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1 Introduction

Recent years have seen a growing interest in the analysis of the worst-case evaluation
complexity of nonlinear (possibly non-convex) smooth optimization (for the non-
convex case only, see [1,5–9,11,14–17,19–23,26–29,31,32,34–37,41–44,47,51,53–
55] among others). In general terms, this analysis aims at giving (sometimes sharp)
bounds on the number of evaluations of a minimization problem’s functions (objective
and constraints, if relevant) and their derivatives that are, in the worst case, necessary
for certain algorithms to find an approximate critical point for the unconstrained,
convexly constrained or general nonlinear optimization problem. It is not uncommon
that such algorithms may involve possibly extremely costly internal computations,
provided the number of calls to the problem functions is kept as low as possible.

At variance with the convex case (see [3]), most of the research on the non-convex
case to date focuses on finding first-, second- and third-order critical points. Evaluation
complexity for first-order critical point was first investigated, for the unconstrained
case, by Nesterov [46] and for first- and second-order Nesterov and Polyak [47] and
by Cartis et al. [16]. Third-order critical points were studied in [1], motivated by
highly nonlinear problems in machine learning. However, the analysis of evaluation
complexity for orders higher than three is missing both concepts and results.

The purpose of the present paper is to improve on this situation in twoways. The first
is to review optimality conditions of arbitrary orders q ≥ 1 for convexly constrained
minimization problems, and the second is to describe a theoretical algorithm whose
behaviour provides, for this class of problems, the first evaluation complexity bounds
for such arbitrary orders of optimality.

The paper is organized as follows. After the present introduction, Sect. 2 discusses
some preliminary results on tensor norms, a generalized Cauchy–Schwarz inequality
and high-order error bounds from Taylor series. Section 3 investigates optimality
conditions for convexly constrained optimization, while Sect. 4.1 proposes a trust-
region-based minimization algorithm for solving this class of problems and analyses
its evaluation complexity. An example is introduced in Sect. 5 to show that the new
evaluation complexity bounds are essentially sharp. A final discussion is presented in
Sect. 6.

2 Preliminaries

2.1 Basic Notations

In what follows, yT x denotes the Euclidean inner product of the vectors x and y ofRn

and ‖x‖ = (xT x)1/2 is the associated Euclidean norm. If T1 and T2 are tensors, T1⊗T2
is their tensor product. B(x, δ), the ball of radius δ ≥ 0 centred at x . If X is a closed
set, ∂X denotes its boundary and X 0 denotes its interior. The vectors {ei }ni=1 are the
coordinate vectors in Rn . The notation λmin[M] stands for the leftmost eigenvalue of
the symmetric matrix M . If {ak} and {bk} are two infinite sequences of non-negative
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scalars converging to zero, we say that ak = o(bk) if and only if limk→∞ ak/bk = 0
and, more generally, a(α) = o(α) if and only if limα→0 a(α)/α = 0. The normal
cone to a general convex set C at x ∈ C is defined by

NC(x)
def= {s ∈ Rn | sT (z − x) ≤ 0 for all z ∈ C}

and its polar, the tangent cone to F at x , by

TC(x) = N ∗
C (x)

def= {s ∈ Rn | sT v ≤ 0 for all v ∈ NC}.

Note thatC ⊆ x+TC(x) for all x ∈ C.We also define PC[·]be the orthogonal projection
onto C. (See [25, Section 3.5] for a brief introduction of the relevant properties of
convex sets and cones, or to [39, Chapter 3] or [50, Part I] for an in-depth treatment.)

2.2 Tensor Norms and Generalized Cauchy–Schwarz Inequality

We will make substantial use of tensors and their norms in what follows and thus start
by establishing some concepts and notation. If the notation T [v1, . . . , v j ] stands for
the tensor of order q − j resulting from the application of the qth-order tensor T to
the vectors v1, . . . , v j , the (recursively induced1) Euclidean norm ‖ · ‖q on the space
of qth-order tensors is the given by

‖T ‖q def= max‖v1‖=···=‖vq‖=1
T [v1, . . . , vq ]. (2.1)

(Observe that this value is always non-negative since we can flip the sign of
T [v1, . . . , vq ] by flipping that of one of the vectors vi .)

Note that definition (2.1) implies that

‖T [v1, . . . , v j ]‖q− j = max‖w1‖=···=‖wq− j‖=1
T [v1, . . . , v j ][w1, . . . , wq− j ]

=
(

max‖w1‖=···=‖wq− j‖=1
T

[
v1

‖v1‖ , . . . ,
v j

‖v j‖ , w1, . . . , wq− j

])

×
⎛
⎝ j∏

i=1

‖vi‖
⎞
⎠

1 That it is the recursively norm induced by the standard Euclidean norm results from the observation that

max‖v1‖=···=‖vq‖=1
T [v1, . . . , vq ] = max‖vq‖=1

[
max‖v1‖=···=‖vq−1‖=1

T [v1, . . . , vq−1]
]
[vq ].
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≤
(

max‖w1‖=···=‖wq‖=1
T [w1, . . . , wq ]

)⎛
⎝ j∏

i=1

‖vi‖
⎞
⎠

= ‖T ‖q .

j∏
i=1

‖vi‖, (2.2)

a simple generalization of the standard Cauchy–Schwarz inequality for order-1 tensors
(vectors) and of ‖Mv‖ ≤ ‖M‖ ‖v‖ which is valid for induced norms of matrices
(order-2 tensors). Observe also that perturbation theory (see [40, Th. 7]) implies that
‖T ‖q is continuous as a function of T .

If T is a symmetric tensor of order q, define the q-kernel of the multilinear q-form

T [v]q def= T [v, . . . , v︸ ︷︷ ︸
q times

]

as

kerq [T ] def= {v ∈ Rn | T [v]q = 0}

(see [12,13]). Note that, in general, kerq [T ] is a union of cones. Interestingly, the
q-kernels are not only unions of cones but also subspaces for q = 1. However, this is
not true for general q-kernels, since both (0, 1)T and (1, 0)T belong to the 2-kernel
of the symmetric 2-form x1x2 on R2, but not their sum.

We also note that, for symmetric tensors of odd order, T [v]q = −T [−v]q and thus
that

− min‖d‖≤1
T [d]q = − min‖d‖≤1

(−T [−d]q) = − min‖d‖≤1

(−T [d]q) = max‖d‖≤1
T [d]q ,

(2.3)

where we used the symmetry of the unit ball with respect to the origin to deduce the
second equality.

2.3 High-Order Error Bounds from Taylor Series

The tensors considered in what follows are symmetric and arise as high-order deriva-
tives of the objective function f . For the pth derivative of a function f : Rn → R

to be Lipschitz continuous on the set S ⊆ Rn , we require that there exists a constant
L f,p ≥ 0 such that, for all x, y ∈ S,

‖∇ p
x f (x) − ∇ p

x f (y)‖p ≤ L f,p‖x − y‖, (2.4)

where ∇ p
x h(x) is the pth-order symmetric derivative tensor of h at x .
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Let T f,p(x, s) denote2 the pth-order Taylor series approximation to f (x + s) at
some x ∈ Rn given by

T f,p(x, s)
def= f (x) +

p∑
j=1

1

j !∇
j
x f (x)[s] j (2.5)

and consider the Taylor identity

φ(1) − tk(1) = 1

(k − 1)!
∫ 1

0
(1 − ξ)k−1[φ(k)(ξ) − φ(k)(0)] dξ (2.6)

involving a given univariate Ck function φ(α) and its kth-order Taylor approximation
tk(α) = ∑k

i=0 φ(i)(0)αi/ i ! expressed in terms of the i th derivatives φi , i = 1, . . . , k.
Let x, s ∈ Rn . Then, picking φ(α) = f (x + αs) and k = p, it follows immediately
from the fact that tp(1) = T f,p(x, s), the identity

∫ 1

0
(1 − ξ)p−1 dξ = 1

p
, (2.7)

(2.2), (2.4), (2.5) and (2.6) imply that, for all x, s ∈ Rn ,

f (x + s) ≤ T f,p(x, s) + 1

(p − 1)!
∫ 1

0
(1 − ξ)p−1|∇ p

x f (x + ξs)[s]p

−∇ p
x f (x)[s]p| dξ

≤ T f,p(x, s) +
[∫ 1

0

(1 − ξ)p−1

(p − 1)! dξ

]
max

ξ∈[0,1] |∇
p
x f (x + ξs)[s]p

−∇ p
x f (x)[s]p|

≤ T f,p(x, s) + 1

p! ‖s‖p max
ξ∈[0,1] ‖∇

p
x f (x + ξs) − ∇ p

x f (x)‖p

= T f,p(x, s) + L f,p

p! ‖s‖p+1. (2.8)

Similarly,

f (x + s) ≥ T f,p(x, s) − 1

p! ‖s‖p max
ξ∈[0,1] ‖∇

p
x f (x + ξs) − ∇ p

x f (x)‖p

≥ T f,p(x, s) − L f,p

p! ‖s‖p+1. (2.9)

2 Unfortunately, double indices are necessary for most of our notation, as we need to distinguish both the
function to which the relevant quantity is associated (the first index) and its order (the second index).
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Inequalities (2.8) and (2.9) will be useful in our developments below, but immedi-
ately note that they in fact depend only on the weaker requirement that

max
ξ∈[0,1] ‖∇

p
x f (x + ξs) − ∇ p

x f (x)‖p ≤ L f,p‖s‖, (2.10)

for all x and s of interest, rather than relying on (2.4).

3 Unconstrained and Convexly Constrained Problems

The problem we wish to solve is formally described as

min
x∈F

f (x), (3.1)

where we assume that f : Rn −→ R is q-times continuously differentiable and
bounded from below, and that f has Lipschitz continuous derivatives of orders 1 to
q. We also assume that the feasible set F is closed, convex and non-empty. Note that
this formulation covers unconstrained optimization (F = Rn), as well as standard
inequality (and linear equality) constrained optimization in its different forms: the set
F may be defined by simple bounds, and/or by polyhedral ormore general convex con-
straints. We are tacitly assuming here that the cost of evaluating values and derivatives
of the constraint functions possibly involved in the definition of F is negligible.

3.1 High-Order Optimality Conditions

Given that our ambition is to work with high-order model, it seems natural to aim at
finding high-order local minimizers. As is standard, we say that x∗ is a local minimizer
of f if and only if there exists a (sufficiently small) neighbourhood B∗ of x∗ such that

f (x) ≥ f (x∗) for all x ∈ B∗ ∩ F . (3.2)

However, we must immediately remember important intrinsic limitations. These are
exemplified by the smooth two-dimensional problem

min
x∈R2

f (x) =
{
x2
(
x2 − e−1/x21

)
if x1 
= 0,

x22 if x1 = 0,
(3.3)

which is a simplified version of a problem stated by Hancock nearly a century ago
[38, p. 36], itself a variation of a famous problem stated even earlier by Peano [49,
Nos. 133–136]. The contour lines of its objective function are shown in Fig. 1.

The first conclusion which can be drawn by examining this example is that, in
general, assessing that a given point x (the origin in this case) is a local minimizer
needs more that verifying that every direction from this point is an ascent direction.
Indeed, this latter property holds in the example, but the origin is not a local minimizer

123



Found Comput Math (2018) 18:1073–1107 1079

-0.
01

-0.0
1

0

0

0
0 0.0010.0010.001

0.001 0.001

0.0
01

0.010.01
0.01

0.01 0.01

0.0
1

0.050.05

0.05

0.05 0.05

0.05

0.10.1

0.1

0.1 0.1

0.1

0.20.2

0.2

0.2 0.2

0.2

0.50.5

0.5

0.5 0.5

0.5

1

11

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 Contour lines of the objective function in (3.3)

(it is a saddle point). This is caused by the fact that objective function decrease may
occur along specific arcs starting from the point under consideration, and these arcs
need not be lines (such as x(α) = 0 + αe2 + 1/2e−1/2α2

e1 for α ≥ 0 in the example).
The second conclusion is that the characterization of a local minimizer cannot

always be translated into a set of conditions only involving the Taylor expansion of
f at x∗. In our example, the difficulty arises because the coefficients of the Taylor’s
expansion of e−1/x21 at x all vanish as x1 approaches the origin and, therefore, that the
(non-)minimizing nature of this point cannot be determined from the values of these
coefficients. Thus, the gap between necessary and sufficient optimality conditions
cannot be closed if one restricts one’s attention to using derivatives of the objective
function at a putative solution of problem (3.1).

Note that worse situations may also occur, for instance if we consider the following
variation on Hancock simplified example (3.3):

min
x∈R2

f (x) =
{
x2
(
x2 − sin(1/x1)e−1/x21

)
if x1 
= 0,

x22 if x1 = 0,
(3.4)

for which no continuous descent arc exists in a neighbourhood of the origin despite
the origin not being a local minimizer.

3.1.1 Necessary Conditions for Convexly Constrained Problems

The above examples show that fully characterizing a local minimizer in terms of
general continuous descent arcs is in general impossible. However, the fact that no such
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arc exists remains a necessary condition for such points, even if Hancock’s example
shows that these arcsmaynot be amenable to a characterization using arc derivatives. In
what follows, we therefore propose derivative-based necessary optimality conditions
by focussing on a specific (yet reasonably general) class of descent arcs x(α) of the
form

x(α) = x∗ +
q∑

i=1

αi si + o(αq), (3.5)

where α > 0. Such an arc-based approach was used by several authors for first- and
second-order conditions (see [4,10,24,33] for example). Note that, if si0 is the first
nonzero si in the sum in the right-hand side of (3.5) (if any), we may redefine α to
be α‖si0‖−1/ i0 without modifying the arc, so that we may assume, without loss of
generality, that ‖si0‖ = 1 whenever (s1, . . . , sq) 
= (0, . . . , 0).

Define the qth-order descriptor set of F at x by

Dq
F (x)

def=
{

(s1, . . . , sq) ∈ Rn×q | x +
q∑

i=1

αi si + o(αq) ∈ F
}

(3.6)

Note that Dq
F (x) is closed and always contains (0, . . . , 0), and that D1

F (x) = TF (x),
the standard tangent cone to F at x . Moreover, D2

F (x) = TF (x) × 2T 2
F (x), where

T 2
F (x) is the inner second-order tangent set toF at x , as defined in [10].3 For example,

if F = {(x1, x2) ∈ R2 | x2 ≥ |x1|3}, then one verifies that D3
F (0) = [

R × R+
]2 ×

[R × [1,∞)]. We say that a feasible arc x(α) is tangent to Dq
F (x) if (3.5) holds for

some (s1, . . . , sq) ∈ Dq
F (x).

Note that definition (3.6) implies that

si ∈ TF (x∗), for i ∈ {1, . . . , u}, (3.7)

where su is the first nonzero s	.
We now consider some conditions that preclude the existence of feasible descent

arcs of the form (3.5). These conditions involve the index sets P( j, k) defined, for
k ≤ j , by

P( j, k)
def= {(	1, . . . , 	k) ∈ {1, . . . , j}k |

k∑
i=1

	i = j}. (3.8)

For k ≤ j ≤ 4, these are given in Table 1.

3 It would be possible to generalize the approach of [10] and define the inner j th-order tangent set ( j > 1)

by T j
F (x, s1, . . . , s j−1)

def= {s j ∈ Rn | x∗ + ∑ j
i=1

αi

i ! si + o(α j )} (with T 1
F (x) = T (x)), leading to

Dq
F (x) = ∏q

j=1 j !T j
F (x, s1, . . . , s j−1), but we prefer the equivalent (3.6) for notational convenience.
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Table 1 The sets P( j, k) for k ≤ j ≤ 4

j ↓ k →
1 2 3 4

1 {(1)}

2 {(2)} {(1,1)}

3 {(3)} {(1,2),(2,1)} {(1,1,1)}

4 {(4)} {(1,3),(2,2),(3,1))} {(1,1,2),(1,2,1),(2,1,1)} {(1,1,1,1)}

We now state necessary conditions for x∗ to be a local minimizer.

Theorem 3.1 Suppose that f is q times continuously differentiable in an open
neighbourhood of x∗ and that x∗ is a local minimizer for problem (3.1). Then, for
j ∈ {1, . . . , q}, the inequality

j∑
k=1

1

k!

⎛
⎝ ∑

(	1,...,	k )∈P( j,k)

∇k
x f (x∗)[s	1, . . . , s	k ]

⎞
⎠ ≥ 0 (3.9)

holds for all (s1, . . . , s j ) ∈ D j
F (x∗) such that, for i ∈ {1, . . . , j − 1},

i∑
k=1

1

k!

⎛
⎝ ∑

(	1,...,	k )∈P(i,k)

∇k
x f (x∗)[s	1, . . . , s	k ]

⎞
⎠ = 0. (3.10)

Proof Consider an arbitrary feasible arc of the form (3.5). Substituting this relation in
the expression f (x(α)) ≥ f (x∗) (given by (3.2)) and collecting terms of equal degree
in α, we obtain that, for sufficiently small α,

0 ≤ f (x(α)) − f (x∗) =
q∑
j=1

c jα
j + o(αq), (3.11)

where

c j
def=

j∑
k=1

1

k!
( ∑

(	1,...,	k )∈P( j,k)

∇k
x f (x∗)[s	1, . . . , s	k ]

)
( j = 1, . . . , q)

(3.12)

with P(i, k) defined in (3.8). For this to be true, we need each coefficient of α j to be
non-negative on the zero set of the coefficients 1, . . . , j−1, subject to the requirement
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that the arc (3.5) must be feasible for α sufficiently small, that is x(α) ∈ D j
F (x∗).

First consider the case where j = 1 (in which case (3.10) is void). The fact that the
coefficient of α in (3.11) must be non-negative implies that ∇1

x f (x∗)[s1] ≥ 0 for all
s1 ∈ TF (x∗), which proves (3.9) for j = 1. Assume now that s1 ∈ TF (x∗) and that
(3.10) holds for i = 1. This latter condition requests s1 to be in the zero set of the
coefficient in α in (3.11), that is

s1 ∈ TF (x∗) ∩ ker1[∇1
x f (x∗)].

Then the coefficient of α2 in (3.11) must be non-negative, which yields, using
P(2, 1) = {(2)}, P(2, 2) = {(1)} (see Table 1), that

∇1
x f (x∗)[s2] + 1/2∇2

x f (x∗)[s1]2 ≥ 0. (3.13)

which is (3.9) for j = 2.
We may then proceed in the same manner for all coefficients up from order j = 3

to q, each time considering them in the zero set of the previous coefficients (that is
(3.10)), and verify that (3.11) directly implies (3.9). ��
Following a long tradition, we say that x∗ is a qth-order critical point for problem
(3.1) if the conclusions of this theorem hold for j ∈ {1, . . . , q}. Of course, a qth-
order critical point need not be a local minimizer, but every local minimizer is a
qth-order critical point. This theorem states conditions for qth-order criticality for
smooth problems which are only necessary because not every feasible arc needs to be
tangent toDq

F (x∗), depending on the geometry of the feasible set in the neighbourhood
of x∗.

Note that, as the order j grows, (3.9) may be interpreted as imposing a condition
on s j (via ∇1

x f (x∗)[s j ]), given the directions {si } j−1
i=1 satisfying (3.10).

In more general situations, the fact that conditions (3.9) and (3.10) not only depend
on the behaviour of the objective function in some well-chosen subspace, but involve
the geometry of the all possible feasible arcs makes the second-order condition (3.13)
difficult to use, particular in the case where F ⊂ Rn . In what follows we discuss, as
far as we currently can, two resulting questions of interest.

1. Are there cases where these conditions reduce to checking homogeneous polyno-
mials involving the objective function’s derivatives on a subspace?

2. If that is not the case, are there circumstances in which not only the complete
left-hand side of (3.10) vanishes, but also each term of this left-hand side?
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We start by deriving useful consequences of Theorem 3.1.

Corollary 3.2 Suppose that the assumptions of Theorem 3.1 hold. Then

−∇1
x f (x∗) ∈ NF (x∗) (3.14)

and

s1 ∈ TF (x∗) ∩ span
{
∇1
x f (x∗)

}⊥ ⊆ ∂TF (x∗) and s2 ∈ TF (x∗).

Moreover

∇1
x f (x∗)[si ] ≥ 0 (i = 1, 2). (3.15)

Proof The fact that (3.9) for j = 1 reduces to ∇1
x f (x∗)[s1] ≥ 0 for all s1 ∈ TF (x∗)

implies that (3.14) holds. Also note that (3.9) and (3.10) impose that

s1 ∈ TF (x∗) ∩ ker1[∇1
x f (x∗)] = TF (x∗) ∩ span

{
∇1
x f (x∗)

}⊥
, (3.16)

which, because of (3.14) and the polarity ofNF (x∗) and TF (x∗), yields that s1 belongs
to ∂TF (x∗). Assume now that s2 /∈ TF (x∗). Then, for all α sufficiently small, αs1 +
α2s2 does not belong to TF (x∗) and thus x(α) = x∗ + αs1 + α2s2 + o(α2) cannot
belong to F , which is a contradiction. Hence, s2 ∈ TF (x∗) and (3.15) follows for
i = 2, while it follows from s1 ∈ TF (x∗) and (3.14) for i = 1. ��
The first-order necessary condition (3.14) is well known for general first-order mini-
mizers (see [48, Th. 12.9, p. 353] for instance).

Consider now the second-order conditions (3.13). IfF = Rn (or if the convex con-
straints are inactive at x∗), then ∇1

x f (x∗) = 0 because of (3.14) and (3.13) is nothing
but the familiar condition that the Hessian of the objective function must be positive
semi-definite. If x∗ happens to lie on the boundary of F and ∇1

x f (x∗) 
= 0, (3.13)
indicates that the effect of the curvature of the boundary of F may be represented by
the term∇1

x f (x∗)[s2], which is non-negative because of (3.15). Consider, for example,
the problem

min
x∈F⊂R2

x1, where F = {x ∈ Rn | x1 ≥ 1/2x22 },

whose global solution is at the origin. In this case, it is easy to check that −∇1
x f (0) =

−e1 ∈ NF (0) = span {−e1}, that ∇2
x f (0) = 0, and that second-order feasible arcs

of the form (3.5) with x(0) = 0 may be chosen with s1 = ±e2 and s2 = βe1 where
β ≥ 1/2. This imposes ∇2

x f (0)[s1]2 ≥ −1, which (unsurprisingly) holds.
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Interestingly, there are cases where the geometry of the set of locally feasible arcs
is simple and manageable. In particular, suppose that the boundary of F is locally

polyhedral. Then, given ∇1
x f (x∗), either TF (x∗) ∩ span

{∇1
x f (x∗)

}⊥ = ∅, in which
case conditions (3.9) and (3.10) are void, or there exists d 
= 0 in that subspace. It is
then possible to define a locally feasible arc with s1 = d and s2 = · · · = sq = 0. As a
consequence, the smallest possible value of∇1

x f (x∗)[s2] for feasible arcs starting from
x∗ is identically zero and this term therefore vanishes from (3.9) to (3.10). Moreover,
because of the definition of P(k, j) (see Table 1), all terms but that in ∇ j

x f (x∗)[s1] j
also vanish from these conditions, which then simplify to

∇ j
x f (x∗)[s1] j ≥ 0 for all s1 ∈ TF (x∗) ∩

⎛
⎝ j−1⋂

i=1

keri [∇ i
x f (x∗)]

⎞
⎠ (3.17)

for j = 2, . . . , q, which is a condition only involving subspaces and (for i ≥ 2) cones.
Analysis for first- and secondorders in the polyhedral case canbe found in [2,30,52] for
instance. Further discussion of second-order (both necessary and sufficient) conditions
for the more general problem can be found in [10] and the references therein.

3.1.2 Necessary Conditions for Unconstrained Problems

Consider now the case where x∗ belongs to F0, which is obviously the case if the
problem is unconstrained. Then we have thatDq

F (x∗) = Rn×q , and one is then free to
choose the vectors {si }qi=1 (and their sign) arbitrarily. Note first that, sinceNF (x∗) =
{0}, (3.14) implies that, unsurprisingly,

∇1
x f (x∗) = 0.

For the second-order condition, we obtain from (3.9), again unsurprisingly, that,
because ker1[∇1

x f (x∗)] = Rn ,

∇2
x f (x∗) is positive semi-definite onRn .

Hence, if there exists a vector s1 ∈ ker2[∇2
x f (x∗)], we have that ‖[∇2

x f (x∗)]1/2s1‖ = 0
and therefore that ∇2

x f (x∗)[s1, s2] = 0 for all s2 ∈ Rn . Thus, the term for k = 1
vanishes from (3.9), as well as all terms involving ∇2

x f (x∗) applied to a vector s1 ∈
ker2[∇2

x f (x∗)]. This implies in particular that the third-order condition may now be
written as

∇3
x f (x∗)[s1]3 = 0 for all s1 ∈ ker2[∇2

x f (x∗)], (3.18)

where the equality is obtained by considering both s1 and −s1.
Unfortunately, complications arise with fourth-order conditions, even when the

objective function is a polynomial. Consider the following variant of Peano’s [49]
problem:
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min
x∈R2

f (x) = x22 − κ1x
2
1 x2 + κ2x

4
1 , (3.19)

where κ1 and κ2 are parameters. Then one can verify that

∇1
x f (0) = 0, ∇2

x f (0) =
(
0 0
0 2

)

[∇3
x f (0)]i jk =

{−2κ1 for (i, j, k) ∈ {(1, 2, 1), (1, 1, 2), (2, 1, 1)} = P(4, 3)
0 otherwise,

and

[∇4
x f (0)]i jk	 =

{
24κ2 for (i, j, k, 	) = (1, 1, 1, 1)
0 otherwise.

Hence,

ker1[∇1
x f (0)] = R2, ker2[∇2

x f (0)] = span {e1} , and

ker3[∇3
x f (0)] = span {e1} ∪ span {e2} .

The necessary condition (3.9) then states that, if the origin is a minimizer, then, using
the arc defined by s1 = e1 and s2 = 1/2κ1e2 and the fact that P(4, 3) contains three
elements,

1/2∇2
x f (0)[s2]2 + 1/2∇3

x f (0)[s1, s1, s2] + 1/24∇4
x f (0)[s1]4

= 1/4κ2
1 − 1/2κ2

1 + κ2 = −1/4κ2
1 + κ2 ≥ 0.

This shows that the condition ∇4
x f (x∗)[s1]4 ≥ 0 on ∩3

i=1 ker
i [∇ i

x f (x∗)], although
necessary, is arbitrarily far away from the weaker necessary condition

1/2∇2
x f (0)[s2]2 + 1/2∇3

x f (0)[s1, s1, s2] + 1/24∇4
x f (0)[s1]4 ≥ 0 (3.20)

when κ1 grows. As was already the case for problem (3.3), the example for κ1 = 1
and κ2 = 2, say, shows that a function may admit a saddle point (x∗ = 0) which is a
maximum (x∗ = 0) along an arc (x2 = 3/2x21 in this case) while at the same time be
minimal along every line passing through x∗. Figure 2 shows the contour lines of the
objective function of (3.19) for increasing values of κ2, keeping κ1 = 3.

One may attribute the problem that not every term in (3.9) vanishes to the fact that
switching signs of s1 or s2 does imply that any of the terms in (3.20) is zero (as we
have verified) because of the terms ∇2

x f (0)[s2]2 and ∇4
x f (0)[s1]4. Is this a feature of

even orders only? Unfortunately, this not the case for q = 7. Indeed is it not difficult
to verify that the terms whose multi-index (	1, . . . , 	k) is a permutation of (1, 2, 2, 2)
belong to P(7, 4) and those whose multi-index is a permutation of (1, 1, 1, 1, 1, 2)
belong toP(7, 6). Moreover, the contribution of these terms to the sum (3.9) cannot be
distinguished by varying s1 or s2, for instance by switching their signs as this technique
yields only one equality in two unknowns. In general, we may therefore conclude that
(3.9) must involve a mixture of terms with derivative tensors of various degrees.
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Fig. 2 Contour lines of (3.19) for κ1 = 3 and κ2 = 2 (left), κ2 = 2.25 (center) and κ2 = 2.5 (right)

3.1.3 Sufficient Conditions for Isolated Local Minimizers

Despite the limitations we have seen when considering the simplified Hancock exam-
ple, we may still derive a sufficient condition for x∗ to be an isolated minimizer, which
is inspired by the standard second-order case (see Theorem 2.4 in Nocedal andWright
[48] for instance). This condition requires a constraint qualification in that the feasible
set in the neighbourhood of x∗ is required to be completely described by the arcs of
the form (3.5) for small α.

Theorem 3.3 Suppose that f is p times continuously differentiable in an open
neighbourhood V of x∗ ∈ F 
= {x∗} and that there exist a q ∈ {1, . . . , p} and a
δ > 0 such that B(x∗, δ) ⊆ V and

F ∩ B(x∗, δ) ⊆ Aq
F (x∗, δ), (3.21)

where, for any x ∈ F , any δ0 > 0 and given q,

Aq
F (x, δ0)

def=
⋃

δ1∈[0,δ0]

{
x ∈ F

∣∣∣∣‖x − x∗‖ = δ1 and x = x(αx ) for some x(α)

tangent toDq
F (x) and some smallestαx > 0

}
.

Suppose also that, for j = 1, . . . , q − 1, (3.9) is satisfied for all (s1, . . . , s j ) ∈
D j
F (x∗) such that (3.10) holds for i ∈ {1, . . . , j − 1}, and that

q∑
k=1

1

k!

⎛
⎝ ∑

(	1,...,	k )∈P(q,k)

∇k
x f (x∗)[s	1, . . . , s	k ]

⎞
⎠ > 0 (3.22)

for all (s1, . . . , sq) ∈ Dq
F (x∗) different from (0, . . . , 0) such that (3.10) holds for

i ∈ {1, . . . , q − 1}. Then x∗ is an isolated local minimizer for problem (3.1).
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Proof Consider any δ2 ∈ (0, δ] and, using the fact that F 
= {x∗}, an arbitrary y ∈
F ∩ ∂B(x∗, δ2) ⊆ Aq

F (x, δ), where we used (3.21) to obtain the last inclusion. Thus,
there exists at least one arc x(α) of the form (3.5) which is tangent to Dq

F (with
associated nonzero (s1, . . . , s j )) and a smallest αy ≥ 0 such that x(αy) = y. For any
such arc, letm be the smallest integer such that cm 
= 0, where c j is defined by (3.12).
The relations (3.9), (3.10) and (3.22) then imply that

cm > 0. (3.23)

and (3.22) also ensures that m ∈ {1, . . . , q}. Now choose such an arc x(α) with max-
imal m. From Taylors’ theorem and using (3.11) to obtain the form of the derivatives
along the arc x(α), we have that

f (x(αy)) − f (x∗)

=
m−1∑
j=1

c jα
j
y + αm

y

m∑
k=1

1

k!
( ∑

(	1,...,	k )∈P(m,k)

∇k
x f (x(ταy))[s	1, . . . , s	k ]

)

= αm
y

m∑
k=1

1

k!
( ∑

(	1,...,	k )∈P(m,k)

∇k
x f (x(ταy))[s	1, . . . , s	k ]

)
(3.24)

for some τ ∈ [0, 1], where we used our assumption c j = 0 for j = 1, . . . ,m − 1
to deduce the second equality. Observe that ‖x(ταy) − x∗‖ ≤ δ2 because αy is the
smallest α such that‖x(α) − x∗‖ = δ2. Hence, we choose δ2 small enough to ensure,
by continuity, (3.12), (3.23) and (3.24), that f (y) − f (x∗) = f (x(αy)) − f (x∗) > 0.
This proves the theorem since y is chosen arbitrarily in a sufficiently small feasible
neighbourhood of x∗. ��
Note that the condition F 
= {x∗} may be viewed as a form of Slater condition, and
also that x∗ is obviously a local isolated minimizer if it fails.

If we now return to our examples, we see that Theorem 3.3 excludes that the origin
is a local minimizer, for example, (3.19) with κ1 = 1 and κ2 = 2, since the arc
x2 = 3/2x21 must be considered in (3.21). The origin is not a local minimizer for either
problem (3.3) or (3.4), since (3.22) fails for any q because the Taylor’s series of f
is identically zero along the first coordinate axis (which defines two admissible arcs
x(α) = ±αe1).

Of course the assumptions of Theorem 3.3 may be difficult to check in general, but
may be tractable in some cases. Assume for instance that F is polyhedral. Then, for
sufficiently small δ,Aq

F (x∗, δ) ⊂ TF (x∗) and we may use half lines originating at x∗
to define feasible arcs. This is the inspiration of the following less general but easier
to verify alternative to Theorem 3.3.
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Theorem 3.4 Suppose that f is p times continuously differentiable in an open
neighbourhood of x∗ ∈ F . If there exists a q ∈ {1, . . . , p} such that, for all
nonzero s ∈ TF (x∗),

∇ i
x f (x∗)[s]i = 0 (i = 1, . . . , q − 1) and ∇q

x f (x∗)[s]q > 0, (3.25)

then x∗ is an isolated local minimizer for problem (3.1).

Proof If TF (x∗) is reduced to the origin, then the inclusionF ⊆ x∗ +TF (x∗) implies
that F = {x∗} and x∗ is therefore an isolated minimizer. Let us therefore assume
that there exists a nonzero s ∈ TF (x∗). The second part of condition (3.25) and the
continuity of the (q + 1)-th derivative then imply that

∇q
x f (z)[s]q > 0 (3.26)

for all z in a sufficiently small feasible neighbourhood of x∗. Now, using Taylor’s
expansion, we obtain that, for all s ∈ TF (x∗) and all τ ∈ (0, 1),

f (x∗ + τ s) − f (x∗) =
q−1∑
i=1

τ i

i ! ∇ i
x f (x∗)[s]i + τ q

(q + 1)!∇
q
x f (z)[s]q

for some z ∈ [x∗, x∗ + τ s]. If τ is sufficiently small, then this equality, the first part
(3.25) and (3.26) ensure that f (x∗ + τ s) > f (x∗). Since this strict inequality holds
for an arbitrary nonzero s ∈ TF (x∗) ⊇ F − x∗ and all τ sufficiently small, x∗ must
be a feasible isolated minimizer. ��

Observe that, in Peano’s example (see (3.19) with κ1 = 3 and κ2 = 2), we have
that the curvature of the objective function is positive along every line passing through
the origin, but that the order of the curvature varies with s (second order along s = e2
and fourth order along s = e1), which precludes applying Theorem 3.3. Also note
that, when q = 2, weaker sufficient conditions (exploiting the structure of D2

F (x∗) to
a larger extent) are known for a several classes of problems, including semi-definite
optimization (see [10] for details).

3.1.4 An Approach Using Taylor Models

As already noted, the conditions expressed in Theorem 3.1 may, in general, be very
complicated to verify in an algorithm, due to their dependence on the geometry of the
set of feasible arcs. To avoid this difficulty, we now explore a different approach. Let
the symbol “globmin” represent global minimization and define, for some 
 ∈ (0, 1]
and some j ∈ {1, . . . , p},

φ

f, j (x)

def= f (x) − globmin
x+d∈F‖d‖≤


T f, j (x, d), (3.27)
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the smallest value of the j th-order Taylor model T f, j (x, s) achievable by a feasible
point at distance at most 
 from x . Note that φ


f, j (x) is a continuous function of x
and 
 for given F and f (see [40, Th. 7]). The introduction of this quantity is in part
motivated by the following theorem.

Theorem 3.5 Suppose that f is q times continuously differentiable in an open
neighbourhood of x . Define

Z f, j
F (x)

def= {(s1, . . . , s j ) ∈ D j
F (x) | (s1, . . . , si ) satisfy (3.10) for i ∈ {1, . . . , j − 1}}.

Then

lim

→0

φ

f, j (x)


 j
= 0 implies that (3.9) holds (at x) for all (s1, . . . , s j ) ∈ Z f, j

F (x).

Proof We start by rewriting the power series (3.11) for degree j , for any given arc
x(α) tangent to D j

F (x) in the form

f (x(α)) − f (x) =
j∑

i=1

ciα
i + o(α j ) = T f, j (x, s(α)) − f (x) + o(α j ), (3.28)

where s(α)
def= x(α) − x , ci is defined by (3.12) and where the last equality holds

because f and T f, j share the first j derivatives at x . This reformulation allows us to
write that, for i ∈ {1, . . . , j},

ci = 1

i !
di

dαi

[
T f, j (x, s(α)) − f (x)

]∣∣∣∣
α=0

. (3.29)

Assume now there exists an (s1, . . . , s j ) ∈ Z f, j
F (x) such that (3.9) does not hold. In

the notation just introduced, this means that, for this particular (s1, . . . , s j ),

ci = 0 for i ∈ {1, . . . , j − 1} and c j < 0.

Then, from (3.29),

di

dαi

[
T f, j (x, s(α)) − f (x)

]∣∣∣∣
α=0

= 0 for i ∈ {1, . . . , j − 1}, (3.30)

and thus the first ( j − 1) coefficients of the polynomial T f, j (x, s(α)) − f (x) vanish.
Thus, using (3.28),
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d j

dα j

[
T f, j (x, s(α)) − f (x)

]∣∣∣∣
α=0

= j ! lim
α→0

T f, j (x, s(α)) − f (x)

α j
. (3.31)

Now let i0 be the index of the first nonzero si . Note that i0 ∈ {1, . . . , j} since otherwise
the structure of the setsP(i, k) implies that c j = 0. Observe also that we may redefine
the parameter α as α‖si0‖1/ i0 so that we may assume, without loss of generality that
‖si0‖ = 1. As a consequence, we obtain that, for sufficiently small α,

‖s(α)‖ ≤ 3/2αi0 ≤ 3/2α. (3.32)

Hence, successively using the facts that c j < 0, that (3.29) and (3.31) hold for all arcs
x(α) tangent to Dq

F (x), and that (3.32) and (3.27) hold, we may deduce that

0 < |c j | ≤ j !
j ! lim

α→0

f (x) − T f, j (x, s(α))

α j

≤ (3/2) j lim
α→0

f (x) − T f, j (x, s(α))

‖s(α)‖ j

= (3/2) j lim‖s(α)‖→0

f (x) − T f, j (x, s(α))

‖s(α)‖ j

≤ (3/2) j lim

→0

φ

f, j (x)


 j
.

The conclusion of the theorem immediately follows since lim
→∞
φ

f, j (x)


 j = 0. ��
This theorem has a useful consequence.

Corollary 3.6 Suppose that f is q times continuously differentiable in an open
neighbourhood of x . Then x is a qth-order critical point for problem (3.1) if

lim

→0

φ

f, j (x)


 j
= 0 for j ∈ {1, . . . , q}. (3.33)

Proof We successively apply Theorem 3.5 q times and deduce that x is a j th-order
critical point for j = 1, . . . , q. ��
This last result says that we may avoid the difficulty of dealing with the possibly
complicated geometry of Dq

F (x) if we are ready to perform the global optimization
occurring in (3.27) exactly and find a way to compute or overestimate the limit in
(3.33). Although this is a positive conclusion, these two remaining challenges remain
daunting. However, it is worthwhile noting that the standard approach to computing
first-, second- and third-order criticality measures for unconstrained problems follows
the exact same approach. In the first-order case, it is easy to verify that
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‖∇1
x f (x)‖ = 1




[
− min‖d‖≤


∇1
x f (x)[d]

]

= 1




[
f (x) − globmin‖d‖≤


(
f (x) + ∇1

x f (x)[d]
)]

,

where the first equality is justified by the convexity of ∇1
x f (x)[d] as a function of d.

Because the left-hand side of the above relation is independent of 
, the computation
of the limit (3.33) for 
 tending to zero is trivial when j = 1 and the limiting value
is ‖∇x f (x)‖. For the second-order case, assuming ‖∇1

x f (x)‖ = 0,

∣∣∣max
[
0,−λmin[∇2

x f (x)]
]∣∣∣ = 1

2
2

[
− globmin‖d‖≤
 ∇2

x f (x)[d]2
)]

= 1


2

[
f (x) − globmin‖d‖≤


(
f (x) + ∇1

x f (x)[d]
+ 1/2∇2

x f (x)[d]2
)]

, (3.34)

the first global optimization problem being easily solvable by a trust-region-type cal-
culation [25, Section 7.3] or directly by an equivalent eigenvalue analysis. As for the
first-order case, the left-hand side of the equation is independent of 
 and obtaining
the limit for 
 tending to zero is trivial.

Finally, if M(x)
def= ker[∇1

x f (x)] ∩ ker[∇2
x f (x)] and PM(x) is the orthogonal

projection onto that subspace,

‖PM(x)(∇3
x f (x))‖ = 1

6
3

[
− min‖d‖≤


∇1
x f (x)[d]

]

= 1


3

[
f (x) − globmin‖d‖≤


(
f (x) + ∇1

x f (x)[d]
+ 1/2∇2

x f (x)[d]2 + 1/6∇3
x f (x)[d]3

)]
, (3.35)

where the first equality results from (2.1). In this case, the global optimization in the
subspace M(x) is potentially harder to solve exactly (a randomization argument is
used in [1] to derive a upper bound on its value), although it still involves a subspace.4

While we are unaware of a technique for making the global minimization in (3.27)
easy in the even more complicated general case, we may think of approximating the
limit in (3.33) by choosing a (user-supplied) value of 
 > 0 small enough5 and
consider the size of the quantity

1


 j
φ

f, j (x). (3.36)

Unfortunately, it is easy to see that, if 
 is fixed at some positive value, a zero value
of φ


f, j (x) alone is not a necessary condition for x being a local minimizer. Indeed

4 We saw in Sect. 3.1.2 that q = 3 is the highest order for which this is possible.
5 Note that a small 
 has the advantage of limiting the global optimization effort.
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consider the univariate problem of minimizing f (x) = x2(1 − αx) for α > 0. One
verifies that, for any 
 > 0, the choice α = 2/
 yields that

φ

f,1(0) = 0, φ


f,2(0) = 0 but φ

f,3(0) = 4

α2 > 0, (3.37)

despite 0 being a local (but not global) minimizer. As a matter of fact, φ

f, j (x) gives

more information than the mere potential proximity of a j th-order critical point: it is
able to see beyond an infinitesimal neighbourhood of x and provides information on
possible further descent beyond such a neighbourhood. Rather than a true criticality
measure, it can be considered, for fixed 
, as an indicator of further progress, but its
use for terminating at a local minimizer is clearly imperfect.

Despite this drawback, the above arguments would suggest that it is reasonable to
consider a (conceptual) minimization algorithm whose objective is to find a point xε

such that

φ

f, j (xε) ≤ ε
 j for j = 1, . . . , q (3.38)

for some 
 ∈ (0, 1] sufficiently small and some q ∈ {1, . . . , p}. This condition
implies an approximate minimizing property which we make more precise by the
following result.

Theorem 3.7 Suppose that f is q times continuously differentiable and that∇q
x f

is Lipschitz continuous with constant L f,q (in the sense of (2.4)) in an open
neighbourhood of a point xε ∈ F of radius larger than 
. Suppose also (3.38)
holds for j = q. Then

f (xε + d) ≥ f (xε) − 2ε
q for all xε + d ∈ F such that ‖d‖ ≤
(
q! ε
q

L f,q

) 1
q+1

.

(3.39)

Proof Consider x + d ∈ F . Using the triangle inequality, we have that

f (xε + d) = f (xε + d) − T f,q(xε, d) + T f,q(xε, d)

≥ − | f (xε + d) − T f,q(xε, d)| + T f,q(xε, d). (3.40)

Now, condition (3.38) for j = q implies that, if ‖d‖ ≤ 
,

T f,q(xε, d) ≥ T f,q(xε, 0) − ε
q = f (xε) − ε
q . (3.41)
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Hence, substituting (2.9) and (3.41) into (3.40), using the assumedLipschitz continuity
of ∇q

x f and remembering again that ‖d‖ ≤ 
 < 1, we deduce that

f (xε + d) ≥ f (xε) − L f,q

q! ‖d‖q+1 − ε
q ,

and the desired result follows. ��
The size of the neighbourhood of xε where f is “locally smallest”—in that the first part
of (3.39) holds—therefore increases with the criticality order q, a feature potentially
useful in various contexts such as global optimization.

Before turning to more algorithmic aspects, we briefly compare the results of The-
orem 3.7 which what can be deduced on the local behaviour of the Taylor series
T f,q(x∗, s) if, instead of requiring the exact necessary condition (3.9) to hold exactly,
this condition is relaxed to

j∑
k=1

1

k!

⎛
⎝ ∑

(	1,...,	k )∈P( j,k)

∇k
x f (x∗)[s	1, . . . , s	k ]

⎞
⎠ ≥ −ε (3.42)

while insisting that (3.10) should hold exactly. If j = q = 1, it is easy to verify that
(3.42) for s1 ∈ TF (x∗) is equivalent to the condition that

‖PTF (x∗)[∇1
x f (x∗)]‖ ≤ ε, (3.43)

from which we deduce, using the Cauchy–Schwarz inequality, that

T f,1(x∗, s) ≥ T f,1(x∗, 0) − ε
 (3.44)

for all s ∈ TF (x∗) with ‖d‖ ≤ 
, that is (3.38) for j = 1. Thus, by Theorem 3.7, we
obtain that (3.39) holds for j = 1.

4 Evaluation Complexity of Finding Approximate High-Order Critical
Points

4.1 A Trust-Region Minimization Algorithm

Aware of the optimality conditions and their limitations, we may now consider an
algorithm to achieve (3.38). This objective naturally suggests a trust-region6 formu-
lation with adaptative model degree, in which the user specifies a desired criticality
order q, assuming that derivatives of order 1, . . . , q are available when needed. We
made this idea explicit in Algorithm 4.1.

6 A detailed account and a comprehensive bibliography on trust-region methods can be found in [25].
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Algorithm 4.1: Trust-region algorithm using adaptive order models for convexly constrained
problems (TRq)

Step 0: Initialization. A criticality order q, an accuracy threshold ε ∈ (0, 1], a starting point x0
and an initial trust-region radius 
1 ∈ [ε, 1] are given, as well as algorithmic parameters

max ∈ [
1, 1], 0 < γ1 ≤ γ2 < 1 ≤ γ3 and 0 < η1 ≤ η2 < 1. Compute x1 = PF [x0],
evaluate f (x1) and set k = 1.

Step 1 : Step computation. For j = 1, . . . , q,

1. Evaluate ∇ j f (xk ) and compute φ

k
f, j (xk ) from (3.27).

2. If φ

k
f, j (xk ) > ε


j
k , go to Step 3with sk = d, where d is the argument of the global minimum

in the computation of φ

k
f, j (xk ).

Step 2 : Termination. Terminate with xε = xk and 
ε = 
k .
Step 3 : Accept the new iterate. Compute f (xk + sk ) and

ρk = f (xk ) − f (xk + sk )

T f, j (xk , 0) − T f, j (xk , sk )
. (4.1)

If ρk ≥ η1, set xk+1 = xk + sk . Otherwise set xk+1 = xk .
Step 4 : Update the trust-region radius. Set


k+1 ∈
⎧⎨
⎩

[γ1
k , γ2
k ] if ρk < η1, [unsuccessful iteration]
[γ2
k , 
k ] if ρk ∈ [η1, η2), [successful iteration]
[
k ,min(
max, γ3
k )] if ρk ≥ η2, [very successful iteration]

(4.2)

increment k by one and go to Step 1.

We first state a useful property of Algorithm 4.1, which ensures that a fixed fraction
of the iterations 1, 2, . . . , k must be either successful or very successful. Indeed, if we
define

S def= {	 ∈ N0 | ρ	 ≥ η1} and Sk
def= S ∩ {1, . . . , k},

the following bound holds.

Lemma 4.1 Assume that 
k ≥ 
min for some 
min > 0 independent of k. Then
Algorithm 4.1 ensures that, whenever Sk 
= ∅,

k ≤ κu |Sk |, where κu
def=

(
1 + log γ3

| log γ2|
)

+ 1

| log γ2| log
(


1


min

)
. (4.3)

Proof The trust-region update (4.2) ensures that


k ≤ 
1γ
|Uk |
2 γ

|Sk |
3 ,
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where Uk = {1, . . . , k} \ Sk . This inequality then yields (4.3) by taking logarithms
and using that |Sk | ≥ 1 and k = |Sk | + |Uk |. ��

4.2 Evaluation Complexity for Algorithm 4.1

We start our worst-case analysis by formalizing our assumptions. Let

L f
def= {x + z ∈ Rn | x ∈ F , f (x) ≤ f (x1) and ‖z‖ ≤ 
max}.

AS.1 The feasible set F is closed, convex and non-empty.

AS.2 The objective function f is q times continuously differentiable on an
open set containing L f .

AS.3 For j ∈ {1, . . . , q}, the j th derivative of f is Lipschitz continuous on
L f (in the sense of (2.4)) with Lipschitz constant L f, j ≥ 1.

For simplicity of notation, define L f
def= max j∈{1,...,q} L f, j .

Algorithm 4.1 is required to start from a feasible x1 ∈ F , which, together with
the fact that the subproblem solution in Step 2 involves minimization over F , leads
to AS.1. Note that AS.3 requires AS.2 and automatically holds if f is q + 1 times
continuously differentiable and F is bounded.

We now establish a lower bound on the trust-region radius.

Lemma 4.2 Suppose that AS.2 and AS.3 hold, and that termination does not
occur before iteration k + 1. Then, for all 	 ∈ {1, . . . , k},


	 ≥ κ
ε (4.4)

where

κ

def= min

[
1,

γ1(1 − η2)

L f

]
. (4.5)

Proof Assume that, for some 	 ∈ {1, . . . , k}


	 ≤ 1 − η2

L f
ε. (4.6)
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From (4.1), we obtain that, for some j ∈ {1, . . . , q},

|1 − ρ	| = f (x	 + s	) − T f, j (x	, s	)

T f, j (x	, 0) − T f, j (x	, s	)
<

L f ‖s	‖ j+1

j ! ε
 j
	

≤ L f 
	

j ! ε ≤ (1 − η2),

(4.7)

where we used (2.8) (implied by AS.3) and the fact that φ

	

f, j (x	) > ε

j
	 to deduce

the first inequality, the bound ‖s	‖ ≤ 
	 to deduce the second, and (4.6) with j ≥ 1
to deduce the third. Thus, ρ	 ≥ η2 and 
	+1 ≥ 
	. The mechanism of the algorithm
and the inequality 
1 ≥ ε then ensures that, for all 	 ∈ k,


	 ≥ min

[

1,

γ1(1 − η2)ε

L f

]
≥ κ
ε.

��
Wenext derive a simple lower boundon the objective function decrease at successful

iterations.

Lemma 4.3 Suppose that AS.1–AS.3 hold, and that termination does not occur
before iteration k + 1. Then, if k is the index of a successful iteration,

f (xk) − f (xk+1) ≥ η1κ
εq+1. (4.8)

Proof We have, using (4.1), the fact that φ

k
f, j (xk) > ε


j
k for some j ∈ {1, . . . , q}

and (4.4) successively, that

f (xk) − f (xk+1) ≥ η1[ T f, j (xk, 0) − T f, j (xk, sk) ]
= η1φ


k
f, j (xk) > η1κ
ε j+1 ≥ η1κ
εq+1.

��
Our worst-case evaluation complexity results can now be proved by summing the
decreases guaranteed by this last lemma.
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Theorem 4.4 Suppose that AS.1–AS.3 hold. Let flow be a lower bound on f
within F . Then, given ε ∈ (0, 1], Algorithm 4.1 applied to problem (3.1) needs
at most

⌊
κ
f
S

f (x0) − flow
εq+1

⌋
(4.9)

successful iterations (each possibly involving one evaluation of f and its q first
derivatives) and at most

⌊
κuκ

f
S

f (x0) − flow
εq+1

⌋
+ 1 (4.10)

iterations in total to terminate with an iterate xε such that (3.38) holds, where

κ
f
S = 1

η1
max

[
1,

L f

γ1(1 − η2)

]
, (4.11)

and κu is given by (4.3). Moreover, if 
ε is the value of 
k at termination,

f (xε + d) ≥ f (xε) − 2ε
q
ε (4.12)

for all d such that

xε + d ∈ F and ‖d‖ ≤ (ε
q
ε )

1
q+1

(
L f

q!
)− 1

q+1

. (4.13)

Proof Let k be the index of an arbitrary iteration before termination. Using the defi-
nition of flow, the nature of successful iterations, (4.11) and Lemma 4.3, we deduce
that

f (x0) − flow ≥ f (x0) − f (xk+1) =
∑
i∈Sk

[ f (xi ) − f (xi+1)] ≥ |Sk | [κ f
S ]−1 εq+1

(4.14)

which proves (4.9).
We next call upon Lemma 4.1 to compute the upper bound on the total number of

iterations before termination (obviously, there must be a least one successful iteration
unless termination occurs for k = 1) and add one for the evaluation at termination.
Finally, (4.12) and (4.13) result from AS.3, Theorem 3.7 and the fact that φ
k

f,q(xε) ≤
ε 


q
kε
at termination. ��

Observe that, because of (4.2) and (4.4), 
ε ∈ [κδε,
max]. Theorem 4.4 generalizes
the known bounds for the cases where F = R and q = 1 [46], q = 2 [16,47] and
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q = 3 [1]. The results for q = 2 with F ⊂ Rn and for q > 3 appear to be new. The
latter provide the first evaluation complexity bounds for general criticality order q.
Note that, if q = 1, bounds of the type O(ε−(p+1)/p) exist if one is ready to minimize
models of degree p > q (see [9]). Whether similar improvements can be obtained for
q > 1 remains an open question at this stage.

We also observe that the above theory remains valid if the termination rule

φ

k
k, j (xk) ≤ ε


j
k for j ∈ {1, . . . , q} (4.15)

used inStep 1 is replaced by amoreflexible one, involving other acceptable termination
circumstances, such as if (4.15) hold or some other condition holds. We conclude this
section by noting that the global optimization effort involved in the computation of
φ


k
j, j (xk) ( j ∈ {1, . . . , q}) in Algorithm 4.1 might be limited by choosing 
max small

enough.
We close this section by an important observation. The full AS.3 using (2.4) is

only needed in our complexity analysis to deduce (4.12) in Theorem 4.4 using The-
orem 3.7, itself depending on (2.4) via (2.8) and (2.9). However, in the derivation of
the complexity bounds (4.9) and (4.10), the Lipschitz continuity implied by AS.3 is
only used for deriving the first inequality of (4.7), in that Lipschitz continuity of ∇q

x f
implies (2.8) along the segment [xk, xk + sk]. Since it was discussed in Sect. 2.3 that
(2.10) implies the same (2.8) along this segment, the weaker assumption

AS.3b For j ∈ {1, . . . , q}, the j th derivative of f is Lipschitz continuous on
“the tree of iterates” in the sense that (2.10) is assumed to hold with
constant L f,p ≥ 1 for all x = xk , s = sk , p = j and all k ≥ 0.

is all what is required for deriving (4.7). AS.3b can therefore replace AS.3 in Theo-
rem 4.4 for the limited purpose of ensuring (4.9)–(4.11).

5 Sharpness

It is interesting that an examplewas presented in [18] showing that the bound inO(ε−3)

evaluations for q = 2 is essentially sharp for both the trust-region and regularization
algorithms. This is significant, because requiring φ


f,2(x) ≤ ε
2 is slightly stronger,
for small 
, than the standard condition

‖∇1
x f (x)‖ ≤ ε and min

[
0, λmin[∇2

x f (x)]
]

≥ −ε (5.1)

(used in [16,47] for instance). Indeed, for one-dimensional problems and assuming
∇2
x f (x) ≤ 0, the former condition amounts to requiring that

1

2

(
−∇2

x f (x) + 2
|∇1

x ( f (x)|



)
≤ ε, (5.2)

where the absolute value reflects the fact that s = ±
 depending on the sign of g.
In the remainder of this section, we show that the example proposed in [18] can be
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extended to arbitrary order q, and thus that the complexity bounds (4.9)–(4.10) are
essentially sharp for our trust-region algorithm.

The idea of our generalized example is to apply Algorithm 4.1 to a unidimensional
objective function f for some fixed q ≥ 1 and F = R+ (hence guaranteeing AS.1),
generating a sequence of iterates {xk}k≥0 starting from the origin, i.e., x0 = x1 = 0.
We first choose the sequences of derivatives values up to order q to be, for all k ≥ 1,

∇ j
x f (xk) = 0 for j ∈ {1, . . . , q − 1} and∇q

x f (xk) = −q!
(

1

k + 1

) 1
q+1+δ

, (5.3)

where δ ∈ (0, 1) is a (small) positive constant. This means that, at iterate xk , the
qth-order Taylor model is given by

T f,q(xk, s) = f (xk) −
(

1

k + 1

) 1
q+1+δ

sq ,

where the value of f (xk) remains unspecified for now. The step is then obtained by
minimizing this model in a trust-region of radius


k =
(

1

k + 1

) 1
q+1+δ

,

yielding that

sk = 
k =
(

1

k + 1

) 1
q+1+δ

∈ (0, 1). (5.4)

As a consequence, the model decrease is given by

T f,q(xk, 0) − T f,q(xk, sk) = − 1

q!∇
q
x f (xk)s

q
k =

(
1

k + 1

)1+(q+1)δ

. (5.5)

For our example, we the define the objective function decrease at iteration k to be


 fk
def= f (xk) − f (xk + sk) = 1/2(η1 + η2)[T f,q(xk, 0) − T f,q(xk, sk)], (5.6)

thereby ensuring that ρk ∈ [η1, η2) and xk+1 = xk + sk for each k. Summing up
function decreases, we may then specify the objective function’s values at the iterates
by

f (x0) = η1 + η2

2
ζ(1 + (q + 1)δ) and

f (xk+1) = f (xk) − η1 + η2

2

(
1

k + 1

)1+(q+1)δ

, (5.7)
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where ζ(t)
def= ∑∞

k=1 k
−t is the Riemann zeta function. This function is finite for all

t > 1 (and thus also for t = 1 + (q + 1)δ), thereby ensuring that f (xk) ≥ 0 for all
k ≥ 0. We also verify that


k+1


k
=
(
k + 1

k + 2

) 1
q+1+δ

∈ [γ2, 1]

in accordance with (4.2), provided γ2 ≤ (2/3)
1

q+1+δ . Observe also that (5.3) and (5.5)
ensure that, for each k ≥ 1,

φ

k
f, j (xk) = 0 for j ∈ {1, . . . , q − 1} (5.8)

and

φ

k
f,q(xk) =

(
1

k + 1

)1+(q+1)δ

=
(

1

k + 1

) 1
q+1+δ



q
k . (5.9)

We now use Hermite interpolation to construct the objective function f on the
successive intervals [xk, xk+1] and define

f (x) = pk(x − xk) + f (xk) for x ∈ [xk, xk+1] and k ≥ 1, (5.10)

where pk is the polynomial

pk(s) =
2q+1∑
i=0

ci,ks
i , (5.11)

with coefficients defined by the interpolation conditions

pk(0) = f (xk) − f (xk+1), pk(sk) = 0;
∇ j
s pk(0) = 0 = ∇ j

s pk(sk) for j ∈ {1, . . . , q − 1},
∇q
s pk(0) = ∇q

x f (xk), ∇q
s pk(sk) = ∇q

x f (xk+1). (5.12)

These conditions ensure that f (x) is q times continuously differentiable on R+ and
thus that AS.2 holds. They also impose the following values for the first q + 1 coeffi-
cients

c0,k = f (xk) − f (xk+1), c j,k = 0 ( j ∈ {1, . . . , q − 1}), cq,k = −∇q
x f (xk);

(5.13)
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and the remaining q + 1 coefficients are solutions of the linear system

⎛
⎜⎜⎜⎜⎝

sq+1
k sq+2

k . . . s2q+1
k

(q + 1)sqk (q + 2)sq+1
k . . . (2q + 1)s2qk

...
...

...
(q+1)!

1! sk
(q+2)!

2! s2k . . .
(2q+1)!
(q+1)! s

q+1
k

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

cq+1,k
cq+2,k

...

c2q+1,k

⎞
⎟⎟⎟⎠ = rk, (5.14)

where the right-hand side is given by

rk =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
 fk − 1
q!∇q

x f (xk)s
q
k

− 1
(q−1)!∇q

x f (xk)s
q−1
k

...

−∇ p
x f (xk)sk

∇q
x f (xk+1) − ∇q

x f (xk)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.15)

Observe now that the coefficient matrix of this linear system may be written as

⎛
⎜⎜⎜⎝
sq+1
k

sqk
. . .

sk

⎞
⎟⎟⎟⎠Mq

⎛
⎜⎜⎜⎝
1

sk
. . .

sqk

⎞
⎟⎟⎟⎠ ,

where

Mq
def=

⎛
⎜⎜⎜⎝
1 1 . . . 1
q + 1 q + 2 . . . 2q + 1
...

...
...

(q+1)!
1!

(q+2)!
2! . . .

(2q+1)!
(q+1)!

⎞
⎟⎟⎟⎠ (5.16)

is an invertible matrix independent of k (see Appendix). Hence,

⎛
⎜⎜⎜⎝

cq+1,k
cq+2,k

...

c2q+1,k

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1

s−1
k

. . .

s−q
k

⎞
⎟⎟⎟⎠M−1

q

⎛
⎜⎜⎜⎝
s−(q+1)
k

s−q
k

. . .

s−1
k

⎞
⎟⎟⎟⎠ rk .

(5.17)

Observe now that, because of (5.4), (5.6), (5.5) and (5.3),

|
 fk | = O(sq+1
k ), |∇q

x f (xk)s
q− j
k | = O(sq+1− j

k ) ( j ∈ {0, . . . , q − 1})
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and, since ∇q
x f (xk) < ∇q

x f (xk+1) < 0,

|∇q
x f (xk+1) − ∇q

x f (xk)| ≤ |∇q
x f (xk)| ≤ q! sk .

These bounds and (5.15) imply that [rk]i , the i th component of rk , satisfies

|[rk]i | = O(sq+2−i
k ) for i ∈ {1, . . . , q + 1}.

Hence, using (5.17) and the non-singularity ofMq ,weobtain that there exists a constant
κq ≥ 1 independent of k such that

|ci,k |si−q−1
k ≤ κq for i ∈ {q + 1, . . . , 2q + 1}, (5.18)

and thus that

|∇q+1
s pk(s)| ≤

2q+1∑
i=q+1

i ! |ci,k |si−q−1
k ≤

⎛
⎝ 2q+1∑

i=q+1

i !
⎞
⎠ κq

Moreover, using successively (5.11), the triangle inequality, (5.13), (5.3), (5.4), (5.18)
and κq ≥ 1, we obtain that, for j ∈ {1, . . . , q},

|∇ j
s pk(s)| ≤

2q+1∑
i= j

i !
(i − j)! |ci,k |si− j

= q!
(q − j)! |cq,k |sq− j +

2q+1∑
i=q+1

i !
(i − j)! |ci,k |si−q−1sq+1− j

≤ q!
(q − j)! +

2q+1∑
i=q+1

i !
(i − j)! |ci,k |si−q−1

≤
⎛
⎝2q+1∑

i=q

i !
(i − j)!

⎞
⎠ κq

and thus, all derivatives of order one up to q remain bounded on [0, sk]. Because of
(5.10), we therefore obtain that AS.3 holds. Moreover (5.13), (5.18), the inequalities
|∇q

x f (xk)| ≤ q! and f (xk) ≥ 0, (5.10) and (5.4) also ensure that f (x) is bounded
below.

We have therefore shown that the bounds of Theorem 4.4 are essentially sharp,
in that, for every δ > 0, Algorithm 4.1 applied to the problem of minimizing the
lower-bounded objective function f just constructed and satisfying AS.1–AS.3 will
take, because of (5.8) and (5.9),

⌈
1

ε
q+1

1+(q+1)δ

⌉
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iterations and evaluation of f and its q first derivatives to find an iterate xk such that
condition (4.15) holds. Moreover, it is clear that, in the example presented, the global
rate of convergence is driven by the term of degree q in the Taylor series.

6 Discussion

We have analysed the necessary and sufficient optimality conditions of arbitrary order
for convexly constrained nonlinear optimization problems, using approximations of
the feasible region which generalizes the idea of second-order tangent sets (see [10])
to orders beyond two. Using the resulting necessary conditions, we then proposed a
measure of criticality for arbitrary order for convexly constrained nonlinear optimiza-
tion problems. As this measure can be extended to define ε-approximate critical points
of high order, we have then used it in a conceptual trust-region algorithm to show that
if derivatives of the objective function up to order q ≥ 1 can be evaluated and are
Lipschitz continuous, then this algorithm applied to the convexly constrained problem
(3.1) needs at most O(ε−(q+1)) evaluations of f and its derivatives to compute an
ε-approximate qth-order critical point. Moreover, we have shown by an example that
this bound is essentially sharp.

In the purely unconstrained case, this result recovers known results for q = 1
(first-order criticality for Lipschitz gradients) [46], q = 2 (second-order criticality7

with Lipschitz Hessians) [18,47] and q = 3 (third-order criticality8 with Lipschitz
continuous third derivative) [1], but extends them to arbitrary order. The results for the
convexly constrained case appear to be new and provide in particular the first com-
plexity bound for second- and third-order criticality for such inequality constrained
problems.

Because the condition (4.15) measures different orders of criticality, we could
choose to use a different ε for every order (as in [18]), complicating the expression of
the bound accordingly. However, as shown by our example, the worst-case behaviour
of Algorithm 4.1 is dominated by that of ∇q

x f , which makes the distinction of the
various ε-s less crucial.

Since the global optimization occurring in the definition of the criticality measure
φ

f, j (x), the algorithm discussed in the present paper remains, in general, of a theo-

retical nature. However, there may be cases where this computation is tractable for
small enough 
, for instance if the derivative tensors of the objective function are
strongly structured. Such approaches may hopefully be of use for small dimensional
or structured highly nonlinear problems, such as those occurring in machine learning
using deep learning techniques (see [1]).

The present framework for handling convex constraints is not free of limitations,
resulting from our choice to transfer difficulties associatedwith the original problem to
the subproblem solution, thereby sparing precious evaluations of f and its derivatives.
In particular, the cost of evaluating any constraint function/derivative possibly defining
the convex feasible set F is neglected by the present approach, which must therefore

7 Using (3.34).
8 Using (3.35).
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be seen as a suitable framework to handle “cheap inequality constraint” such as simple
bounds.

Questions of course arise from the results presented. Thefirst iswhether it is possible
to extend the existing work (e.g., [10]) on bridging the gap between necessary and
sufficient optimality conditions for orders one and two to higher orders, possibly
by finding sufficient conditions to ensure (3.21) and by isolating problem classes
where this constraint qualification condition automatically holds. From the complexity
point of view, it is known that the complexity of obtaining ε-approximate first-order
criticality for unconstrained and convexly constrained problem can be reduced to
O(ε−(p+1)/p) if one is ready to define the step by using a regularization model of
order p ≥ 1. In the unconstrained case, this was shown for p = 2 in [16,47] and for
general p ≥ 1 in [9], while the convexly constrained case was analysed (for p = 2) in
[17]. The question of whether this methodology and the associated improvements in
evaluation complexity bounds can be extended to order above one also remains open
at this stage.
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Appendix: Non-singularity of Mq

We prove the non-singularity of the matrix Mq introduced in (5.16). Assume
for the purpose of a contradiction that there exists a nonzero vector v =
(cq+1,k, . . . , c2q+1,k)

T ∈ Rq+1 such that Mqv = 0. From the argument of Sect. 5,
this amounts to saying that there exists a polynomial of the form (5.11) with one of the
coefficients cq+1,k, . . . , c2q+1,k being nonzero and which satisfies the interpolation
conditions (5.12) (i.e., (5.13) and (5.14)) with the restriction that rk given by (5.15) is
identically zero. Since sk > 0, the fact that components 2 to q of rk are zero implies
that ∇q

x f (xk) = q! cq,k = 0, and hence (from the first component) 
 fk = 0. The
interpolation conditions thus specify that

pk(0) = 
 fk = 0, pk(sk) = 0;
∇ j
s pk(0) = 0 = ∇ j

s pk(sk) for j ∈ {1, . . . , q − 1},
∇q
s pk(0) = cq,k = 0, ∇q

s pk(sk) = 0,

where the last equality results from the fact that the last component of rk is zero.
Because pk(s) is nonzero, this implies that pk(s) must be of the form Asq+1(s −
sk)q+1 p1(s) where A is a constant and p1(s) is a polynomial in s. But, since pk(s)
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is of degree (2q + 1) and sq+1(s − sk)q+1 of degree 2q + 2, one must have that
p1(s) = 0 = pk(s), which is impossible. Hence, Mq is non-singular.
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