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Abstract In a recent paper (Cartis et al. in Math Prog A 144(2):93–106, 2014), the
evaluation complexity of an algorithm to find an approximate first-order critical point
for the general smooth constrained optimization problem was examined. Unfortu-
nately, the proof of Lemma 3.5 in that paper uses a result from an earlier paper in an
incorrect way, and indeed the result of the lemma is false. The purpose of this corri-
gendum is to provide a modification of the previous analysis that allows us to restore
the complexity bound for a different, scaled measure of first-order criticality.

Keywords Evaluation complexity · Worst-case analysis · Constrained nonlinear
optimization

1 Introduction

In a recent paper [4], we aimed to show that the complexity of finding ε-approximate
first-order critical points for the general smooth constrained optimization problem
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requires no more than O(ε−2) function and constraint evaluations. The analysis
involved examining the worst-case behaviour of a short-step homotopy algorithm
in which a sequence of approximately feasible points are tracked downhill. The entire
framework relies on the O(ε−2) iteration complexity bound of a general first-order
method for non-smooth composite minimization [2]. Unfortunately, the given proof
of [4, Lem.3.5] invokes [2, Thm. 3.1] incorrectly, and indeed the result of the lemma
is false. Furthermore, the claimed generalization to inequality constraints [4, Sect. 4]
fails to account for complementary slackness, and is thus incomplete.

Our aimhere is to correct our previous analysis. To do so,we needfirst to re-examine
what we believe it means to be approximately first-order critical, and this leads to an
alternative stopping rule for our homotopy method. Armed with that, we then use a
differentmerit function for the second phase of our homotopymethod compared to that
we considered in [4] to establish a variant of [4, Lem.3.5], and this reveals a worst-case
evaluation complexity bound of O(ε−2) for the revised ε-criticality measure.

2 Corrigendum

2.1 Stopping criteria for constrained optimization

In [4], we consider the general nonlinearly constrained optimization problem

minimize f (x) such that cE (x) = 0, and cI (x) ≥ 0, (1)

where cE and cI are continuously differentiable functions from �n to �m and �p,
respectively, having Lipschitz continuous Jacobians, and E and I are non-intersecting
index sets of equality and inequality constraints, respectively. Ideally, we would like
to find a point x∗, and corresponding Lagrange multiplier estimates y∗, that satisfy the
first-order criticality—or Karush–Kuhn–Tucker (KKT)—conditions [8,9]

g(x∗) + J T (x∗)y∗ = 0, (2a)

ci (x∗) = 0 for all i ∈ E, (2b)

ci (x∗) ≥ 0 and [y∗]i ≤ 0 for all i ∈ I, (2c)

and ci (x∗)[y∗]i = 0 for all i ∈ I, (2d)

where g(x) := ∇ f (x), J (x) := ∇c(x) and c(x) := (cTE (x), cTI (x))T . Of course, there
might be no feasible point for the problem, or in the absence of a suitable constraint
qualification, it might be that we may have to be satisfied with the John condition [7]

ν∗g(x∗) + J T (x∗)y∗ = 0, (3)

instead of (2a), for which there is an extra, possibly zero, multiplier ν∗ associated
with the objective function and at least one multiplier is nonzero. The last of the KKT
conditions, (2d), is known as the complementarity condition and in conjunction with
(2b) is often written as
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〈c(x∗), y∗〉 = 0, (4)

while the first, (2a), requires that the gradient of the Lagrangian

�(x, y) = f (x) + 〈c(x), y〉,

taken with respect to the variables x , vanish at a KKT point; here and elsewhere 〈·, ·〉 is
the Euclidean inner product. Since it is very unlikely that we can find (x∗, y∗) exactly,
our goal is to find suitable approximations that satisfy a perturbation of these criticality
conditions.

While proper scaling of the objective and constraint functions is to a large extent
the responsibility of the problem formulator—and ideally they should be scaled so
that unit changes in x in regions of interest result in similar changes in f and c—the
values of the optimal Lagrange multipliers y∗ are essentially controlled by (2a), and
should be taken into account when deriving stopping criteria. Consider perturbations
x = x∗ +δx and y = y∗ +δy to some KKT point x∗ and to a corresponding multiplier
y∗. Then supposing for argument’s sake that f and c ∈ C2, a Taylor expansion and the
KKT condition g(x∗)+ J T (x∗)y∗ = 0 give that the perturbed dual feasibility residual

g(x) + J T (x)y ∼=
[
H(x∗) +

∑
i∈E∪I

[y∗]i Hi (x∗)
]

δx + J T (x∗)δy

to first order, where H(x)
def= ∇xx f (x) and Hi (x)

def= ∇xx ci (x). The presence of the
multiplier y∗ here illustrates that the size of the multiplier should not be ignored when
measuring KKT equation residuals. Similarly, the complementary slackness condition
(4) is

〈y, c(x)〉 ∼= 〈δx, J T (x∗)y∗〉 + 〈δy, c(x∗)〉

to first order, and the value of y∗ is once again relevant.
Thus when trying to solve (1), we pick primal and dual feasibility and complemen-

tarity tolerances εp, εd , εc > 0, and aim to find xε along with Lagrange multiplier
estimates yεsuch that

∥∥∥∥
(

cE (xε)

min[ 0, cI (xε)]
)∥∥∥∥ ≤ εp,

∥∥g(xε) + J T (xε)yε
∥∥

‖(yε, 1)‖D

≤ εd ,

〈c(xε), yε〉
‖(yε, 1)‖D

≤ εc and [yε]I ≤ 0 (5)

as a reasonable goal when trying to satisfy (2); here ‖·‖D is the dual norm to the chosen
norm ‖·‖ induced by the given inner product 〈·, ·〉.We have previously used this scaled
dual-feasibility rule for equality-constrained problems [3], while the requirement on
approximate complementarity is an obvious generalization.

Notice that the stopping rules (5) are consistent with the John conditions (2b)–(2d)
and (3) in which 1/‖(yε, 1)‖D and yε/‖(yε, 1)‖D approximate ν∗ and y∗ respectively,
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and that if additionally yε remains bounded, they give an approximate KKT point
(2a)–(2d) in the sense that

∥∥∥∥
(

cE (xε)

min[ 0, cI (xε)]
)∥∥∥∥ ≤ εp,

∥∥∥g(xε) + J T (xε)yε
∥∥∥ ≤ εd‖(yε, 1)‖D,

〈c(xε), yε〉 ≤ εc‖(yε, 1)‖D and [yε]I ≤ 0,

where now yε approximates y∗. Thus no constraint qualification will be presumed or
required in the definition of our algorithm or in its analysis.

Having defined our problem, and what we will be looking for with our algorithm,
we turn now to the description and analysis of the algorithm itself.

2.2 Composite-nonsmooth optimization

The analysis of [4, Alg. 2.1], which was intended for problems that only involve
equality constraints, and the extension for mixed equality-inequality problems that we
shall shortly describe, depends on basic properties of critical points of the composite,
nonsmooth function

�(x) := h(r(x)), (6)

in which r : �n → �m is smooth and h : �m → � is convex and continuous but may
be nonsmooth. We say that x∗ is a first-order critical point of � if

J Tr (x∗)y = 0 for some y ∈ ∂h(r(x∗)) (7)

holds, where ∂h denotes the subdifferential of h and Jr (x) := ∇r(x). It is well known
[10] that x∗ is a first-order critical point of � if and only if

χ�(x∗) = 0, (8)

where the predicted reduction of a linear model of � in a unit ball,

χ�(x) := l�(x, 0) − min‖d‖≤1
l�(x, d) (9)

and

l�(x, d) := h (r(x) + Jr (x)d) , d ∈ �n, (10)

and that χ�(x) is a continuous criticality measure for � [10]. Our updated analysis
hinges on what can be deduced when χ�(x) is small. Theorem 2.1 is a generalization
of [2, Thm.3.1].
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Theorem 2.1 Suppose that r ∈ C1, and that h ∈ C0 is convex. Given ε > 0, suppose
that

χ�(xε) ≤ ε, (11)

for some xε . Then

‖J Tr (xε)yε‖ ≤ ε, (12)

where yε ∈ ∂h(r(xε) + Jr (xε)dε) and

dε = arg min‖d‖≤1
l�(xε, d). (13)

Proof Let dε satisfy (13). Suppose that ‖dε‖ < 1. Then since (13) is unconstrained
and l�(xε, d) is convex, applying [6, (14.2.16)] to l�(xε, d) shows that there is a
yε ∈ ∂h(r(xε) + Jr (xε)dε) for which J Tr (xε)yε = 0, and thus (12) holds trivially. So
it remains to consider ‖dε‖ = 1. In this case, first-order conditions for (13) imply that
there exists yε ∈ ∂h(r(xε) + Jr (xε)dε) and λ∗ ≥ 0 such that

J Tr (xε)yε + λ∗zε = 0, (14)

where zε ∈ ∂‖dε‖ = {z | ‖z‖D = 1 and 〈z, dε〉 = ‖dε‖}. It follows from the definition
(9) of χ�(x), (14), the definition of ∂‖dε‖ and ‖dε‖ = 1 that

χ�(xε) = [h(r(xε) − h(Jr (xε)dε + r(xε))]

=
[
h(r(xε)) − h(r(xε) + Jr (xε)dε) + 〈dε, J

T
r (xε)yε〉

]
+ λ∗〈dε, zε〉

=
[
h(r(xε)) − h(r(xε) + Jr (xε)dε) + 〈dε, J

T
r (xε)yε〉

]
+ λ∗. (15)

Since l�(xε, d) is convex, the subgradient inequality implies that l�(xε, 0) −
l�(xε, dε) ≥ 〈y,−Jr (xε)dε〉 = −〈dε, J Tr (xε)y〉, for any y ∈ ∂h(r(xε) + Jr (xε)dε).
Letting y = yε , we deduce

h(r(xε)) − h(r(xε) + Jr (xε)dε) + 〈dε, J
T
r (xε)yε〉 ≥ 0,

and so, from (11) and (15), it follows that

ε ≥ χ�(xε) ≥ λ∗. (16)

From (14) and the definition of ∂‖dε‖, we deduce

λ∗ = λ∗‖zε‖ = ‖J Tr (xε)yε‖. (17)

and this together with (16) yields (12). ��
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2.3 A short-step steepest descent algorithm for constrained optimization

Both our original Algorithm 2.1 [4] and the extension to allow inequality constraints
that we shall analyse here work in two phases. The first aims to reduce the infeasibility

‖c−(x)‖, where c−(x) =
(

cE (x)
min(cI (x), 0)

)
, (18)

to an acceptable level using [2, Alg. 2.1], and terminates when the criticality measure,

ψ(x) := lc(x, 0) − min‖d‖≤1
lc(x, d) where lc(x, d) := ‖[c(x) + J (x)d]−‖, (19)

for the infeasibility at the terminating point x1 is smaller than εd . If the infeasibility
is itself smaller than a fraction δ ∈ (0, 1) of εp, a second phase is performed in which
the penalty function

φ(x, t) = max( f (x) − t, 0) + ‖c−(x)‖ (20)

is reduced for a sequence of decreasing parameters t = t j , j ≥ 1. This second
phase terminates when the criticality measure for the penalty function (the predicted
reduction of a linear model of φ in a unit ball),

χ(x, t) := lφ(x, 0; t) − min‖d‖≤1
lφ(x, d; t), where

lφ(x, d; t) := lc(x, d) + max( f (x) + 〈g(x), d〉 − t, 0), (21)

at xk is smaller that εd .
We now formally present our idealised short-step algorithm, Algorithm 2.1 on the

next page, for (1). This is simply a restatement of [4, Alg.2.1], with the obvious
extensions to cope with inequality constraints, the modified merit functions (18) and
(20) and the replacement criticality measures (19) and (21) that lie at the heart of the
algorithm.

The introductory results [4, Lem. 2.1–2.2 and 3.1–3.4] were established for the
equality-constrained problem,

minimize f (x) such that cE (x) = 0,

measuring constraint violation by ‖cE (x)‖, and used the penalty function | f (x)− t |+
‖cE (x)‖ rather than1 (20), but generalize without difficulty for the inequality problem
(1) and the infeasibility measures (18) and (20) needed here. For completeness, we
now establish modified versions of [4, Lem. 2.1–2.2 and 3.1–3.4] for the new merit

1 We may derive similar complexity results for the equality problem with the original penalty function
| f (x) − t | + ‖cE (x)‖ .
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Algorithm 2.1: The short-step steepest-descent algorithm.

Let δ ∈ (0, 1), εp, εd ∈ (0, 1] and �1 > 0 be given, together with a starting point x0.

Phase 1:
Starting from x0, minimize ‖c−(x)‖ using the trust-region method of [2]
until a point x1 is found such that

ψ(x1) ≤ εd .

If ‖c−(x1)‖ > δεp , terminate [locally infeasible].
Phase 2:

1. Set t1 = ‖c−(x1)‖ + f (x1) − εp and k = 1.
2. While χ(xk , tk ) ≥ εd ,

(a) Compute a first-order step sk by solving

minimize
s∈Rn

lφ(xk , s; tk ) such that ‖s‖ ≤ �k . (22)

(b) Compute φ(xk + sk ; tk ) and define

ρk = φ(xk ; tk ) − φ(xk + sk ; tk )
lφ(xk , 0; tk ) − lφ(xk , sk ; tk ) . (23)

If ρk ≥ η, then xk+1 = xk + sk ; else xk+1 = xk .
Set

�k+1 =
{

�k if ρk ≥ η [k successful]
γ�k if ρk < η [k unsuccessful] (24)

(c) If ρk ≥ η, set

tk+1 =
{
tk − φ(xk ; tk ) + φ(xk+1; tk ) if f (xk+1) ≥ tk ,
2 f (xk+1) − tk − φ(xk ; tk ) + φ(xk+1; tk )if f (xk+1) < tk .

(25)

Otherwise, set tk+1 = tk .
(d) Increment k by one and return to Step 2.

3. Terminate [(approximately) first-order critical]

functions (18) and (20); the only significant difference is that [4, Lem. 2.2, eq.(2.17)]
becomes f (xk) − tk ≤ εp, which combines with [4, Lem. 2.2, eq.(2.15)] to give

0 < f (xk) − tk ≤ εp; (26)

see (29)–(30) in the upcoming Lemma 2.3.
To do so, wemake the following assumptions. Consider the slightly extended neigh-

bourhood C�1 := C1 + B(0, β�1) of the feasible region (if there is one), where
C1 := {x : ‖c−(x)‖ ≤ κC1}, κC1 > εp, B(0, β�1) is a unit ball of radius β�1 for
some β slightly larger than 1, and�1 is the initial trust-region radius in Algorithm 2.1.

A1. The function c is continuously differentiable on �n and f is continuously
differentiable in C�1 .
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A2. The Jacobian J (x) is globally Lipschitz continuous (with Lipschitz constant
L J ) on �n , and the gradient g(x) is Lipschitz continuous in C�1 (with constant
Lg ≥ 1).
A3. flow ≤ f (x) ≤ flup for all x inC1,wherewithout loss of generality flup ≥ flow+1.

Assumptions A1 and A2 ensure that suitable Taylor approximations hold at points
required by our analysis to establish our main result, and are simply extensions of
those in [4] to allow for inequality constraints. The assumptions on f are only needed
if Phase 2 of the algorithm is required.

To show that Phase 2 of Algorithm 2.1, most especially (23), is well-defined, we
use the following result.

Lemma 2.2 (cf. [4, Lem. 2.1]) Suppose that A1 holds. If xk ∈ C1, then the model
decrease satisfies

lφ(xk, 0; tk) − lφ(xk, sk; tk) ≥ min (�k, 1) χ(xk, tk). (27)

Proof Apply [2,Lem.2.1]withh
def= ‖·‖+max(·, 0) and�h(x)

def= χ(x, tk) considered
as a function of x only. ��
Our next result shows that xk not only belongs to C1 so that Phase 2 is well-defined,
but it remains approximately feasible for all Phase 2 iterations, and, additionally,
successive objective function values stay close to their targets.

Lemma 2.3 (cf. [4, Lem. 2.2]) Suppose that A1 holds. On each Phase 2 iteration
k ≥ 1 of Algorithm 2.1, we have

φ(xk; tk) = εp, (28)

f (xk) > tk, (29)

f (xk) − tk ≤ εp, (30)

‖c−(xk)‖ ≤ εp, (31)

and xk ∈ C1, for φ defined in (20)

Proof Firstly, note that (20) and (28) imply (30) and (31); the latter implies xk ∈ C1
since εp < κC1 . Thus it remains to prove (28) and (29). The proof of these relations
is by induction on k. For k = 1, recall that we only enter Phase 2 of the algorithm
if ‖c−(x1)‖ ≤ δεp < εp, which gives (29) and (28) for k = 1, due to the particular
choice of t1. Also, (27) holds at k = 1 and ρ1 in (23) is well-defined. Now let k > 1
and assume that (28) and (29) are satisfied, and so

φ(xk; tk) = εp. (32)

If k is an unsuccessful iteration, xk+1 = xk and tk+1 = tk and so (29) and (28) continue
to hold at xk+1. It remains to consider the case when k is successful. Recall that (32)
implies ‖c−(xk)‖ ≤ εp and xk ∈ C1 since εp < κC1 , and so (27) holds. Thus, since we
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have not terminated, Lemma 2.2 shows that (23) has a positive denominator, which
together with k being successful so that ρk ≥ η, implies

φ(xk; tk) > φ(xk+1; tk).

This and (25) immediately give that f (xk+1) − tk+1 > 0 so that (29) holds at k + 1.
Using the latter and (20), we deduce

φ(xk+1; tk+1) = ‖c−(xk+1)‖ + f (xk+1) − tk + (tk − tk+1). (33)

Consider first the case when f (xk+1) ≥ tk . Then, using (33) and (25), we obtain that

φ(xk+1; tk+1) = φ(xk+1; tk) + φ(xk; tk) − φ(xk+1; tk) = φ(xk; tk).

If f (xk+1) < tk , we have that

φ(xk+1; tk+1) = ‖c−(xk+1)‖ − f (xk+1) + tk + φ(xk; tk) − φ(xk+1; tk)
= φ(xk+1; tk) + φ(xk; tk) − φ(xk+1; tk)
= φ(xk; tk),

where we again use (33) and (25). Combining the two cases and using (32), we then
deduce that

φ(xk+1; tk+1) = φ(xk; tk) = εp,

and thus (28) holds at k + 1. This concludes the inductive step. ��
Our evaluation-complexity analysis requires that we bound the number of Phase 1
evaluations.

Lemma 2.4 (cf. [4, Lem. 3.1]) Suppose that A1–A2 hold. Then at most

⌊
κ a
TRNS1

‖c−(x0)‖
ε2d

+ κ b
TRNS1| log εd | + κ c

TRNS1

⌋
(34)

evaluations of c(x) and its derivatives are needed to complete Phase 1 ofAlgorithm2.1,
for some κ a

TRNS1, κ
b
TRNS1 and κ c

TRNS1 > 0 independent of εd and x0.

Proof This is a direct application of [2, Th,.2.4] with h
def= ‖ · ‖, �h(x)

def= ‖c−(x)‖,
Lh = 1, η1 = η2

def= η and γ1 = γ2
def= γ . ��

We next use Lemma 2.2 to provide a lower bound on the trust-region radius computed
during Phase 2.
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Lemma 2.5 (cf. [4, Lem. 3.2]) Suppose that A1–A2 hold. Then any Phase 2 iteration
k ≥ 1 of Algorithm 2.1 satisfying χ(xk, tk) ≥ εd and

�k ≤ (1 − η)εd

Lg + 1
2 L J

(35)

is successful in the sense of (24). Furthermore, while χ(xk, tk) ≥ εd , we have

�k ≥ κ�εd , for all Phase 2 iterations k ≥ 1, (36)

where

κ�
def= min

(
�1,

(1 − η)γ

Lg + 1
2 L J

)
. (37)

Proof From (23) and (20), and using the fact that |max(a, 0) −max(b, 0)| ≤ |a − b|
for all a, b ∈ �, we have

|ρk − 1| =
∣∣φ(xk + sk ; tk ) − lφ(xk ; tk , sk )

∣∣
lφ(xk , 0; tk ) − lφ(xk , sk ; tk )

=
∣∣‖c−(xk + sk )‖ − ‖[c(xk ) + J (xk)sk ]−‖ + max( f (xk + sk) − tk , 0) − max( f (xk) + 〈g(xk), sk 〉 − tk , 0)

∣∣
lφ(xk , 0; tk ) − lφ(xk , sk ; tk )

≤
∣∣‖c−(xk + sk)‖ − ‖[c(xk) + J (xk )sk ]−‖∣∣ + | f (xk + sk) − f (xk) − 〈g(xk), sk 〉|

lφ(xk , 0; tk ) − lφ(xk , sk ; tk ) . (38)

Standard Taylor expansions give that

f (xk + sk) = f (xk) + g(ξk)
T sk for some ξk ∈ [xk, xk + sk],

and

c(xk + sk) = c(xk) +
∫ 1

0
J (xk + tsk)sk dt.

Observe that xk ∈ C1 because of Lemma 2.3, and ‖ξk−xk‖ ≤ ‖sk‖ ≤ �k ≤ �1 (as the
radius is never increased in Phase 2) then implies that ξk, xk + sk ∈ C�. ThusA1–A2
apply at these points, and together with the Taylor expansions, gives that

| f (xk + sk) − f (xk) − 〈g(xk), sk〉| ≤ Lg‖sk‖2

and

∣∣‖c−(xk + sk)‖ − ‖[c(xk) + J (xk)sk]−‖∣∣ ≤ 1
2 L J‖sk‖2.

Thus, from (27), (38) and ‖sk‖ ≤ �k , we deduce

|ρk − 1| ≤
(
Lg + 1

2 L J
)
�2

k

min (�k, 1) χ(xk, tk)
≤

(
Lg + 1

2 L J
)

εd
�k,
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where to obtain the second inequality, we use χ(xk, tk) ≥ εd and �k ≤ 1, where the
latter follows from (35), Lg ≥ 1 and εd ∈ (0, 1]. Finally, (35) implies |ρk−1| ≤ 1−η,
which gives that k is successful due to (24).

Now whenever (35) holds, (24) sets �k+1 = �k . This implies that when �1 ≥
γ (1− η)εd/(Lg + 1

2 L J ), we have �k ≥ γ (1− η)εd/(Lg + 1
2 L J ) for all k, where the

factor γ is introduced for the case when �k is greater than (1−η)εd/(Lg + 1
2 L J ) and

iteration k is unsuccessful. Applying again the implication resulting from (35) and
(24) for k = 1, we deduce (36) when �1 < γ (1− η)εd/(Lg + 1

2 L J ) since γ ∈ (0, 1)
and ε ∈ (0, 1]. ��
We now bound the total number of unsuccessful iterations in the course of Phase 2.

Lemma 2.6 (cf. [4, Lem. 3.3]) There are at most

⌊
1

| log γ |
∣∣∣∣log εd + log

(
(1 − η)

�1(Lg + 1
2 L J )

)∣∣∣∣
⌋

(39)

unsuccessful iterations in Phase 2 of Algorithm 2.1.

Proof Note that (24) implies that the trust-region radius is never increased, and there-
fore Lemma 2.5 guarantees that all iterations must be successful once �1 has been
reduced (by a factor γ ) enough times to ensure (35). Hence there are at most (39)
unsuccessful iterations during the complete execution of the Phase 2. ��
The final auxiliary lemma establishes that the targets tk decrease by a quantity bounded
below by a multiple of ε2d at every successful iteration.

Lemma 2.7 (cf. [4, Lem. 3.4]) Suppose that A1-A2 hold. Then on each successful
Phase 2 iteration k ≥ 1 of Algorithm 2.1, we have

φ(xk + sk; tk) ≤ φ(xk; tk) − κCε
2
d (40)

and

tk − tk+1 ≥ κCε
2
d (41)

where

κC

def= ηκ� (42)

and κ� is defined in (37), independently of εd .

Proof From (23) and k being successful, we deduce

φ(xk; tk) − φ(xk + sk; tk) ≥ η
[
lφ(xk, 0; tk) − lφ(xk, sk; tk)

] ≥ ηmin (�k, 1) εd ,
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where to obtain the second inequality, we use (27) and χ(xk, tk) ≥ εd . Further, we
employ the bound (36) and obtain

φ(xk; tk) − φ(xk + sk; tk) ≥ ηmin (κ�εd , 1) εd = ηκ�ε2d ,

where we also use εd ∈ (0, 1] and κ� ≤ 1 due to Lg ≥ 1, η, γ ∈ (0, 1); this gives
(40). Finally, (41) results from (25) and (40). ��

2.4 Corrected results

Our flawed version of [4, Lem. 3.5] aimed to connect approximate critical points of
the merit functions of Phases 1 and 2 of [4, Alg. 2.1] to those in (5) for our original
problem (1). Here is our correction.

Lemma 2.8 [Correction to [4, Lem. 3.5]] Given εp, εd , εc > 0 for which εd < εp
and εp + εd ≤ εc, suppose that ‖c−(xk)‖ ≤ εp and χ(xk, tk) ≤ εd . Then either xk is
an approximate critical point of (1) in the sense that xε = xk and yε = yk satisfy (5)
for some vector of Lagrange multiplier estimates yk ∈ �m , or xk is an almost-feasible
approximate critical point of ‖c−(x)‖ in the sense that xk and zk satisfy

‖J T (xk)zk‖ ≤ εd , [zk]I ≤ 0 and ‖zk‖D = 1 (43)

aswell as ‖c−(xk)‖ ≤ εp for another vector of Lagrangemultiplier estimates zk ∈ �m .
Similarly, suppose that ψ(x1) ≤ εd and ‖c−(x1)‖ > δεp, where δεp ≤ εd and
δ ∈ (0, 1). Then (43) holds with k = 1 for some vector of multipliers z1 ∈ �m .

Proof Applying Theorem 2.1 to φ when χ(xk, tk) ≤ εd , we have that

‖νkg(xk) + J T (xk)zk‖ ≤ εd , (44)

where (νk, zk) ∈ ∂lφ(xk, dk; tk) for some dk with ‖dk‖ ≤ 1. Now suppose that
lφ(xk, dk; tk) = 0. In this case

χ(xk, tk) = lφ(xk, 0; tk) = φ(xk, tk). (45)

But (28) ensures that φ(xk; tk) = εp, in which case (45) contradicts the requirement
χ(xk, tk) ≤ εd < εp. Thus

lφ(xk, dk; tk) > 0. (46)
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Standard convex analysis (see for example, [5, Thm. 11.4.1 and Cor. 11.4.2], and use
(46) to ensure that ‖(ν, zT )T )‖D = 1) gives that

∂lφ(xk, dk; tk)

=
⎧⎨
⎩

(
ν

z

)
=

⎛
⎝ ν

zE
zI

⎞
⎠

∣∣∣∣∣∣
ν[ f (xk) − tk+〈g(xk), dk〉]+〈z, c(xk) + J (xk)dk〉
= lφ(xk, dk; tk), ν ≥ 0, zI ≤ 0 and

∥∥∥∥
(

ν

z

)∥∥∥∥
D

=1

⎫⎬
⎭ .

(47)

But since (νk, zk) ∈ ∂lφ(xk, dk; tk), we deduce

lφ(xk, dk; tk) = νk[ f (xk) − tk + 〈g(xk), dk〉] + 〈zk, c(xk) + J (xk)dk〉
= νk[ f (xk) − tk] + 〈zk, c(xk)〉 + 〈dk, νkg(xk) + J T (xk)zk〉, (48)

and the definition of lφ , together with the fact that dk minimizes lφ(xk, d; tk) when
‖d‖ ≤ 1, gives

0 ≤ lφ(xk, dk; tk) ≤ lφ(xk, 0; tk) = φ(xk; tk). (49)

It follows from the definition of the subgradient, (49), (48), the Cauchy-Schwarz
inequality, 0 < νk ≤ 1, (26), Lemma 2.3, ‖dk‖ ≤ 1 and (44) that

〈zk, c(xk)〉 ≤ −νk( f (xk) − tk) − 〈dk, νkg(xk) + J T (xk)zk〉 + φ(xk; tk)
≤ ‖dk‖‖νkg(xk) + J T (xk)zk‖ + φ(xk; tk)
≤ εp + εd .

Similarly

〈zk, c(xk)〉 ≥ −νk | f (xk) − tk | − 〈dk, νkg(xk) + J T (xk)zk〉
≥ −| f (xk) − tk | − ‖dk‖‖νkg(xk) + J T (xk)zk‖
≥ −εp − εd .

Thus since εp + εd ≤ εc, we have

|〈zk, c(xk)〉| ≤ εc. (50)

Now suppose that νk �= 0, so that νk > 0. In this case, define yk = zk/νk . Then (44)
and (50) become

νk‖g(xk) + J T (xk)yk‖ ≤ εd and νk |〈yk, c(xk)〉| ≤ εc,

while ‖(νk, zk)‖D = 1 gives νk = 1/‖(1, yk)‖D. Combining these, and using the
assumption ‖c−(xk)‖ ≤ εp and the deduction [yk]I ≤ 0 from (47), it follows that
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xε = xk and yε = yk satisfy (5). If by contrast νk = 0, then (44), (47) and (50) directly
give (43).
The proof of (43) when ψ(x1) ≤ εd follows in essentially the same way. Applying
Theorem 2.1 to ‖c−(x)‖ when ψ(x1) ≤ εd , we have that

‖J T (x1)z1‖ ≤ εd , (51)

where z1 ∈ ∂lc(x1, d1) for some d1 with ‖d1‖ ≤ 1. Now suppose that lc(x1, d1) = 0.
In this case

ψ(x1) = lc(x1, 0) = ‖c−(x1)‖. (52)

But this contradicts ψ(x1) ≤ εd and ‖c−(x1)‖ > δεp since δεp ≤ εd . Thus

lc(x1, d1) > 0, (53)

and thus standard convex analysis (see for example, [5, Cor. 11.4.2] , and using (53)
to ensure that the dual norm of z is one) gives that

∂lc(x1, d1) =
{
z =

(
zE
zI

) ∣∣∣∣ 〈z, c(x1) + J (x1)d1〉 = lc(x1, d1),
zI ≤ 0 and ‖z‖D = 1

}
,

Hence, as z1 ∈ ∂lc(x1, d1), it follows immediately that [z1]I ≤ 0 and ‖z1‖D = 1, and
thus (51) gives (43). ��
In passing, we note that the requirement εd < εp in Lemma 2.8 may be
removed provided we change Algorithm 2.1 to allow it to take the step sk =
dk = arg min||d||≤1lφ(xk, d, tk) that results from calculating the optimality measure
χ(xk, tk) whenever lφ(xk, dk, tk) = 0.

This leads directly to our desired complexity result.

Theorem 2.9 [Correction to [4, Thm. 3.6]] Suppose that A1–A3 hold. Then there
are positive constants κ a

TR1GC, κ b
TR1GC and κ c

TR1GC such that, for any εp ∈ (0, κC1 ], εd ∈
(0,min(1, εp)) and εp + εd ≤ εc, Algorithm 2.1 problem (1) requires at most

⌊
κ a
TR1GC

‖c−(x0)‖ + flup − flow
ε2d

+ κ b
TR1GC| log εd | + κ c

TR1GC

⌋
(54)

evaluations of c and f and their derivatives before an iterate xk is computed for which
either

(i)

∥∥∥∥
(

cE (xk)
min[ 0, cI (xk)]

)∥∥∥∥ ≤ εp,

∥∥g(xk) + J T (xk)yk
∥∥

‖(yk, 1)‖D

≤ εd ,

〈c(xk), yk〉
‖(yk, 1)‖D

≤ εc and [yk]I ≤ 0
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for some vector yk ∈ �m , or
(ii)

∥∥∥∥
(

cE (xk)
min[ 0, cI (xk)]

)∥∥∥∥ ≥ δεp, ‖J T (xk)zk‖ ≤ εd ,

[zk]I ≤ 0 and ‖zk‖D = 1

for some vector zk ∈ �m .

Proof We have from Lemma 2.4 that the number of evaluations required to find x1 is
bounded above by

κ1‖c−(x0)‖ε−2
d (55)

for some constant κ1 > 0. Thus, as ψ(x1) ≤ εd , Lemma 2.8 ensures that (43) holds.
If the algorithm terminates at this stage, then both (43) and ‖c−(xk)‖ > δεp hold, and
thus Lemma 2.8 and εd ≤ 1 ≤ flup − flow yield alternative (ii) provided κ a

TR1GC ≥ κ1. So
now suppose that Phase 2 of the algorithm is entered.We then observe that Lemma 2.5
implies that successful iterations must happen as long as χ(xk, tk) ≥ εd . Moreover,
we have that

flow ≤ f (xk) ≤ tk + εp ≤ t1 − ikκCε
2
d + εp = f (x1) + ‖c−(x1)‖ − ikκCε

2
d

≤ f (x1) + ‖c−(x0)‖ − ikκCε
2
d , (56)

where ik is the number of these successful iterations from iterations 1 to k of Phase 2,
and where we use successively A3, (26), the fact that t j ≤ t j−1 − ikκCε

2
d on each

successful iteration j − 1, cf. (41), the definition of t1 in the algorithm, and the fact
that Phase 1 decreases ‖c−(x)‖. Hence, we obtain from the inequality f (x1) ≤ flup
(itself implied by A3 again) that

ik ≤
⌊

flup − flow + ‖c−(x0)‖
κCε

2
d

⌋
. (57)

The number of Phase 2 iterations satisfyingχ(xk, tk) ≥ εd is therefore bounded above,
and the algorithm must terminate after (57) such iterations at most, yielding, because
of Lemma 2.8, an ε-first-order critical point satisfying one of the alternatives (i) or (ii).
Remembering that only one evaluation of c and f (and their derivatives, if successful)
occurs per iteration, we therefore conclude from (57) and Lemma 2.6 that the total
number of such evaluations in Phase 2 is bounded above by

⌊
flup − flow + ‖c−(x0)‖

κCε
2
d

⌋
+ κ2| log ε| + κ3

for some positive constants κ2 and κ3.
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Summing this upper bound with that for the number of iterations in Phase 1 given by
(55) and using also that εd ≤ 1 ≤ flup − flow, then yields (54) with

κ a
TR1GC = κ1 + 1

κC

, κ b
TR1GC = κ2 and κ c

TR1GC = κ3.

��

3 Conclusion

Wehave corrected twoerrors that appeared in our paper [4] on the complexity of finding
ε-approximate first-order critical points for the general smooth constrained optimiza-
tion problem. We did so by re-defining both the stopping rules and merit function
that we used. Our new algorithm and analysis reveals a worst-case complexity bound
of O(ε−2) function and derivative evaluations to find either an approximate (scaled)
KKT point or an approximate stationary point of the violation of the constraints.

As was the case in [4], wemake no claim that this is an effective method in practice,
merely that we are able to find an algorithm whose worst-case evaluation complexity
matches that which is known for first-order methods for non-convex unconstrained
minimization [1].
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