2000, Section 12.1.2). The resulting COCARC algorithm has
been proved globally convergent to first-order critical points. This result has capitalized on the natural
definition of the first-order criticality measure (3.1), which allows an extension of the unconstrained
proof techniques to the constrained case. As a by-product, the Lipschitz continuity of the criticality
measureχ(x) has also been proved for bounded convex feasible sets.

A variant of Algorithm COCARC has then been presented for which a worst-case function-evaluation
complexity bound can be shown, which is of the same order as that known for the unconstrained case and
better than for steepest descent methods. Remarkably, this algorithm does not rely on global model min-
imization, but the result obtained is only in terms of the global number of iterations and the problem’s
function evaluations, leaving aside the complexity of solving the subproblem, even approximately.

The authors are well aware that many issues remain open at this stage, among which the details of
an effective step computation, the convergence to second-order points and its associated rate of con-
vergence, and the constraint identification properties, as well as the implications of the new complexity
result on optimization problems with equality and inequality constraints. Numerical experience is also
necessary to assess the practical potential of both algorithms.
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