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Abstract. We propose a new termination criterion suitable for potentially singular, zero or
nonzero residual, least-squares problems, with which cubic regularization variants take at most
O(e=3/2) residual- and Jacobian-evaluations to drive either the Euclidean norm of the residual or its
gradient below ¢; this is the best known bound for potentially rank-deficient nonlinear least-squares
problems. We then apply the new optimality measure and cubic regularization steps to a family of
least-squares merit functions in the context of a target-following algorithm for nonlinear equality-
constrained problems; this approach yields the first evaluation complexity bound of order e=3/2 for
nonconvexly constrained problems when higher accuracy is required for primal feasibility than for
dual first-order criticality.
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1. Introduction. A ubiquitous challenge in scientific computing is the mini-
mization of an appropriate norm of a given, sufficiently smooth, vector-valued function
r: R" — R™. This problem formulation arises in numerous real-life applications re-
quiring data fitting, parameter estimation, image reconstruction, weather forecasting,
and so forth [23, Chapter 10]. Crucially, it is often an essential building block when
solving constrained nonlinear programming problems, being used, for example, to re-
duce the constraint violation in various sequential programming [3, 13, 24, 25, 26],
filter [17], funnel [18], and iteratively reweighted least-squares approaches [2, section
4.5.2]. Nonlinear least-squares problems are also at the heart of the path-following
method for constrained problems, which we propose and analyze here as well.

Here we focus on the Euclidean-norm case that gives rise to the equivalent non-
linear least-squares problem,

. def
(1.1) min ®(x) < 3 r(a)|”,

now involving the smooth function ®(x); other norms may be of interest and some are
equally acceptable in this framework. We allow arbitrary values for m and n, and so
both over- and underdetermined residuals r(z) are allowed in (1.1), as well as square
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nonlinear systems of equations; in the latter two cases, one may wish to reduce ®(x)
in (1.1) to zero so as to find the zeros of the system r(z) = 0.

Methods for solving (1.1) differ not only in their practical performance, but also
in the theoretical bounds known on their worst-case efficiency, which is the focus of
this paper. Of the various methods proposed, Gauss—Newton techniques are the most
popular and well researched [16, 23]. Rather than tackling the smooth formulation
(1.1), recent algorithmic variants [21, 1, 9] attempt to minimize the unsquared and
hence nonsmooth norm of r(x) instead, in an attempt to improve the conditioning of
the system that defines the change to the iterates. Using only first-order information—
namely, values of the residual r(z) and its Jacobian J(z) at given z, obtained from a
so-called black-box/oracle—both classical and modern variants can be made/shown
to be globally convergent to stationary points of (1.1), namely, to points satisfying

(1.2) V,0(z) ¥ J(2)r(z) = 0;

furthermore, the number of residual and Jacobian evaluations required to bring the
norm of (1.2) or some (nonsmooth) first-order optimality measure within some toler-
ance € is O(e2), provided J(z) and r(z) are Lipschitz continuous [21, 1, 9, 23, 14].
Another possibility is to apply Newton-type methods to the unconstrained problem
(1.1), which can ensure, for example, fast local convergence for nonzero residual prob-
lems and, most importantly here, improved global efficiency for both zero and nonzero
residual problems. In particular, cubic regularization methods [19, 22, 27, 10] applied
o (1.1) take O(¢~3/2) residual evaluations to ensure (1.2) is within ¢, provided r(z),
J(z), and the Hessians V,,7;(z), ¢ = 1,...,m, are Lipschitz continuous; this bound
is sharp for nonlinear least squares [12], is optimal from a worst-case complexity point
of view for a wide class of second-order methods and nonconvex unconstrained prob-
lems [5], and is the best known complexity for second-order methods. This bound
can be further improved for gradient-dominated residuals (such as when the singular
values of the Jacobian are uniformly bounded away from, or converge to, zero at the
same rate as the residual) [22].

The (natural) approximate satisfaction of (1.2) as termination criterion for the
cubic regularization and other methods suffers from the disadvantage that an approx-
imate zero of r(x) is guaranteed only when J(z) is uniformly full-rank, with a known
lower bound on its smallest singular value—this is a strong assumption. In this pa-
per, we introduce a termination condition that can distinguish between the zero and
nonzero residual cases automatically/implicitly. Namely, we argue for the use of a
scaled variant of (1.2), which is precisely the gradient of ||r(z)|| whenever r(z) # 0,
as well as the inclusion of the size of the residual in the termination condition. In-
deed, irrespective of the algorithm employed and the Jacobian’s rank properties, one
may regard the proposed termination as the appropriate way of handling accuracy
for nonlinear least-squares problems. Without requiring a nondegenerate Jacobian,
we then show that cubic regularization methods can generate either an approximate
scaled gradient or residual value within e in at most O(e~%/2) residual evaluations,
thus preserving the (optimal) order of the bound for cubic regularization.

Consider now the evaluation complexity of minimizing a smooth but potentially
nonconvex objective f(z) € R for z € C. When C is described by finitely many
smooth (but potentially nonconvex) equality and inequality constraints, we have
shown that a first-order exact penalty method with bounded penalty parameters [9],
as well as a short-step target-following algorithm with steepest-descent-like steps [4],
take O(e~2) objective and constraint evaluations to generate an approximate KKT
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point of the problem or an infeasible point of the feasibility measure with respect
to the constraints. Thus adding constraints does not deteriorate the order of the
worst-case evaluation complexity bounds achieved in the unconstrained case when
steepest-descent-like methods are employed. A natural question arises as to whether
an improved evaluation complexity bound, of the order of cubic regularization, can be
shown for constrained problems. In the case when C is given by convex constraints,
projected cubic regularization variants can be shown to satisfy the O(e=%/2) eval-
uation bound [7]. In this paper, in a similar vein to [4], we propose a short-step
target-following algorithm for problems with nonconvex equality constraints

minimize f(z) such that c¢(z) =0

that takes cubic regularization steps for a sequence of shifting least-squares merit func-
tions. The evaluation complexity of the resulting algorithm is better than that for
steepest descent, and can even achieve O(¢~3/2), provided the (dual) KKT conditions
are satisfied with lower accuracy than the (primal) feasibility with respect to the
constraints.

The structure of the paper is as follows. Section 2 summarizes adaptive cubic reg-
ularization methods [10] and relevant complexity results. Section 3.1 presents the new
termination criteria for (1.1) based on the scaled gradient, while section 3.2 gives the
complexity result for cubic regularization applied to (1.1) with the new termination
criteria. Sections 4 and 5 present the short-step target-following cubic regularization
algorithm for the equality-constrained problem and its complexity analysis, respec-
tively. Section 6 summarizes our contributions and discusses possible extensions of
this work.

2. Previous cubic regularization construction and results.

2.1. Description of adaptive cubic regularization algorithm. We consider
applying the Adaptive Regularization with Cubics (ARC) algorithm [11, 10] to (1.1);
here, we focus on the ARC variant that has the best known and optimal worst-case
evaluation complexity, so-called ARC(g). At each iterate xx, k > 0, a step sy is
computed that approximately minimizes the local cubic model

(2.1) mi(s) = sllr(@)|* + 7 (2x) (@) + 45T Bis + toxs]®

of ®(xy, + s) with respect to s, where By, is an approximation to the Hessian of & at
x and o > 0 is a regularization parameter. In this method, the step s is computed
to satisfy

(2.2) st J(xp) T r(xy) + st Brsk + oxl[sk]|> =0
and
(2.3) st Brsk, + ox[lsk]|* > 0.

Conditions (2.2) and (2.3) are achieved whenever sy, is a global minimizer of the model
my, along the direction si, namely, arg minyeg mi(ask) = 1; in particular, they are
satisfied whenever si, is a global minimizer of the model my, over a(ny) subspace [11,
Theorem 3.1, Lemma 3.2]. Note that if s is chosen as the global minimizer of my
over the entire space, o is maintained at a sufficiently large value, and By is the true
Hessian, then ARC g is similar to the cubic regularization technique proposed in [22].
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To ensure ARC’s fast local convergence, we need to go beyond unidimensional
minimization, and so we terminate the inner model minimization when

(2.4) IV s (se)]| < wg min {1, [[se ]|} |1 () (),

where kg is any constant in (0,1); see [11, section 3.2] for a detailed description of
this and other possible termination conditions. Note that Vmi(0) = V@ (zx) =
J(xr)Tr(xy) so that (2.4) is a relative error condition, which is clearly satisfied at any
minimizer s of my, since then Vymy(si) = 0. Generally, we hope that the inner mini-
mization will be terminated before this inevitable outcome. Note that when si is com-
puted by minimizing my, over a subspace, we may increase the subspace of minimiza-
tion until TC.s is satisfied. In particular, one may use a Lanczos-based approach where
the subspace is the Krylov one generated by {Vzcb(a:k), BV, ®(xg), BV, ®(xy), .. }
In this case, conditions (2.2) and (2.3) are also achieved [11, sections 3.2, 6, and 7].
It remains to describe the iterate updating and model improvement technique in
ARC. The step sy is accepted and the new iterate xp41 set to xy + s whenever (a
reasonable fraction of) the predicted model decrease ®(zy) — my(sg) is realized by
the actual decrease in the objective, ®(xy) — ®(x + sx). This is measured by com-
puting the ratio py in (2.5) and requiring px to be greater than a prescribed positive
constant 77 (for example, n; = 0.1); it can be shown that py is well-defined whenever
V®(zx) # 011, Lemma 2.1]. Since the current weight oy, has resulted in a successful
step, there is no pressing reason to increase it, and indeed there may be benefits in de-
creasing it if the model overestimates the function locally. By contrast, if pj is smaller
than 71, we judge that the improvement in objective is insufficient—indeed there is no
improvement if py < 0. If this happens, the step will be rejected and xgyq left as xg.
Under these circumstances, the only recourse available is to increase the weight oy
prior to the next iteration with the implicit intention of reducing the size of the step.
Algorithm 2.1 gives a summary of the ARC s algorithm applied to (1.1).

Algorithm 2.1: Adaptive regularization using cubics (ARCg) [11, 10] ap-
plied to (1.1).

A starting point zo, an initial and a minimal regularization parameter og > omin > 0,
and algorithmic parameters v2 > y1 > 1 and 1 > 12 > 11 > 0 are given.
For £k =0,1,..., until termination, do:

1. Compute a step sj that satisfies (2.2)—(2.4).

2. Compute r(zr + si) and

(o)l = $lir(es + 51l

(2:5) Pk =

ir(ze)[? — mu(sk)
3. Set
T Bl if pr >m,
b+l = Tk otherwise.
4. Set
[Omin, O] if px > 2, [very successful iteration]
(2.6) ok+1 € ¢ [ok,110K] i < px < m2, [successful iteration]
[v10k,v20%] otherwise. [unsuccessful iteration]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/13 to 130.246.132.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

COMPLEXITY OF NONLINEAR LEAST-SQUARES PROBLEMS 1557

Note that we have not yet defined the condition required for ARC(g) to ter-
minate. In [11, 10], we terminate ARC when ||V,®(zx)| < €, and possibly also
Amin(Vza®(x5)) > —¢, for a user-specified tolerance € € (0,1). Here, we will require
that either some scaled gradient or the residual is within ¢; this novel termination
condition, specific to (1.1), is described in section 3.1.

Note that in the important special case of (1.1) when r(x) := Vf(z) for some
sufficiently smooth objective f(x), ARC(g) is a third-order scheme for the minimiza-
tion of f(x). As the main issue concerning the development of third-order schemes
for nonlinear optimization is the NP-hardness of the majority of auxiliary optimiza-
tion subproblems related to multivariate polynomials of degree three, the construction
(2.1) offers a tractable, even computationally inexpensive, way of incorporating third-
order information in the optimization technique.

2.2. Assumptions and useful results. The following assumptions are chosen
to ensure that those in [11, 10] are satisfied when ARC g is applied to (1.1), which
allows us to employ some crucial ARC results from [11, 10] to (1.1).

We assume that

(2.7)

AR.1 | r; is twice continuously differentiable on R" for all ¢ € {1,...,m}.

We also assume that the Jacobian J of r, the residuals r;, and the Hessian V .r;
for each i € {1,...,m} are globally Lipschitz continuous on the path of all generated
iterates and trial points, namely,

2.8
) AR.2 | |ri(x) —ri(zk)] < K|l — x| for all @ € [zg, x, + sx] and k>0
for some k,, > 1 for each i € {1,...,m}, and
(2.9)

AR.3 | ||J(x) — J(xk)|| < k|l — x| for all x € [zg,z + sx] and k >0
for some x; > 0, and finally, for each i € {1,...,m}, there exists L; > 0 such that
(2.10)

(| Veari(z) — Vaari(ze)|| < Lillz — x| for all @ € [xg, zy + si]

and for all kK > 0. Assumption AR.2 implies that r is globally Lipschitz continuous

on the path of all generated iterates and trial points, with Lipschitz constant &, def

[(Kryy-ee sk, )] > 1. Furthermore, AR.1-AR.4 imply that the gradient V,® given
in (1.2) and the Hessian of ®

n

(2.11) Vae®(x) = J(2)"J(2) + D 1:i(2) Vaari(z)

=1

are globally Lipschitz continuous on the path of all generated iterates [z, zx + sk,
k > 0, with Lipschitz constants

def

(2.12) Ly = K2+ |r(zo)|ks > 1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/13 to 130.246.132.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1558 C. CARTIS, N. I. M. GOULD, AND PH. L. TOINT

and
(2.13) LE 2ty + 55 Y i, + (o)l Y Li,
=1 =1

respectively, where we also used that ARC generates monotonically decreasing func-
tion values so that ||r(zg)|| < ||7(xo)|]. (These are variants of assumptions AF.4 and
AF .6, respectively, in [11, 10], suitable for our current purposes.)

Clearly, the values of the residual r(xy) and its Jacobian J(zy) are required to
form the model (2.1) and estimate (2.5). Thus, as By is an approximation to the
Hessian of @ in (2.11) at xg, only the Hessian of each r; needs to be approximated in
By, and so it is natural to consider By to be of the form

(2.14) By = J (k)" I (1) + My,
where
(215) Mk ~ Hq)(xk) dZEf ZTZ(QJk)szTl(ZIJk)

We require that M, and Hg (1) in (2.15) agree along s, in the sense that there exists
some constant C' > 0 such that

(2.16) AM.4 |(Hg (2) — My)sk|| < C||sx||* for all k> 0.
This, (2.11), and (2.14) imply that
(2.17) I[Vee®(2r) — Bilsk| < C|lsk|* for all k >0,

which is assumption AM.4 in [11, 10]. The condition AM.4 is trivially satisfied with
C = 0 when we set My = Ho(xy), i.e., By = V4. ®(xk), for all & > 0 in the ARC
algorithm. The requirement (2.16) or (2.17) is stronger than the Dennis—Moré con-
dition [15]. The latter is achieved by some quasi-Newton updates provided further
assumptions hold (see the discussion following [11, (4.6)]). Quasi-Newton methods
may still satisfy AM.4 in practice, though we are not aware if this can be ensured
theoretically. We have shown in [8] that AM.4 can be achieved when By, is approx-
imated by (forward) finite differences of gradient values, without changing the order
of the worst-case evaluation complexity bound as a function of the accuracy e.

The first lemma recalls some useful ARC properties, crucial to the complexity
bound in section 3.2.

LEMMA 2.1. Let AR.1-AR.4 and AM.4 hold, and apply Algorithm ARCg) to
(1.1). Then

(2.18) or > 3(L+C) =k isvery successful,
and so
(2.19) or < max (og, y2(L + C)) L'z for all k >0,

where L and C are defined in (2.13) and (2.16), respectively. Also, we have the
function decrease
(2.20)

3/2
%Hr(xk)||2 — %HT(;U;CH)HZ >« HJ(karl)TT(karl)H / for all successful k,
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def . .-
where a = My O'minlig/fi and where kg 1s the positive constant

(2.21) ko /(1= 50)/GL+C +7 + moLy),

with kg, @, and Ly defined in (2.4), (2.19), and (2.12), respectively.

Proof. The relation (2.18) and the bound (2.19) both follow from [11, Lemma
5.2], and (2.20) from (2.5), 0% > Omin (due to (2.6)), [11, Lemma 3.3], and [10,
Lemma 5.2]. O

Relating successful and total iteration counts. The total number of (major)
ARC iterations is the same as the number of residual/function evaluations (as we
also need to evaluate r on unsuccessful iterations in order to be able to compute
pr in (2.5)), while the number of successful ARC iterations is the same as that of
Jacobian/gradient evaluations.

Let us introduce some useful notation. Throughout, denote the index set

(2.22) s {k >0: k successful or very successful in the sense of (2.6)},

and, given any j > 0, let

(2.23) S; Y k<j:kes),

with |S;| denoting the cardinality of the latter.

The lower bound on oy and the construction of steps 2-4 of ARC(g) allow us to
quantify the total iteration count as a function of the successful ones.

THEOREM 2.2. For any fized j > 0, let S; be defined in (2.23). Assume that
there exists @ > 0 be such that

(2.24) o <7 forallk < j.
Then
2 o
2.2 < |1 I - S5,
(2:25) i< i (2] s

Proof. The updates (2.6) imply that o > oy for all k. Now apply [10, Theo-
rem 2.1}, namely, the bound [10, (2.14)] on the number of unsuccessful iterations up
to j, and use the fact that the unsuccessful iterations up to j together with S; form
a partition of {0,...,7}. O

Values for & in (2.24) are provided in (2.19), under the assumptions of Lemma
2.1. Thus, based on Theorem 2.2, it remains to bound the successful iteration count
|S;| since the total iteration count up to j is of the same order in € as |S;]|.

3. Evaluation complexity of cubic regularization for potentially rank-
deficient nonlinear least-squares problems.

3.1. A suitable termination condition for ARCs). Here, we depart from
the standard choice of termination criterion for derivative-based optimization algo-
rithms such as ARC(gy when applied to (1.1), namely, requiring a sufficiently small
gradient ||V®,(xx)|| = ||J(zx)Tr(zk)|| <€, where € > 0 is the user-specified accuracy
tolerance. Such a condition is only guaranteed to provide an approximate zero of
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the residual » when J(z) is uniformly full-rank and a lower bound on its smallest
singular values is known, which are limiting assumptions. Such assumptions are not
required for steepest-descent-like methods if appropriate optimality measures are em-
ployed [9, 4], but the complexity of such methods is worse than the best second-order
methods [9, 12]. Thus, we introduce a termination condition that can distinguish
between the zero and nonzero residual cases automatically /implicitly. We propose
the following termination for ARC g):

(3.1) termination : ||r(zg)] <€, or |gr(xk)| < eq,
where €, > 0 and ¢4 > 0 are the required accuracy tolerances and where

J(z)"r(x) ,
(3.2) () def 7||r(x)|| whenever r(z) # 0;

0 otherwise.

Note that the scaled gradient g,.(z) in (3.2) is precisely the gradient of ||r(z)|| whenever
r(z) #0. If r(x) = 0, we are at the global minimum of r and so g.(z) = 0 € 9(||r(z)||)
[20, section VI.3].

In the termination condition (3.1), the scaled gradient g,.(xx) may be bounded
away from zero—for instance, when the singular values of the Jacobian are uniformly
bounded away from zero—then, as we show in the next subsection, the residual values
converge to zero, and so (3.1) can be achieved. When the iterates approach a nonzero
residual value, then g, converges to zero, and so again (3.1) can be satisfied. (Another
suitable termination condition with similar properties is given after the main result
in section 3.2.)

In the next subsection, we show that ARC(g) can generate either an approximate
scaled gradient or residual value within e in at most O(e~3/2) residual evaluations,
thus preserving the (optimal) order of the bound for cubic regularization.

3.2. Evaluation complexity of ARC gy with termination condition (3.1).
The first lemma exploits (2.20) to give new lower bounds on the function decrease
that depend on the residual and the scaled gradient (3.2); the bounds below will also
be used for the constrained case.

LEMMA 3.1. Let AR1-AR.4 and AM.4 hold, and apply the ARC(s) algorithm to
(1.1). Then, for all successful iterations k for which r(xy) # 0, we have

(33) (@l = (el = min {as? g (@)l - Ir@olE, (0= 8)lr@e)] }
and
(3.4) (@l = lr(ers)llF = min{ 108 lgr(@e)l1F, (87F = Dilr(zesn)lIF ]

where « is defined just after (2.20) and § € (0,1) is any fixed problem-independent
constant.
Proof. Suppose that r(zy) # 0, let 8 € (0,1), and denote

(3.5) S {keS: |l > Blir()},

where S is defined in (2.22). We first analyze the function decrease for iterations
k € Sg and then for the ones in S\ Sg. Let k € Sg; then r(zx41) # 0 since r(zx) # 0.
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From (2.20), (3.2), and (3.5), we deduce
(@ )lI* = llr(zer)l1? = 200 (2r41) T r(@r) 122

xr TT‘ xr 3/2
o (L)

= 2allgr ()72 - [l (@rs) 122

> 20052 |gr (i) 1*2 - () 1772

(3.6)

Conjugacy properties and the monotonicity relation ||r(zy)|| > |7 (xk+1)] give
(i)l — lIr(zes Ol o JIr@@e)l® = lIr(@ee)|?
B7) )l = lIr(ze)ll = >

(@)l + Ir(zre )l 2|l ()l ’

and furthermore

ol — e = @l = Il
ViIr@e)ll = V(e Tl Vel

o @)l = lIr(zr)|1?
- Aflr(ae)lP72

Employing the last inequality in (3.6) into (3.7) and (3.8), respectively, we obtain
(39)  lr(zo)ll = (@)l = |l g (zera) P72 - r(a)|V/? for all k € Sp

and

(3.8)

12 5 aﬁ3/2

(310) (@) = (o) = 2l (@) P2 for all k € 5.

Conversely, let k € S\ Sg, which gives
(3.11) [r(@rg)ll < Blir(ze)ll,

and so the residual values decrease linearly on such iterations. It follows from (3.11)
that on such iterations we have the following function decrease:

(3.12) [r(@e)ll = lIr(zr)l| = (1= B)|lr(zx)|| for all k € S\ Sp
and
()12 = (e [1M2 > (1= VB)||r ()|

3.13
(319 > 1 \/B‘/ﬁnr(xkﬂ)nl/? for all k € S\ S;.
(Note that (3.12) and (3.13) continue to hold if r(zk4+1) = 0.) The bound (3.3) now
follows from (3.9) and (3.12), and (3.4) from (3.10) and (3.13). O

The next theorem gives a general evaluation complexity result for ARC g applied
to (1.1) when the termination condition (3.1) is employed.

THEOREM 3.2. Let AR.1-AR.4 and AM.A4 hold, and let €y, €4 € (0,1). Consider
applying the ARC g algorithm with the termination condition (3.1) to minimize (1.1).
Then ARCs) terminates after at most

(3.14) {max{megg/z, @6;1/2}—‘ +1
successful iterations—or, equivalently, Jacobian evaluations—and at most

(3.15) ’VKJS HlaX{/Q1€;3/2, 14326;1/2}] +1
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total (successful and unsuccessful) iterations—or, equivalently, residual evaluations,
where

def 1 e def _ _
(3.16) k1 = 2lr(o)|M2a Tt BT Ry E (o) M (BT - 1)

(3.17) kg 2(1+kg), and kK§ def 210g(T/0min)/ logy1,

with « defined just after (2.20), & defined as in (2.19), and 8 € (0,1) a fized problem-
independent constant.

Proof. Clearly, if (3.1) is satisfied at the starting point, there is nothing left to
prove. Assume now that (3.1) fails at £k = 0. For any iteration (k + 1) at which
ARCg) does not terminate, it follows from (3.1) that we have

(3.18) [r(zre1)]l > € and [lgr(zxr1)]| > €q-

From (3.4) and (3.18), we deduce that, for all k¥ € S for which (3.18) holds,
(3.19) ()2 = (o) |V2 > min{gag® 2%, (5712 = 1)/}

Summing up (3.19) over all iterations k € S for which (3.18) holds, with say je <
oo as the largest index, and using that the ARC(g) iterates remain unchanged over
unsuccessful iterations, we obtain
Je—1
Ir(@o)l2 = (s )2 = 37 (@Ol = Ir(wer) ]
(3.20) k=0,keS

> |Se| min {50[53/263/27 (812 — 1)611)/2} ’

where |S,| denotes the number of successful iterations up to iteration j.. Using that
|r(;.)]|*/? > 0, we further obtain from (3.20) that j. < co and that

(o) [|*/2
min{%aﬁwzezm, (B—1/2 — 1)6;/2}

S| <

which gives (3.14) since |S.| must be an integer and since the termination condition
is checked at the next iteration; see [10, (5.21), (5.22)] for full details. To derive
(3.15), apply Theorem 2.2 with j = j., with & defined as in (2.19), and use also that
€p, €4 € (0,1). 0

The next corollary gives the main complexity result of this section, whose proof
follows immediately from Theorem 3.2. It shows that the evaluation complexity of
ARC(g) driving either [|r(z)] or its gradient below € is O(e~%/?), an improvement of
existing ARC g) results which can only ensure that the gradient of ||r(z)|* goes below
€ in that same-order number of evaluations.

COROLLARY 3.3. Let AR1-AR.4 and AMA hold, and let ¢ < min{e,,eq} €
(0,1). Consider applying the ARC(s) algorithm with the termination condition (3.1)
to minimize (1.1). Then ARC(s) terminates after at most

(3.21) [mge*/ﬂ 1
successful iterations—or, equivalently, Jacobian evaluations—and at most

(3.22) [nsﬁge—?’/z’] +1
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total (successful and unsuccessful) iterations—or, equivalently, residual evaluations,
where

(3.23) #§ < lr(ao)||?/ min{3ap®’?, 5712 13,

with « defined just after (2.20), kg, as in (3.17), and 8 € (0,1) a fixzed problem-
independent constant.
Some remarks on the above theorem/corollary and its proof follow:

e Note that in the nonzero residual case, namely, when {||r(zx)||} converges
to some 7, > 0, the monotonicity of this sequence implies that ||r(zg,1)]| >

Bllr(zg)| for all k, with g8 o r+/||r(zo)| € (0,1). Thus in this case, there is
no need to consider the iterations (3.11) of faster linear convergence.

e The function decrease in (3.4) implies that instead of (3.1), we could have
used the condition

(3.24) termination 2 : ||r(z3)||/3 <€, or |lgr(z1)| < eq

as termination for the ARC gy algorithm, without changing the order of the
complexity bound as a function of (ep,€q) or even of ¢ = min{e,, e4}. In
fact, using the condition (3.24) improves the bound/accuracy for the residual
values reaching within ¢,,.

e Note that the bound (3.14) is a bound on the total number of successful
iterations for which (3.18) holds. Thus despite the measure (3.1) being non-
monotonic, after (3.14) iterations are taken, this measure would remain below
(€p, €q) for the remaining ARCg) iterations, if any are taken.

e The use of conjugacy in the above proof is reminiscent of the reweighted least-
squares techniques [23]. However, our attempts at applying (some modified)
ARC to such variants of (1.1) have not been successful.

3.3. Is the bound (3.15) sharp for the nonlinear least-squares problem
(1.1)? Recall the example in [12, section 5] that shows that ARCg) takes essentially
¢~3/2 iterations/evaluations to ensure that the norm of the gradient is less than e. The
univariate function f : R — R in question is positive for all > 0 and at the iterates,
and it is zero at infinity, minimum to which ARC(g) converges. Thus this example
can be viewed as a least-squares, zero-residual problem, with r in (1.1) defined as

r & Vf. Tt shows that ARC(g) with the termination condition that the absolute
value of (1.2)—which in this case is precisely the first derivative of f—is less than e
takes essentially e~%/2 iterations/evaluations, and so the ARC(g) complexity bound is
sharp for nonlinear least squares. (Note that although +/ f(z) and its derivatives may
not be globally Lipschitz continuous as z — oo, the first and second derivatives of
|7|> = f have this property, as we have shown in [12, section 5]. The latter conditions
are sufficient for the O(e~%/?) bound to hold for ARC(g).) It is unclear whether the
bound (3.15) for ARC gy with the termination condition (3.1) is also sharp.

3.4. Further improving the evaluation complexity of cubic regulariza-
tion for nonlinear least-squares with special structure. Suppose that r(z) in
(1.1) is gradient-dominated of degree 2 [22], namely,

| ()" r ()]

(3.25) F@r =

Umin(J(ir)) >1 >0, x€ Rn,
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where opin(J(z)) denotes the smallest singular value of J(z); this implies that g,
in (3.1) is bounded away from zero for all r(z) # 0. Then under the conditions
of Theorem 3.2, one can deduce from (3.4) and (3.19) that r(x;) must converge to
zero as k — oo, and that the asymptotic rate of this convergence is superlinear (i.e.,
linear with any convergence factor 5 € (0, 1)); also, the algorithm takes a (problem-
dependent) constant number of steps to enter this region of superlinear convergence.
We do not give the details of this result here as a (slightly stronger) result of this
form—where the size of the neighborhood of fast local convergence does not depend
on S and r(zg) enters the complexity bound in a polynomial way—was given in [22,
Theorem 7] for cubic regularization; the latter result continues to hold here for ARC )
when applied to problems which we know a priori satisfy (3.25) since then (3.1) is
no longer required explicitly. An advantage of our (slightly weaker) approach here is
that the termination condition (3.1) “senses” naturally when (3.25) holds and ensures
ARC(g) behaves accordingly.

Similarly, assume now that the smallest singular value of the Jacobian of r(x)
converges to zero at the same rate as r(z), or that there exists 71 > 0 such that
|J(z)Tr(z)||/||7(x)|| > 7i||r(z)| for all 2, which is the same as 7(x) being gradient-
dominated of degree 1 [22]. Then again we can deduce improved complexity bounds
from (3.4) in the same vein as [22, Theorem 6], giving that ARC g requires at most
O (e71) evaluations to ensure ||r(zy)|| < e. (Note the understandably weaker bound
in this case since we minimize the square of the residual, when compared to the ARC
bound of order O (e’l/ 2) for minimizing general unconstrained gradient-dominated
functions of degree 1 [22, 6].) The cases of gradient-dominated residuals of some
intermediate degree with value between 1 and 2 can be similarly analyzed, yielding
improvement over the bound (3.15).

4. The ShS-ARC algorithm for equality-constrained problems. Consider
now the equality-constrained problem

(4.1) minimize f(x) such that c(z) =0,

where f: R" — R and ¢: R" — R™ with m < n. We define a slightly larger set than
the set of approximately feasible points, namely,

(4.2) Ci={z e R" | [le(@)[| < kel

where x. > €, is small constant independent of €, and where €, € (0, 1) is the accuracy
we aim to achieve in satisfying the constraints of (4.1). We assume the following.

The function ¢ is twice continuously differentiable on R™ and f is twice
continuously differentiable in a (sufficiently large) open set containing C;.

The algorithm we now describe consists of two phases; see Figure 4.1(a). In
the first, ARC(gy with termination condition (3.1) is applied to (1.1) with r = ¢,
so as to minimize 1|/c(x)||? (independently of the objective function f), resulting
in a point which is either (approximately) feasible or is an approximate infeasible
stationary point of ||c(z)||. The latter outcome is not desirable if one wishes to solve
(4.1), but cannot be avoided by any algorithm not relying on global minimization
or if Cy is empty. If an (approximate) feasible point has been found, Phase 2 of the
algorithm then performs short cubic regularization steps for a parametrized family of
least-squares functions so long as first-order criticality is not attained. These steps
are computed by attempting to preserve approximate feasibility of the iterates while

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/13 to 130.246.132.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

COMPLEXITY OF NONLINEAR LEAST-SQUARES PROBLEMS 1565

producing values of the objective function that are close to a sequence of decreasing
“targets.” To be specific, one or more ARC(g iterations are applied to minimize the

least-squares function ®(x,t) def 1||r(z,t)||> with respect to x, where

(43) e ™ ()

and where t is a “target” value for f(x). Clearly, the Jacobian A(z,t) of the residual
function r(z,t) in (4.3) satisfies

def J(x) )

4.4 Az, t) = A(x) = ;
(4.9 (w20) ™ A = ()
where J(z) is the Jacobian of the constraint function c¢(x) and g(z) is the gradient
of f(x). Thus V,®(z,t) = A(x,t)Tr(x,t) and the scaled gradient (3.2) has the
expression
(4.5)

T T —

et Alx,t)"r(z,t) _ J(@) c(@) + (fl2) —t)g() . P ) £0,
gr(x,t) = [ (z, D) [[7(, 1)
0 otherwise.

We are now ready to summarize our Short-Step ARC (ShS-ARC) algorithm.

Algorithm 4.1: The short-step ARC (ShS-ARC) algorithm for (4.1).

A starting point xo, initial regularization parameters oo and o1 and a minimal one
Omin such that min{ao,al} > omin > 0, and algorithmic parameters v2 > 41 > 1 and
1>m2 >mn >0, as well as the tolerances ¢, € (0,1) and eq € (0, 1), are given.

Phase 1:
Starting from xo, apply ARC g) to minimize 1 ||c(z)
such that (3.1) is satisfied, namely,

||I* until a point x1 is found

(4.6) le@)l <& o AL@I @l

l[e(z)ll

If ||e(z1)]] > €p, terminate [locally infeasible].

Phase 2:

1. Set t1 = f(zx1) — /€2 — [le(x1)]|? and k = 1.

2. Fork=1,2,...,do:
2a. Starting from xzx, apply one iteration of ARC(g) to approximately
minimize 3 ||7(z, )| in (4.3).
2b. If pr > m, do:
o If ||gr(k+t1,tr)|| < €4 and r(zr+1,tx) # 0, terminate.

e Else, set
(4.7)
thr1r = f(@rrr) = VIr@e, )2 = Ir@ee )2 + (F(@re) — te)2.

Otherwise, set tx4+1 = tk.
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Note that the monotonicity property of the ARC(g) iterates [11, (2.5), (3.19)]
generated in step 2a of Phase 2 of ShS-ARC provides

(4.8) llr(zk, te)ll > |l (zes1,tr)|| for all k> 1,

and so the updating procedure for ¢, in (4.7) is well-defined. Furthermore, (4.7) gives
(4.9)

th = thsr = —(f(@rs1) — te) + \/ll?“(ffkﬂfk)ll2 — (@, )12 + (f (@r41) = ta)?

for any successful £ > 1, which we use to show next that the target values t; decrease
monotonically.

If we enter Phase 2 of ShS-ARC, we have |lc(z1)|| < €p. The next lemma proves
that we remain approximately feasible for the constraints for all subsequent Phase 2
iterations.

LEMMA 4.1. In every Phase 2 iteration k > 1 of the ShS-ARC algorithm, we
have that

(4.10) th > trrt,

(4.11) f(@g) =t >0,

(4.12) Iz, t) | = €,

(4.13) le(zr)ll < € and [f(xr) —tr] < €,

and so xy, € Cy.
Proof. Due to (4.9), (4.10) follows immediately in the case when f(zp+1) < tg.
Otherwise, when f(zx41) > t, conjugacy properties and (4.9) give

Ir (e te)lI” — lIr(@rr )

f(@hg1) =t + \/HT(ﬂ?ka ti)l12 = [Ir(@ra, te) |12 + (f (zr41) — i)

where in the last inequality, we also used (4.8).

Note that (4.11) holds at k = 1 due to the particular choice of t; and at k > 1,
due to (4.7) and (4.8). Also, (4.13) follows straightforwardly from (4.12), which also
provides that z; € C; due to (4.2). It remains to prove (4.12), by induction on k.
Again, the particular choice of ¢; gives (4.12) at k = 1. Assume now that (4.12) holds
at k > 1, namely,

>0

ty —tpyr1 =

3

(4.14) I (g, t) || = €p.

If k is an unsuccessful iteration, then xypy1 = xp and tp41 = tp and so (4.12) is
satisfied at k + 1. Otherwise, we have

(f(@rs1) = tre1)? = [Ir(@rs ti) |2 = 7 (@rers t) 12 + (f (@rg1) — )
= |lr(zr, te) |1 = [le(zre) |12,

where (4.11) and (4.7) give the first identity, while the second equality follows from
(4.3). Thus we deduce, also using (4.3), that

7 (@rt1s i) I? = 7 (@n, te) |17,
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which concludes our induction step due to (4.14). O
Phase 2 of the ShS-ARC terminates when

(4.15) lgr(zks1,te)]| < €q and 7r(zg41,tr) # 0,

where g, is defined in (4.5) and ¢4 € (0,1) is fixed at the start of the algorithm.
Allowing different primal and dual accuracy tolerances makes sense if one considers
the possibly different scalings of the (primal) residuals and (dual) gradients. The
latter may occur, for instance, when the Jacobian A(z) in (4.4) is not full rank, which
is the case at KKT points of (4.1). The next lemma connects (4.15) to relative KKT
points of (4.1) and to approximate critical points of the feasibility measure ||c(x)]|.

LEMMA 4.2. For some (x,t), assume that the scaled gradient (4.5) of r(x,t) in
(4.3) satisfies

|17 (2) " e(x) + (f(x) = )g(@)] _

(4.16) lgn(a. 1) = + e e
Then either
@)@ _
(17 @l <
|7 ()T y(x,t) + g(a)]] @)
) ol < o0 = rery.

Proof. We distinguish two possible cases. First, assume that f(x) =¢. Then (4.3)
and (4.16) straightforwardly imply (4.17). Alternatively, we must have that f(z) # t¢.
This allows us to divide in the numerator of (4.16) by |f(x) — t|, which then provides,

also using |[r(z, t)[| = [[(c(x), f(z) — 1),
H |f (z) —

I )l H( )
1w -0~ \if —t|
which gives (4.18). O

The condition (4.18) is an instance of the relative dual KKT stopping criterion

[ J(2)Ty + g(2)]| .
[l (y, D -

for some multiplier y € R™. The relative error condition (4.19) can be justified by
means of a perturbation argument. Namely, considering the perturbations z = x*+4dx
and y = y* + oy to some KKT point z* and to a corresponding multiplier y*, a Taylor
expansion and the KKT condition J(z*)Ty* + g(x*) = 0 give that the perturbed dual
feasibility residual J(z)Ty + g(z) is to first order [H(z*) + > 1%, yi Vazci(z*)] 6z +
J(z*)Ty. The presence of the multiplier y* in the latter remainder illustrates that
the size of the multiplier should not be ignored when measuring KKT equation resid-
uals.

By Lemma 4.1, if we enter Phase 2 of ShS-ARC, we remain sufficiently close to
the constraints for all subsequent iterations so that |lc(xy)|| < €p. This and Lemma
4.2 imply that when the ShS-ARC algorithm terminates with (4.15), then either we
are close to a feasible critical point of the feasibility measure |c(x)|| (when f(z) = t)

?) +g(z)

(4.19)
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Phase 1

(a) | (b)

Fic. 4.1. (a) Illustration of ShS-ARC Phases 1 and 2. (b) A successful iteration of ShS-ARC’s
Phase 2 in the case where €p = ev/2 and eg = O(2/3).

or we are close to a (relative) KKT point of (4.1) (when f(z) # t). In an attempt
to encourage termination with the latter rather than the former condition, one may
consider allowing ShS-ARC to continue iterating when f(zg4+1) = t; and (4.15) hold,
provided there is sufficient residual and hence target decrease (of the same order in
the primal and dual tolerances as (5.7)).

In the next section, we establish that the target values t; decrease by a fixed
amount in each iteration. Thus either (4.15) holds for some k—and so we are approx-
imately critical for (4.1) or for the constraints—or the targets reach f,, the global
minimum of f over the set of constraints, in which case again (4.15) must hold. Thus
ShS-ARC will terminate; furthermore, when €, = € and ¢; = €2/3 its worst-case
evaluation complexity is O (6’3/ 2), just like in the unconstrained case.

5. Complexity of the ShS-ARC algorithm for the equality constrained
problem. Before analyzing the complexity of Algorithm ShS-ARC, we state our
assumptions formally (in addition to AC.1).

The Jacobian J(x) of ¢(x), the components ¢;(x) and V .¢;(z) are globally

Lipschitz continuous on the path of all Phase 1 and Phase 2 iterates and
trial points with Lipschitz constants L; > 0, L., > 1, and Ly, > 0 for
ie{l,...,m}.

AC.3 | f(x), g(z), and V., f(x) are globally Lipschitz continuous on the path of
all Phase 2 iterates and trial points with (positive) Lipschitz constants
Ly, Ly s, and Ly s, respectively.!

AC.4 | The objective f(x) is bounded above and below in Cy, which is defined in
(4.2); that is, there exist constants fiow and fup > fiow + 1 such that

flowgf(f)gfup for all {EECl.

INote that even though x) € C; for all Phase 2 iterations & > 1 (due to Lemma 4.1), the path
of the iterates and trial points may not be included in C;. Furthermore, upper bounds on the length
of the step si [11, Lemma 2.2] depend on the Lipschitz constant of f(z). Thus we seem unable to
characterize the set that contains the Phase 2 iterates and trial points as a superset of C;.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/13 to 130.246.132.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

COMPLEXITY OF NONLINEAR LEAST-SQUARES PROBLEMS 1569

The assumptions AC.1-AC.4, the construction of ShS-ARC, Phase 2 iterates zj €
C1 (due to Lemma 4.1), and (4.2) imply that AR.1-AR.4 hold for each of the least-
squares functions that we employ in ShS-ARC, namely, 1||c(x)||? and 3 ||r(z,t)||* for
k > 1; furthermore, the resulting constants are independent of k. In particular, the
corresponding values of L, in (2.12) for L||c(z)||* and &||r(x,t)||? are, respectively,

(5.1) Ly, %

def
12+ le(wo)ILs and Ly S [(Les )2 + well (Lo Ly )l
where L, % I(Leys- -y Le,,)|| > 1is the Lipschitz constant of ¢, while the correspond-
ing values of L in (2.13) for i||c(z)||? and i||r(z,tx)||* are, respectively,

(5.2) Ly 2L Lo+ Ly Y Le, + le(zo)| Y Lie,  and

=1 =1

(5.3)
def i i
Ly = ||(Ly, Ly.p)l| <2|<L6,Lf>|| + Ly + Z%) + Ke (LH,f - ZLH,Q) :

i=1 =1

The next lemma shows that Phase 2 of ShS-ARC consists of (at most) a constant
number of unsuccessful ARCs) steps followed by a successful one for minimizing
1|r(x, tx)||? for fixed t, after which tj, is decreased according to (4.7).

LEMMA 5.1. Let AC.1-AC.4 hold, as well as AM.4 for the Hessian of ||r(x,t)|>
and its approximation. Then the Phase 2 iterations of the ShS-ARC algorithm satisfy

(5.4) or <max (o1, 3v2(La + C)) Y S for all k> 1,

where Loy is defined in (5.3). Also, at most

(5] 2 _S
(5.5) La ™ [1 + log ( Tsh >—‘
log"ﬂ Omin

ShS-ARC/ARC\sy iterations are performed for each distinct target value ty.

Proof. The implication (2.18) in Lemma 2.1 directly applies to the Phase 2
iterations of ShS-ARC, with constants L = Ly defined in (5.3) and C given in AM.4,
independent of k. The construction of a Phase 2 iteration of ShS-ARC and (2.6)
imply that whenever oy, is large in the sense of (2.18), we have oj41 < 0. Thus (5.4)
follows, noting that the factor 2 in Gy, is allowed for the case when oy is only slightly
less than 3(Lo 4+ C)/2 and k is not very successful, while the term oy in (5.4) accounts
for choices at the start of Phase 2.

Note that Theorem 2.2 directly applies to the Phase 2 iterations of ShS-ARC that
employ the same target value t;. Thus the bound (5.5) follows directly from (2.25),
(5.4), the use of parameters 71 and o, in Phase 2 of ShS-ARC, as well as the fact
that we only take one successful ShS-ARC/ARC g iteration for each fixed ¢; (and so,
here, |S;| =1 in (2.25)). O

The next lemma gives an auxiliary result to be used in Lemma 5.3.

LEMMA 5.2. Consider the following optimization problem in two variables:

(5.6) min_F(f,c) def —f4+ Ve -2 subject to f2+c* <72,

(fc)eR?

where 0 < 7 < €. The global minimum of (5.6) is attained at (f«,c.) = (7,0) and it
is given by F(f«,ci) = —T + €.
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Proof. As F(f,c) is separable, linear and decreasing in f, and concave in ¢, the
(global) solution of (5.6) is attained on the boundary of the feasible region, namely,
f2 + % =72, and since we are minimizing, we must have f, = /72 — c2. Now,

2_ 2

F(Wr2—2,¢)=—-Vr2 -+ Ve -2 = .

VT2 -2+ Ve2 — 2

is strictly increasing in |c| € [0,7] and so its minimum is attained at ¢, = 0. Thus

f+ = £7, and since we are minimizing, the smallest value of F(f,c,)is at f. = 7. O
The next lemma proves the crucial result that the targets t;, decrease by a quantity
bounded below by a multiple of 62/ 26;1;/ % at every successful Phase 2 iteration &k until

termination.
LEMMA 5.3. Suppose that AC.1-AC.4 hold, as well as AM.4 for the Hessian of
1|r(x, tr)||* and its approximation. Set the primal and dual tolerances in that ShS-

ARC algorithm such that g < 611)/3. Then, for every successful Phase 2 iteration k > 1
for which (4.15) fails, we have that

(5.7) tgy — tpa1 > /ﬁtez/ze}g/z

for some problem-dependent constant Ky def min{a3%/%,1— B}, where 3 € (0,1) is any

fized problem-independent constant, o def mominfig’r/G and

(5.8) g /(U= 50) /(L2 + C + Ta + gLy 2),

with kg, La, C, Gen, and Ly o defined in (2.4), (5.3), (2.16), (5.4), and (5.1), respec-
tively.

Proof. Lemma 3.1 applies to minimizing 1||r(x,#;)|?, and so (3.3) implies that
for any successful k > 1, we have
(5.9)

(s )| = (@i )| = remin {llgp (s, )l re, o)l (e, )}

where £ is defined below (5.7). Thus for any successful k¥ > 1 for which (4.15) fails
with ||gr(k+1,tk)|| > €4, (5.9) becomes

(5.10) (e, )| = I (rsn, )| 2 wemin {5/ 26h/2 ¢} = wucl/ 2/,
and when (4.15) fails with r(xg41,tx) = 0, we trivially have that
(5.11) (s ti)ll = I (@ign, te)| = ep > rocy 2el/?,

where in (5.10) and (5.11), we also used (4.12), k; € (0,1), and g < 611)/3. Using (4.3)
and the properties of the lo-norm, (4.9) becomes

th — trr = —(f(@er1) — t) + /I (ze, 1) 12 = lle(@rr) |2

5.12
(512) = —(f(@r41) — te) + /5 — lle(@r+1) 12,

where we used (4.12) in the second equality. It follows from (4.3) that
(5.13)

2
(f (@) = t0)? + lle(@er) 2 = Ir(@esn )2 < (Ire, o)l = mecy e/

2
3/2 1/2
:(ep—nted €p ) ,
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where in the first inequality we used (5.10) and (5.11), and in the second equality,
(4.12). We now apply Lemma 5.2 to the third right-hand side of (5.12), letting
f = f@ps1) —th, ¢ = ||c(zrs1)||, € = €, and T = €, — ke "€’ ". We deduce from
this lemma, (5.12), and (5.13) that

3/2 1/2
€p

2 1/2
th —thp1 > —T +ep = —(ep — ke /ep/,

)tep= lﬁtei

which proves (5.7). O
Figure 4.1(b) illustrates the workings of one successful Phase 2 iteration for e def

€p/V?2 and €4 of O(e?/3), the case of most interest to us as it coincides with the
evaluation complexity of ARC for the unconstrained case. The figure exemplifies
that the amount of decrease in the target values is inherited from the merit function
decrease (5.10).

Note that the ShS-ARC algorithm requires one evaluation of the objective func-
tion, its gradient (and possibly Hessian), and one evaluation of the vector of constraint
functions, its Jacobian (and possibly Hessians) per iteration. We are now ready to
give the main complexity result for ShS-ARC applied to (4.1).

THEOREM 5.4. Suppose that AC.1-AC.4 hold, and that ShS-ARC is applied to
minimizing (4.1) with eq < 611)/3, Assume also that AM.4 holds for the Hessians
of Lc(x)||? and L||r(z,tx)||* and its approzimations. Then the ShS-ARC algorithm
generates an iterate xy, satisfying either a relative KKT condition for (4.1), namely,

| () Tyn + g ()|
[1(yx, DI -

for some y, € R™, or an approximate first-order criticality condition for the feasibility
measure ||c(x)||, namely,

(5.14) lle(xr)|| < ep and €d

|| () ()|
5.15 — < ¢
(5.15) el
i at most
—3/2 _
(5.16) [K:f,ced / € 1/2]

evaluations of ¢ and f (and their derivatives), where k¢ > 0 is a problem-dependent
constant, independent of €p, €4, and xo.

Proof. The evaluation complexity of Phase 1 follows directly from Theorem 3.2

with ®(z) dof Le(x)||®. In particular, the evaluation complexity of obtaining x; is

bounded above by

(5.17) [Ks rnax{m,mg}max{e;3/2,e;1/2 1,

where k1, k2, and kg are defined in (3.16) and (3.17) with r(xg) = ¢(xo), L = Ly
given in (5.2), and Ly, = Ly given in (5.1). If the ShS-ARC algorithm terminates at
this stage, then (4.6) implies that (5.15) holds with k = 1 and ||c(z1)|| > €p. Assume
now that Phase 2 of the ShS-ARC algorithm is entered. From AC.4 and (4.13), we
have

. 3/2 . 3/2
flow < f(xk) <+ €p <t — Zkﬁted/ 6;};/2 + €p < f(xl) - Zlc"<5t6d/ 611;/2 + €p,
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where i, is the number of successful ShS-ARC iterations from 1 to k for which (4.15)
fails, and where we have also used (5.7) and the definition of ¢; in the ShS-ARC
algorithm. Hence, we obtain from the inequality f(z1) < fup (itself implied by AC.4
again) and ¢, € (0,1) that

. fu _.flow+1 def ;¢
(5.18) ZkS’VW = Ligh-

K€y “ep
Since for each distinct value of ¢, we have one successful iteration, (5.5) in Lemma 5.1
implies that the total number of Phase 2 iterations for which (4.15) fails is bounded
above by L3 - Lgn, where Ly, is defined as in (5.5) and Lf, is defined as in (5.18).
Thus the ShS-ARC algorithm must terminate after this many iterations at most,
yielding, because of Lemma 4.2, an iterate satisfying ||c(xy)|| < €, and either (4.18)
or (4.17); thus either (5.14) or (5.15) will hold in this case. Recalling that only one
evaluation of ¢ and f (and their derivatives, if successful) occurs per iteration, the
bound (5.16) now follows by summing up the Phase 1 and Phase 2 iteration bounds,
and using that €, € (0, 1), which gives that the Phase 2 bound dominates in the order
of (ep, €q). O

Ifeq def e,z,/ 3, then Theorem 5.4 implies that the evaluation complexity of ShS-ARC

is at most O(ep 3/ 2), the same as for the unconstrained case. However, if €4 def €ps
then this complexity bound worsens to (’)(eij %), the same in order as for steepest-
descent-type methods for both constrained and unconstrained problems [12, 4].

6. Conclusions. We have shown that with an appropriate and practical ter-
mination condition, the (optimal) cubic regularization variant ARC g takes at most
O(e=3/?) evaluations to drive the residual or the scaled gradient of the potentially sin-
gular least-squares problem (1.1) below e. Our analysis has focused on the Euclidean
norm case, but it can be easily extended to general inner products and induced norms,
and to smooth [,-norms for p > 2. Though the order €3/2 of the ARC bound is op-
timal for unconstrained optimization when second-order methods are employed [5],
and it is sharp for nonlinear least-squares when ensuring (1.2) is sufficiently small, it
is unclear whether it is optimal or even sharp for ARC(g) with the novel termination
condition (3.1).

For the equality-constrained potentially nonconvex programming problem (4.1),
we presented a target-following technique ShS-ARC that applies ARC sy to target-
dependent least-squares merit functions tracking a path of approximately feasible
points (if an initial such point can be found). Furthermore, in order to ensure ap-
proximate first-order conditions for (4.1) or for a feasibility measure—within ¢, for the
constraint feasibility and within ey for dual (first-order) feasibility—ShS-ARC requires

at most O(egg/ 26; 1/ 2) problem evaluations, which depending on the choice of toler-

ances €, and €4 can take any value between the complexity O(e, 3/ %) of ARC (namely,
when ¢4 = 612)/ %) and O(e,?) of steepest descent (when € = €,). Though it is natural
for the primal and dual feasibility residuals to vary at different rates, and hence re-
quire different optimality tolerances (with higher accuracy for primal feasibility than
for dual being common), it is an open question at the moment whether an algorithm
for nonconvexly constrained problems can be devised that has worst-case evaluation
complexity of order ¢~3/2, where ¢ = ¢, = ¢4. Also, extending ShS-ARC or other
cubic regularization approaches to problems with nonconvex inequality constraints
remains to be considered.
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