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1 Introduction

Evaluation complexity analysis for nonconvex smooth optimization problems has
recently been a very active area of research and has covered both standard methods for
the unconstrained case, such as steepest-descent (see [2,11,14]), trust-region meth-
ods (see [10]), Newton’s algorithm (see [2]) or finite-difference and derivative-free
approaches (see [8,15]), along with newer techniques involving regularization (see
[4,12]). The issue considered in this paper is to bound the number of objective func-
tion and constraints evaluations that are necessary to find an approximate first-order
critical (i.e., KKT) point for the problem

miniﬁlize f(x) such that cg(x) =0 and ¢;(x) > 0, (1.1)
xeR”

where f, cg and ¢ are continuously differentiable possibly nonconvex functions from
(possibly a subdomain of) R” to R, R™ and R?, with Lipschitz continuous gradient
and Jacobians, respectively.

In the unconstrained case, namely,

minimize f(x),
xeR”?

an approximate critical point for this problem is defined as a point x such that

gl < e, (1.2)

where € € (0, 1) is a user-specified accuracy, || - || is the Euclidean norm and

def . . .
g(x) =V, f (x). For steepest-descent methods with exact or inexact linesearches and

for trust-region algorithms with linear models, it has been shown that the maximum
number of objective function (and gradient) evaluations is bounded above by

2]

for some constant « > 0 independent of € but dependent on the Lipschitz constant of
the gradient and other problem and algorithm parameters [10,11]. Moreover, Cartis
et al. [2] proved that this order in € is sharp for steepest-descent methods with inexact
linesearches. A first extension of this kind of result to constrained problems was
provided by Cartis et al. [9], where it is shown that (1.3) also holds for a first-order
projection-based method for the more general problem

minimize f(x) such that x € C, (1.4)

xeR?

where C is a convex set and where (1.2) is suitably adapted to define an e-approximate
first-order critical point for the constrained problem (1.4). More recently, Cartis et al.
[5] considered a first-order exact penalty function algorithm for solving the general
nonlinearly constrained nonconvex optimization problem (1.1). They proved that the
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Complexity of constrained nonlinear optimization

complexity of finding an e-approximate first-order critical (KKT) point for (1.1) is
given by an appropriate variant of (1.3) when the penalty parameters are uniformly
bounded above independently of ¢, and is bounded above by O(e~>) otherwise.!
Though it is reasonable to expect the penalty parameters to be finite due to the exactness
of the penalty function, this is not always the case and even when true, it is not known
a priori. Thus only the worse bound O (e 3) can be guaranteed to apply. In addition,
the derivation of these bounds unfortunately requires the undesirable assumption that
the objective function f is bounded below on the whole of R”, which is well-known
to fail even for nonconvex quadratic programming problems [13, p. 500].

In this paper, we present a novel first-order target-following algorithm for (1.1)
that can unprecedentedly be shown to satisfy a bound of order (1.3) for achiev-
ing e-approximate first-order criticality for (1.1). Despite being mainly a theo-
retical approach, this stronger result only requires f to be bounded in a small,
1-neighbourhood of the feasible set, which is considerably weaker than assuming this
property on the whole space. In particular, it is satisfied for the quadratic programming
case if the feasible set is bounded.

The paper is organized as follows. The Short-Step Steepest-Descent algorithm for
approximately solving the equality constrained problem is introduced in Sect. 2, and its
complexity is shown in Sect. 3 to be bounded above by (1.3). Section 4 briefly covers
the simple extension of this result to the general problem (1.1). Some conclusions and
perspectives are given in Sect. 5.

2 The Short-Step Steepest-Descent algorithm for the equality constrained
problem

For the sake of simplicity, we start by considering the equality-constrained problem

miniﬁlize f(x) such that ¢(x) =0, 2.1
X€E n

where f : R” — Rand ¢ : R" — R™. We define a slightly larger set than the set
of approximately feasible points, namely,

O e R (le@)]| < ke, ). 22)

where k., > € isasmall constantindependent of € and where € € (0, 1] is the accuracy
tolerance to which we aim to solve (2.1). We assume that

A.1: The function c is continuously differentiable on R” and f is continuously dif-
ferentiable in the set

! Note that the reason for the worsening of the bound is not the rate at which the penalty parameter
is increased, but the value it must reach to ensure approximate first-order criticality with respect to the
feasibility measure. The latter depends on € and comes into the complexity bound through the Lipschitz
constant of the (subgradient of the) merit function. In fact, it is our experience that this is a disadvantage
of all commonly-used parametrized methods for constrained problems when estimating their worst-case
evaluation complexity, which we have only been able to overcome through the two-phase target-following
approach proposed here.
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e+ B, sA), 2.3)

where § > 1 is a constant slightly larger than 1, A is the initial choice of trust-
region radius in our algorithm and (0, § A1) is the open Euclidean ball centred
at the origin and of radius § A .

The algorithm we now describe consists of two phases. In the first, a first-order algo-
rithm is applied to minimize ||c(x)| (independently of the objective function f),
resulting in a point which is either (approximately) feasible, or is an approximate
infeasible stationary point of ||c(x)||. This last outcome is not desirable if one wishes
to solve (2.1), but cannot be avoided by any algorithm not relying on global minimiza-
tion. If an (approximate) feasible point has been found, Phase 2 of the algorithm then
performs short steps along generalized steepest-descent directions so long as first-
order criticality is not satisfied. These steps are computed by attempting to preserve
feasibility of the iterates while producing values of the objective function that are close
to a sequence of decreasing ‘targets’.

Both phases rely on the first-order trust-region algorithm? proposed in [5], which
can be used to solve the problem

minimize 6 (u (x)) , (2.4)

xeR?

where 0 is a (potentially nonsmooth) convex function from R?” into R and u(x) is a
(potentially nonconvex) continuously differentiable function from R” into R?” with
Jacobian A(x). In this algorithm, a ‘Cauchy step’ si is obtained from the iterate x; by
solving the linearized model problem

minimize G(u(xk) + A(xk)s) such that ||s]| < Ag, 2.5)

seR”

where Ay is a trust-region radius. Because 6 is convex and its argument in (2.5)
linear, this problem is computationally tractable. The rest of the algorithm specification
follows standard trust-region technology.

We now return to the solution of problem (2.1) proper, and define the merit
function’

o0 ) L llc@)ll + £ () — 11, (2.6)

2 We make this choice for simplicity of exposition, but other methods can be considered with similar results.
In particular, the quadratic regularization technique of Cartis et al. [5] or the trust-region technique proposed
by Byrd et al. [1] are also adequate.

3 Note that the merit function (2.6) can be viewed as an exact penalty function with penalty parameter equal
to 1, that penalizes in equal measure both the distance from feasibility and from some target value for the
objective. This allows us to keep proximity simultaneously to the constraints and the set target values for the
objective. As it is only the target values ¢ that we can update freely and monitor to give sufficient decrease,
we must ensure that the objective function values stay close to the targets in order to guarantee termination
and good complexity of the algorithm [see (2.17) and (3.12)]. Furthermore, approximate critical points x
of ¢ (x, t) correspond to approximate KKT points of (2.1); see Lemma 3.5.
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where 7 is meant as a “target” for f(x).* We also define the local linearizations of
llc(x)]| and ¢ (x, t) given by

(e, $) E le() + J()s| and Ly(x. 1, 5) S o(x, ) + [ F(x) + (g(x). 5) — 1],

(where (-, -) is the Euclidean inner product). The value of the decrease of the linearized
model in a ball of unit radius may then be considered as a first-order criticality measure
for the problems of minimizing ||c(x)| and ¢ (x, ), yielding the measures

w(x)défec(x,O)—”nﬁinlec(x,s) and X(x,t)‘iéfe¢(x,z,0)—lmin Cp(x. 1.5).
s||<

Isl=<1

Note that ¥ (x) is zero if and only if x is first-order critical for the problem of
minimizing |lc(x)||, while x (x, ¢) is zero if and only if (x, ¢) is a first-order critical
point for the problem

minimize ¢(x, 1), 2.7
xeR”

where ¢ is fixed; see equations (2.2)—(2.3) in [5].
In Phase 1 of our algorithm (aiming for feasiblility), we apply the first-order trust-
region algorithm of [5] by identifying

p=m, u(x)=c(x), and 0¢) =] -], (2.8)

in (2.4), yieding 6 (u (x)) = |lc(x)]|. For Phase 2 (the optimality phase), we choose in
(2.4), for ¢ fixed,

p=m+1, ulx)=(cx), f(x)—1) and OC) = -+, (2.9)

which gives 0 (u (x)) = ¢ (x, t). Note that 6(-) is clearly convex with global Lipschitz
constant equal to one in both cases.

4 Alternatively, we could use the merit function ||c(x)|| + max(f(x) — ¢, 0) instead of ¢ (x, t), which has
the advantage that it allows f(x) to decrease (possibly by large amounts) below the target 7, while keeping
the feasibility term in check. A complexity bound of order (1.3) for a Short-Step Steepest-Descent variant
using this merit function can be shown similarly to the results that follow.
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We are now ready to formalize our Short-Step Steepest-Descent algorithm.
Algorithm 2.1: The Short-Step Steepest-Descent algorithm.
Let ¢ € (0,1), € € (0,1] and Ay > 0 be given, together with a starting point zo.

Phase 1:
Starting from xo, minimize ||c(z)|| (using (2.4) and (2.8) and the trust-region method of [5])
until a point z; is found such that

P(r1) < e
If |[c¢(x1)|| > Kye, terminate [locally infeasible].
Phase 2:

1. Set t1 = |le(z1)|| + f(z1) — e and k = 1.
2. While x(z,tr) > e,

(a) Compute a first-order step sy by solving

minimize {4 (2, tk,s) such that ||s| < Ag. (2.10)
seR™

(b) Compute ¢(zk, + sk, tr) and define

O(wp,ty) — (g + sp,t)

. = . 2.11
P Ly(xr, tr, 0) — Ly (2k, thy Sk) 11)
If pr > n, then xp41 =z + si; else x4 = .
(c) Set
Ay if pp>n [k successtul]

Akt = { vA, if pp <n [k unsuccessful] (212)

(d) If pr >, set
thir = { ty — ¢(Tk7tk) + ¢(Ik+17tk) if f('T"lH»l) 2> g, (2 13)

+ 2f(@ps1) =t — (@n, tr) + dlzpr, te) i flagsr) < i '

Otherwise, set tr41 = tg.
(e) Increment k by one and return to Step 2.

3. Terminate [(approximately) first-order critical]

We next extract from [5] a property which is crucial for proving that Phase 2 of
Algorithm 2.1 is well-defined.

Lemma 2.1 Suppose that A.1 holds. If x;. € Cy, where Cy is defined in (2.2), then the
model decrease satisfies

Lo (xk, tr, 0) — Ly Xk, tre, i) = min (Ag, 1) x (xg, ). (2.14)
Proof (Note that requiring x; € C; in Phase 2 implies that x; € Cp due to (2.3).

Thus A.1 provides that f is differentiable at x; and so the model £ (xx, f, ) can be

constructed.) Apply Lemma 2.1 in [S] with 7% || - | + | - | and ®4(x) = ¢ (x, 1)
considered as a function of x only. O

The next lemma proves that not only does x; belong to C; so that Phase 2 is
well-defined, but it remains approximately feasible for all Phase 2 iterations, and the
objective function values stay close to their targets.
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Lemma 2.2 Suppose that A.1 holds. On each Phase 2 iteration k > 1 of Algorithm
2.1, we have

f ) — 1 >0, (2.15)
& (xk, k) = €, (2.16)
|f () — k] <€, (2.17)
el < e, (2.18)

and so x € Cy.

Proof Firstly, note that (2.6) and (2.16) imply (2.17) and (2.18); the latter implies

x; € Cjp due to (2.2). Thus it remains to prove (2.15) and (2.16). The proof of these

relations is by induction on k. For k = 1, recall that we only enter Phase 2 of the

algorithm if ||c(x1)|| < ke < €, which gives (2.15) and (2.16) for k = 1, due to the

particular choice of #;. [Also, (2.14) holds at k = 1 and p; in (2.11) is well-defined.]
Now let k > 1 and assume that (2.15) and (2.16) are satisfied, and so

@ (xk, ) = €. (2.19)
If k is an unsuccessful iteration, xx4+1 = X and tx4+1 = 7 and so (2.15) and (2.16)
continue to hold at x4 1. It remains to consider the case when k is successful. Recall
that (2.19) implies ||c(xx)|| < € and x; € C; due to (2.2), and so (2.14) holds. Thus,

since we have not terminated, (2.11) has a positive denominator, which together with
k being successful so that p; > n, implies

& (xk, 1) > G (X1, ).

This and (2.13) immediately give that f (xg41) —#x+1 > Osothat(2.15) holds atk + 1.
Using the latter and (2.6), we deduce

O (Xt 1, 1) = lleGarr DI + f Grr1) — B+ (G — tet1). (2.20)

Consider first the case when f(xg+1) > #. Then, using (2.20) and (2.13), we obtain
that

O (Xpa 1, 1) = @ a1y k) + G Xk, 1) — @ (X1, 1) = @ (s 1)
If f(xg+1) < tx, we have that

& a1y ter1) = e Dl — f (k1) + 1 + & ks 1) — @ g1, )
= ¢ (X1, k) + @ (s 1) — & (Xpey 1, 1)
= ¢ (xx, ),
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where we again used (2.20) and (2.13). Combining the two cases and using (2.19), we
then deduce that

O Xy 1, 1) = G (X, k) = €,

and thus (2.16) holds at k + 1. This concludes the induction step and also the proof.

Since Algorithm 2.1 makes no pretense of being practical, we have written Steps
2.2.b and 2.2.c by only using the constants

O<n<l1, and O <y <1,

instead of the more usual 1 < 1 and y; < y», a simplified choice which is allowed in
the standard trust-region case, including that studied in [5].% Note that Algorithm 2.1
requires one evaluation of the objective function and its gradient and one evaluation
of the constraint’s function and its Jacobian per iteration.

Note also that one could also consider using the ARC algorithm (see [3]) to minimize
llc(x)]1? to find x; such that || J (x1)T ¢(x1)|| < €. We do not consider this (potentially
more efficient) possibility here because it would require stronger assumptions on the
constraint function c.

3 Complexity of Algorithm 2.1 for the equality constrained problem
Before analyzing the complexity of Algorithm 2.1, we state our assumptions formally
(in addition to A.1):

A.2: J(x) is globally Lipschitz continuous in R” with Lipschitz constant bounded
above by L; > 0, and g(x) is Lipschitz continuous in C, with Lipschitz constant
bounded above by L, > 1, where C; is defined in (2.3).

A.3: The objective function is bounded above and below in Cy, where C; is defined
in (2.2), that is there exist constants fiow and fup > flow + 1 such that

.flOW S f(-x) S fup for a]l X € Cl.

We start our analysis by exploiting the results of [5] and bounding the number of
Phase 1 iterations.

Lemma 3.1 Suppose that A.1 and A.2 hold. Then, at most
K1
(et 5 | (3.1

evaluations of c¢(x) and its derivatives are needed to complete Phase I, for some
k1 > 0 independent of € and xy.

5 By selecting n1 = 12 and y| = y» in this reference.
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Proof Apply Theorem 2.4 in [5] with n% -1, ‘513';1(36)(15Cf eI, Ly, = 1, 91 =
def def

m=nandy =y =y.
We now use Lemma 2.1 to lower bound the trust-region radius.

Lemma 3.2 Suppose that A.1 and A.2 hold. Then any Phase 2 iteration k > 1 satis-
fying x (xk, tx) = € and

Ay < M (3.2)

— 1
Lg+§LJ

is successful in the sense of (2.12). Furthermore, while x (xg, tr) > €, we have

Ay > ka€, forall Phase 2 iterations k > 1, 3.3)
where
1—
i L min( A, % (3.4)
Lg + ZLJ

is a constant independent of €.

Proof From (2.11) and (2.6), we have

| Cex + sk, 1) — € Gk, 1, 50|
Lo (xis 1, 0) — Lo (xk, Ty k)
e + sioll — lleCer) + T Cadsicll + Lf G+ i) — 2l — [f Gee) + (8 (xie)s i) — ||
Lo (xk, i, 0) — Lo (Xk, T, Sk)
ek + sl — NleCxr) + T ) selll + 1 G+ s6) — f () — (g (k) sx)|
Ly (xk, 1k, 0) — L (xx, e, Sk) '

lox — 1] =

We have the Taylor expansions f(xx + sx) = f(xx) + g(ék)Tsk for some & €
[xk, xx + sil, and c(xx + sx) = c(xp) + fol J(xx + tsg)spdt. Lemma 2.2 implies
xr € Cp,and ||& — xi |l < |Iskll < Ax < Aj (as the radius is never increased in Phase
2) implies that &, xi +sx € Cp. Thus A.2 can be safely applied for these points, which
together with the Taylor expansions, gives

|f G+ s1) — f) — (g(xi), si)| < Lgllsll* and

1
leGex + sl = lleGer) + T Gkl < ELJ”Sk”z-

Thus, from (2.14) and ||sk|| < Ak, we deduce

or— 1] < (Lg+3Ls) A} - (Lg+35Lg)

= min (A, 1) x (5. f5) ¢ ©
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where to obtain the second inequality, we used y (xk, #x) > € and Ax < 1, where the
latter follows from (3.2), L, > 1and e € (0, 1]. Finally, (3.2) implies [ox — 1] < 1—n,
which gives that & is successful due to (2.12).

Now whenever (3.2) holds, (2.12) sets Axy+1 = Ag. This implies that when A; >
y(1 —ne/(Lg + SLy), we have Ay > y(1 — n)e/(Lg + L) for all k, where the
factor y is introduced for the case when Ay is greater than (1 — n)e/(L, + %L J) and
iteration k is unsuccessful. Applying again the implication resulting from (3.2) and
(2.12) fork = 1, we deduce (3.3) when Ay < y(1—n)e/(Lg+ %Lj) sincey € (0, 1)
and e € (0, 1]. O

‘We now bound the total number of unsuccessful iterations in the course of Phase 2.

Lemma 3.3 There are at most O (| log €|) unsuccessful iterations in Phase 2 of Algo-
rithm 2.1.

Proof Note that (2.12) implies that the trust-region radius is never increased, and
therefore Lemma 3.2 guarantees that all iterations must be successful once A has
been reduced (by a factor y) enough times to ensure (3.2). Hence there are at most

1
loge +log(l —n) —log A1 — log (Lg + EL])

—‘ = O(|logel) (3.5)

" 1
[log y|
unsuccessful iterations during the complete execution of the Phase 2. O

The next lemma proves that the targets 7, decrease by a quantity bounded below by
a multiple of € at every successful iteration.

Lemma 3.4 Suppose A.1 and A.2 hold. Then on each successful Phase 2 iteration
k > 1, we have

b (X + 5k, k) < Pk, 1) — kce” (3.6)
and
t — te1 > kce? 3.7
where
e € i (3.8)

and K is defined in (3.4), independently of e.

Proof From (2.11) and k being successful, we deduce

¢ (X, k) — ¢k + s, 1) = 0 [€g (i, 11, 0) — £ (5, T, 5%) | = pmin (Ag, 1) €,

where to obtain the second inequality, we used (2.14) and x (xx, fx) > €. Further, we
employ the bound (3.3) and obtain

¢ (i, 1) — ¢ (xk + st &x) > nmin (kae, 1) € = nrae?,
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where we also used € € (0,1]and kpo < I dueto Ly > 1,5, y € (0, 1); this gives
(3.6). Finally, (3.7) results from (2.13) and (3.6). O

The next lemma connects approximate critical points of the merit functions of Phase
1 and 2 with those of our original problem (2.1).

Lemma 3.5 Assume that ||c(x)|| < € and x (xi, ty) < €. Then xi is an approximate
critical point in the sense that

leGeoll < € and [T (x)"y — gl <€ (3.9)
for some vector of multipliers y € R™. Similarly, assume that ¥ (x) < €. Then
1) 'zl < e (3.10)

for some vector of multipliers z € R™.
Proof See Theorem 3.1 in [5] and the comments thereafter. O
Finally, we are ready to give the main complexity result of this paper.

Theorem 3.6 Assume A.1-A.3 hold. Then Algorithm 2.1 generates an e-first-oder
critical point for problem (2.1), that is an iterate xj satisfying either

(3.9) or [(3.10) with ||c(xp) || > kre ],

in at most

{(nc(xo)n + fup — ﬁow) :—ﬂ 3.11)

evaluations of c and f (and their derivatives), where ko > 0 is a constant independent
of € and x.

Proof We have seen in Lemma 3.1 that the complexity of obtaining x; is bounded
above by O (||c(xo) lle=27). Thus, as ¥ (x1) < €, Lemma 3.5 ensures that (3.10) holds.
If the algorithm terminates at this stage, then both (3.10) and ||c(x;) || > « re hold, as
requested. Assume now that Phase 2 of the algorithm is entered. We then observe that
Lemma 3.2 implies that successful iterations must happen as long as y (xi, tx) > €.
Moreover, we have that

fiow < f() <tk +e€ <ty —irkce® +€ < f(x1) —ixkce” € (3.12)
where i} is the number of these successful iterations from iterations 1 to k of Phase 2,

and where we have successively used A.3, (2.17) and (3.7). Hence, we obtain from
the inequality f(x1) < fyp (itself implied by A.3 again) that

i < [—f“" ~ Jiow + 61 . (3.13)

Kkce?
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The number of Phase 2 iterations satisfying y (xk, tx) > € is therefore bounded above,
and the algorithm must terminate after (3.13) such iterations at most, yielding, because
of Lemma 3.5, an e-first-order critical point satisfying (3.9). Remembering that only
one evaluation of ¢ and f (and their derivatives, if successful) occurs per iteration,
we therefore conclude from (3.13) and Lemma 3.3 that the total number of such
evaluations in Phase 2 is bounded above by

(m—‘ + O(|logel)
Kce

Summing this upper bound with that for the number of iterations in Phase 1 given by
Lemma 3.1, and using also that e < 1 < fyp — flow, then yields (3.11). O

4 Including general inequality constraints

If we now return to the solution of problem (1.1), we may consider defining

_ [cEX)
clx) = (min[O, c1(x)])

in the above. The quantity |c(x)| can again be considered as the composition of
a nonsmooth convex function with the smooth function (cg(x)7, ¢;(x)T)T and the
theory developed above applies without modification, except that Lemma 3.5 must be
adapted for the presence of inequality constraints. If an inequality constraint is active
at an approximate critical point, then its multiplier has to be non-negative because
y € 9(|| min[O, - ]||) implies that y > 0. If it is inactive, then it may as well be absent
from the problem (and its multiplier must be zero). Hence Lemma 3.5 generalizes to
the inequality constraints case (1.1) without difficulty.

5 Conclusions

We have shown that the evaluation complexity to achieve either an e-first-order
critical point of the general smooth nonlinear optimization problem (1.1) or an infea-
sible e-critical point of the infeasibilities of (1.1) is at most O(e~?%), where the con-
stant involved is independent of € but depends on algorithm parameters and problem
constants—some of the latter may further depend, possibly even exponentially, on
the problem dimension [6,7]. This is a marked improvement over the results pre-
sented in [5], where the same complexity was achieved only if the penalty parameter
of the exact-penalty minimization scheme used there remained bounded, the com-
plexity being O (¢ ) otherwise. Moreover, the results obtained in the present paper
only assume boundedness of the objective function on a small neighbourhood of the
feasible set, rather than on the whole space.

Since Cartis et al. [2] have shown that the O(e ~2) bound is essentially sharp, and
hence attained, by steepest descent with inexact linesearches in the unconstrained case,
and since the method presented here for the constrained case is a steepest-descent-like

@ Springer



Complexity of constrained nonlinear optimization

method, improving this same-order bound in the constrained case seems impossible
for methods of the same type.

We fully accept that the Short-Step Steepest-Descent algorithm discussed in Sect. 2
is most likely to be extremely inefficient in practice, because it amounts to following
the constraints manifold with very small steps. ‘Long steps’ variants may be considered
in which the setting of the target #; is more aggressively geared towards minimizing
the objective function. Whether such variants can be numerically effective remains to
be seen, but their complexity will be difficult to guarantee with the kind of technique
used here, as this would rely on global optimization of the constraint violation.

That we expect Algorithm 2.1 to be outperformed in practice is to be welcomed,
indicating that the O (¢ ~2) evaluation bound may be as pessimistic for the constrained
case as it is for the unconstrained one. But it remains remarkable that this pessimistic
bound is unaffected by the presence of possibly nonlinear and nonconvex constraints.
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