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ABSTRACT
An adaptive regularization algorithm is proposed that uses Taylor
models of theobjectiveof orderp,p ≥ 2, of theunconstrainedobjec-
tive function, and that is guaranteed to find a first- and second-order
critical point in at most

O

(
max

{
ε
− p+1

p
1 , ε

− p+1
p−1

2

})

function and derivatives evaluations, where ε1 and ε2 are pre-
scribed first- and second-order optimality tolerances. This is a simple
algorithm and associated analysis compared to the muchmore gen-
eral approach in Cartis et al. [Sharp worst-case evaluation complexity
bounds for arbitrary-order nonconvex optimization with inexpensive
constraints, arXiv:1811.01220, 2018] that addresses the complexity of
criticality higher-than two; here, we use standard optimality condi-
tions and practical subproblem solves to show a same-order sharp
complexity bound for second-order criticality. Our approach also
extends the method in Birgin et al. [Worst-case evaluation complex-
ity for unconstrained nonlinear optimization using high-order regular-
ized models, Math. Prog. A 163(1) (2017), pp. 359–368] to finding
second-order critical points, under the same problem smoothness
assumptions as were needed for first-order complexity.
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1. Introduction

A question of general interest in computational optimization is to know how many eval-
uations of the functions that define a given problem are needed for an algorithm to find
an estimate of a local minimizer. Considerable advances have been made on this topic,
both for convex problems [16] and nonconvex ones [7]. Although much of this research
has been devoted to the important issue of finding approximate first-order critical points,
some authors have addressed the case where higher-order necessary optimality conditions
must also be satisfied, and we review relevant literature below. In this paper, we streamline
the recent approach and its analysis in [9] that addresses the much more general case of
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achieving qth order criticality and where the first improved and sharp complexity bound
for second-order criticality was obtained using high-order models. Here, we use standard
optimality measures and practical, local subproblem solves, as well as allow different tol-
erances on first- and second-order optimality criteria, leading to a concise complexity
analysis. A more detailed comparison with [9] is given in the penultimate paragraph of
this section.

We consider the unconstrained minimization of a twice continuously differentiable
objective function f : Rn → R. It is, of course, well known that a finite minimizer x∗ of
f necessarily satisfies the first- and second-order criticality conditions ∇xf (x∗) = 0 and
λleft(∇2

x f (x∗)) ≥ 0, where λleft denotes the leftmost eigenvalue of its symmetric matrix
argument. Thus, a reasonable requirement might be to find a point xk for which

‖∇xf (xk)‖ ≤ ε1 and λleft
(∇2

x f (xk)
) ≥ −ε2 (1)

for given, small ε1, ε2 > 0 and suitable norm ‖ · ‖.
The earliest analysis we are aware of that provides both first- and second-order eval-

uation complexity guarantees considers cubic regularization methods and shows that at
most

O
(
max

{
ε
−3/2
1 , ε−3

2

})
(2)

evaluations of f are required to satisfy (1) so long as the objective function is bounded
from below, and its Hessian is Lipschitz continuous [17]. Cubic regularization variants
with adaptive parameter choices and inexact subproblem solves, so-called Adaptive Reg-
ularization with Cubics (ARC), have similar complexity guarantees and were proposed
in [5,6]. Under similar conditions, many trust-region (TR) algorithms require at most
O(max{ε−2

1 , ε−3
2 }) evaluations. Crucially, examples are known for which such order esti-

mates are tight both for trust-region and regularization methods [6]. Of late, more sophis-
ticated trust region methods and quadratic regularization ones have been proposed that
echo the order of the ARC estimates [3,11,15]. At the same time, other methods [12,14]
have been shown to mirror the TR-like evaluation estimate in a more general or simplified
way, respectively.

The fact that the best-known evaluation bound for ARC is essentially tight, suggests that
in order to do better, one needs to add further ingredients. A similar picture emerged for

evaluation bounds for first-order critical points: improved bounds of order O
(

ε
− p+1

p
1

)
,

p ≥ 2, were obtained in [2] for p-times continuously differentiable functions using regu-
larization methods that employ higher-order local models. This will be the theme here.
In order to improve upon the estimate (2) for second-order criticality, we will use a
higher-order model and regularization. The model minimization conditions however, are
approximate and local, for both first- and second-order criticality. This is in contrast with
[9], where a more general high-order regularization framework is presented that can also
achieve the much more challenging requirement of criticality of order higher-than two,
using novel optimality conditions that employ the same accuracy requirement on all criti-
cality orders. In particular, if the approach in [9] is applied to finding second-order critical
points, the calculation of the criticality measure in [9, (2.6)], and the subproblem solu-
tion, require the (exact) global solution of trust-region (quadratic, possibly nonconvex)
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subproblems, and it cannot enforce required accuracies on first- and second-order condi-
tions separately. This measure is related to the left-most eigenvalue of the Hessian only at
points that are exact first-order critical points (as detailed in [9, (2.7)–(2.9)]). The aim here
is to use the criticality measures (1) that are standard and practical, and inexact variants of
(1) for the model minimization, in order to present a dedicated high-order regularization
algorithm with a simple analysis, that can achieve the sharp and best known evaluation
complexity bounds for first- and second-order criticality under minimal requirements on
both the objective and the algorithm.

In Section 2, we define terminology and propose our new algorithm, while in Section 3,
we provide a convergence analysis that indicates an improved complexity bound. We
provide further comments and perspectives in Section 4.

2. A regularized pth-order model and algorithm

Let p ≥ 2. Consider the optimization problem

min
x∈Rn

f (x), (3)

where we assume that f ∈ Cp,1(Rn), namely, that:

• f is p-times continuously differentiable;
• f is bounded below by flow
• the pth derivative of f at x, the pth-order tensor

∇p
x f (x) =

[
∂pf (x)

∂xi1 . . . ∂xip

]
ij∈{1,...,n},j=1,...,p

is globally Lipschitz continuous, that is, there exists a constant L ≥ 0 such that, for all
x, y ∈ R

n,

‖∇p
x f (x) − ∇p

x f (y)‖[p] ≤ (p − 1)! L‖x − y‖. (4)

In (4), ‖ · ‖[p] is the tensor norm recursively induced by the Euclidean norm ‖ · ‖ on the
space of pth-order tensors, which is given by

‖T‖[p] def= max
‖v1‖=···=‖vp‖=1

|T[v1, . . . , vp]|, (5)

where T[v1, . . . , vj] stands for the tensor of order p − j ≥ 0 resulting from the application
of the pth-order tensor T to the vectors v1, . . . , vj1. Let Tp(x, s) be the Taylor series of the
function f (x + s) at x truncated at order p

Tp(x, s)
def= f (x) +

p∑
j=1

1
j!
∇ j
xf (x)[s]j, (6)

where the notation T[s]j stands for the tensor T applied j times to the vector s.
We shall use the following crucial bounds.
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Lemma 2.1 (See Appendix A.1): Let f ∈ Cp,1(Rn), and Tp(x, s) be the Taylor approxima-
tion of f (x + s) about x. Then for all x, s ∈ R

n,

f (x + s) ≤ Tp(x, s) + L
p

‖s‖p+1, (7)

‖∇1
x f (x + s) − ∇1

s Tp(x, s)‖[1] ≤ L‖s‖p (8)

and

‖∇2
x f (x + s) − ∇2

s Tp(x, s)‖[2] ≤ (p − 1)L‖s‖p−1. (9)

In order to describe our algorithm, we define the regularized Taylor series model

m(x, s, σ)
def= Tp(x, s) + σ

p + 1
‖s‖p+1, (10)

whose gradient and Hessian are

∇1
s m(x, s, σ) = ∇1

s Tp(x, s) + σ‖s‖p s
‖s‖ (11)

and

∇2
s m(x, s, σ) = ∇2

s Tp(x, s) + σ

p + 1
∇2
s
(‖s‖p+1) , (12)

where

∇2
s
(‖s‖p+1) = (p + 1)

[
(p − 1)‖s‖p−3ssT + ‖s‖p−1I

]
. (13)

Note that

m(x, 0, σ) = Tp(x, 0) = f (x). (14)

For the objective function f, we define first- and second-order criticality measures as

χf ,1(x)
def= ‖∇1

x f (x)‖ (15)

and

χf ,2(x)
def= max

{
0,−λf (x)

}
= max

{
0,− min

‖y‖=1
∇2
x f (x)[y]

2
}

(16)

where λf (x)
def= λleft[∇2

x f (x)]. Similarly, for the model (10), we consider the measures

χm,1(x, s, σ)
def= ‖∇1

s m(x, s, σ)‖ (17)

and

χm,2(x, s, σ)
def= max

{
0,−λm(x, s, σ)

}
= max

{
0,− min

‖y‖=1
∇2
s m(x, s, σ)[y]2

}
(18)

where λm(x, s, σ)
def= λleft[∇2

s m(x, s, σ)].
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The minimization algorithm we consider is now described in detail in Algorithm 2.1.
Note that if the second-order conditions are removed–namely, the conditions for i = 2
in (20) and (22)–then this method reduces to the ARp algorithm in [2]. Furthermore, the
high-order regularization algorithm in [9] for criticality of order possibly larger than two
uses a combined, different measure in place of (20), and subproblem solves that require
global model minimization (albeit over a ‘small’ neighbourhood) instead of the local and
inexact common conditions (22).

Algorithm 2.1: ARp

Step 0: Step 0: Initialization. An initial point x0 and an initial regularization parame-
ter σ0 > 0 are given, as well as an accuracy levels ε1 and ε2. The constants θ , η1,
η2, γ1, γ2, γ3 and σmin are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3.
(19)

Compute f (x0) and set k = 0.
Step 1: Test for termination. Evaluate {∇ i

xf (xk)}2i=1. If

χf ,i(xk) ≤ εi for i = 1, 2, (20)

terminate with the approximate solution xε = xk. Otherwise compute derivatives
of f from order 3 to p at xk.

Step 2: Step calculation. Compute the step sk by approximately minimizing the model
m(xk, s, σk) with respect to s in the sense that the conditions

m(xk, sk, σk) < m(xk, 0, σk) (21)

and

χm,i(xk, sk, σk) ≤ θ‖sk‖p+1−i, (i = 1, 2) (22)

hold.
Step 3: Acceptance of the trial point. Compute f (xk + sk) and define

ρk = f (xk) − f (xk + sk)
Tp(xk, 0) − Tp(xk, sk)

. (23)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.
Step 4: Regularization parameter update. Set

σk+1 ∈

⎧⎪⎨
⎪⎩
[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(24)

Increment k by one and go to Step 1 if ρk ≥ η1 or to Step 2 otherwise.

Each iteration of this algorithm requires the approximate minimization of m(xk, s, σk),
and we note that conditions (21) and (22) are always achievable as they are satisfied at a
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second-order critical point ofm(x, s, σ). Indeed, existing algorithms, such as the standard
second-order trust-region method [10, Section 6.6] and ARC [4] will find such a point
as the regularized Taylor model is both sufficiently smooth and bounded from below.2

Moreover, this approximate minimization does not involve additional computations of f nor
its derivatives at points other than xk, and therefore the precise method used, and the resulting
effort spent, in Step 2 have no impact on the evaluation complexity.3 Finally note that the
second condition in (22) disappears if λleft(∇2

xTp(x, s)) ≥ 0.
Iterations for which ρk ≥ η1 (and hence xk+1 = xk + sk) are called ‘successful’ and we

denote by Sk
def= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between 0

and k. We also denote the complement, Uk, of Sk in {0, . . . , k}, that corresponds to the
index set of ‘unsuccessful’ iterations between 0 and k. Note that, before termination, each
successful iteration requires the evaluation of f and its first p derivatives, while only the
evaluation of f is needed at unsuccessful ones.

3. Complexity analysis

As it is typical for a complexity analysis of (regularization and other) methods, we proceed
by showing lower bounds on the Taylormodel decrease and on the length of the step at each
iteration. The proofs of the next three lemmas is very similar to corresponding results in
[2] and hence we defer the proofs to the appendix (but still include them for completeness,
as the algorithm has changed).

Lemma 3.1: The mechanism of Algorithm 2.1 guarantees that, for all k ≥ 0,

Tp(xk, 0) − Tp(xk, sk) ≥ σk

p + 1
‖sk‖p+1, (25)

and so (23) is well-defined.

We next deduce a simple upper bound on the regularization parameter σk.

Lemma 3.2: Let f ∈ Cp,1(Rn). Then, for all k ≥ 0,

σk ≤ σmax
def= max

{
σ0,

γ3L(p + 1)
p (1 − η2)

}
. (26)

Our next move, very much in the line of the theory proposed in [2,5], is to show that
the step cannot be arbitrarily small compared with the gradient of the objective function
at the trial point xk + sk.

Lemma 3.3: Let f ∈ Cp,1(Rn). Then, for all k ≥ 0,

‖sk‖ ≥
(

χf ,1(xk + sk)
L + θ + σk

) 1
p
. (27)

Next we show that the step cannot also be arbitrarily small compared to the second-
order criticality measure (16) at the trial point xk + sk. This is the crucial novel ingredient
of the paper, that is essential to the improved second-order complexity results.
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Lemma 3.4: Let f ∈ Cp,1(Rn). Then, for all k ≥ 0,

‖sk‖ ≥
(

χf ,2(xk + sk)
(p − 1)L + θ + pσk

) 1
p−1

. (28)

Proof: Using (10) and the fact thatminz[a(z) + b(z)] ≥ minz[a(z)] + minz[b(z)], we find
that

λf (xk + sk)

= min
‖y‖=1

∇2
x f (xk + sk)[y]2

= min
‖y‖=1

(
∇2
x f (xk + sk) − ∇2

s Tp(xk, sk) − σk

p + 1
∇2
s ‖sk‖p+1 + ∇2

s m(xk, sk, σk)
)
[y]2

≥ min
‖y‖=1

(∇2
x f (xk + sk) − ∇2

s Tp(xk, sk)
)
[y]2 + σk

p + 1
min
‖y‖=1

(−∇2
s ‖sk‖p+1) [y]2

+ min
‖y‖=1

∇2
s m(xk, sk, σk)[y]2.

Considering each term in turn, and using (5) and (9), we see that

min
‖y‖=1

(∇2
x f (xk + sk) − ∇2

s Tp(xk, sk)
)
[y]2

≥ min
‖y1‖=‖y2‖=1

(∇2
x f (xk + sk) − ∇2

s Tp(xk, sk)
)
[y1, y2]

≥ − max
‖y1‖=‖y2‖=1

∣∣(∇2
x f (xk + sk) − ∇2

s Tp(xk, sk)
)
[y1, y2]

∣∣
= −‖∇2

x f (xk + sk) − ∇2
s Tp(xk, sk)‖[2]

≥ −(p − 1)L‖sk‖p−1,

and using (13), we find that ∇2
s (‖sk‖p+1)[y]2 = (p + 1)[(p − 1)‖sk‖p−3(sTk y)

2 + ‖sk‖p−1

‖y‖2], and so

min
‖y‖=1

(−∇2
s (‖sk‖p+1)

)
[y]2 = − max

‖y‖=1
∇2
s (‖sk‖p+1)[y]2 = −p(p + 1)‖sk‖p−1.

Recalling (18), we have min‖y‖=1 ∇2
s m(xk, sk, σk)[y]2 = λm(xk, sk, σk). This, and the last

two displayed equations imply that

−λf (xk + sk) ≤ (p − 1)L‖sk‖p−1 + pσk‖sk‖p−1 − min{0, λm(xk, sk, σk)}. (29)

As the right hand side of (29) is nonnegative, the bound (29) can be re-written as

max{0,−λf (xk + sk)} ≤ [
(p − 1)L + pσk

] ‖sk‖p−1 + max{0,−λm(xk, sk, σk)}.
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Combining the above with (16) and (18), and with (22) with i = 2, we conclude

χf ,2(xk + sk) ≤ ((p − 1)L + pσk)‖sk‖p−1 + χm,2(xk, sk, σk)

≤ ((p − 1)L + θ + pσk)‖sk‖p−1,

and so (28) follows. �

We now bound the number of unsuccessful iterations as a function of the number of
successful ones and include a proof in the Appendix.

Lemma 3.5 ([5, Theorem 2.1]): The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (30)

for some σmax > 0, then

k + 1 ≤ |Sk|
(
1 + | log γ1|

log γ2

)
+ 1

log γ2
log

(
σmax

σ0

)
. (31)

Using all the above results, we are now in position to state our main evaluation
complexity result.

Theorem 3.6: Let f ∈ Cp,1(Rn). Then, given ε1 > 0 and ε2 > 0, Algorithm 2.1 needs at
most ⌊

κs(f (x0) − flow)max
{
ε
− p+1

p
1 , ε

− p+1
p−1

2

}⌋
+ 1

successful iterations (each involving one evaluation of f and its p first derivatives) and at most

⌊
κs(f (x0) − flow)max

{
ε
− p+1

p
1 , ε

− p+1
p−1

2

}⌋ (
1 + | log γ1|

log γ2

)
+ 1

log γ2
log

(
σmax

σ0

)
+ 1

iterations in total to produce an iterate xε such that ‖∇1
x f (xε)‖ ≤ ε1 and λleft(∇2

x f (xε)) ≥
−ε2, where σmax is given by (26) and where

κs
def= p + 1

η1σmin
max

{
(L + θ + σmax)

p+1
p ,

(
(p − 1)L + θ + pσmax

) p+1
p−1

}
.

Proof: At each successful iteration k before termination, either the first-order or the
second-order approximate optimality condition must fail (at the next iteration), namely,

χf ,1(xk+1) > ε1 or χf ,2(xk+1) > ε2, (32)
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and we also have the guaranteed decrease

f (xk) − f (xk+1) ≥ η1(Tp(xk, 0) − Tp(xk, sk)) ≥ η1σmin

p + 1
‖sk‖p+1 (33)

where we used (23), (25) and (24). For any successful iteration for which the first condition
in (32) holds, we deduce from (33), (27) and (26) that

f (xk) − f (xk+1) ≥ κ1ε
p+1
p

1 where κ1
def= η1σmin

p + 1

(
1

L + θ + σmax

) p+1
p
. (34)

Similarly, for any successful iteration for which the second condition in (32) holds, we
deduce from (33), (28) and (26) that

f (xk) − f (xk+1) ≥ κ2ε
p+1
p−1
2 where κ2

def= η1σmin

p + 1

(
1

(p − 1)L + θ + pσmax

) p+1
p−1

. (35)

Thus on any successful iteration until termination, we can guarantee the minimal of the
two decreases in (34) and (35), and hence, since {f (xk)} decreases monotonically,

f (x0) − f (xk+1) ≥ min{κ1, κ2}min
{
ε

p+1
p

1 , ε
p+1
p−1
2

}
· |Sk|.

Using that f is bounded below by flow, we conclude

|Sk| ≤ f (x0) − flow
min{κ1, κ2} max

{
ε
− p+1

p
1 , ε

− p+1
p−1

2

}

until termination, from which the desired bound on the number of successful iterations
follows. Lemma 3.5 is then invoked to compute the upper bound on the total number of
iterations. �

Observe that we may modify the algorithm to seek only first-order points by restricting
(22) to i = 1. The corresponding complexity is then

O
(

ε
− p+1

p
1

)
,

which coincides with the bound in [2]. Moreover, the same complexity result holds
if, by chance, λleft(∇2

x f (xk)) ≥ −ε2 for all iterations. By contrast, if ε1 is so large that
‖∇1

x f (xk)‖ ≤ ε1 at every iteration, the complexity is

O
(

ε
− p+1

p−1
2

)

to find a point with a sufficiently large leftmost eigenvalue.
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4. Final comments

Our goal has been to devise a simple algorithm that can be guaranteed to find an approx-
imate first- and second-order critical point in fewer evaluations than the best-known
current champions and with the simplest requirements on the problem and the algorithm.
The new algorithm we have designed finds such a point in at most

O
(
max

{
ε
− p+1

p
1 , ε

− p+1
p−1

2

})

function and derivative evaluations under suitable differentiability and Lipschitz conti-
nuity conditions. When p = 2, we recover the standard best bound (2), while for p = 3,
this improves to O(max{ε−4/3

1 , ε−2
2 }) function and derivative evaluations, and approaches

O(max{ε−1
1 , ε−1

2 }) evaluations as p increases to infinity. Of course, this comes at an
increased cost of requiring derivatives of order up to p, and of needing to approximately
solve a potentially harder step subproblem. Note though, that the conditions (21) and (22)
for model minimization are only local ones, and that the improved second-order approx-
imate criticality result is achieved under the same problem assumptions as the first-order
one (in [2] and here). Furthermore, the approach here offers a simple alternative to the
more generally applicable approach in [9].

In practice, the test (20) for termination in Step 1 of Algorithm 2.1 would be arranged
to check one of the pair of required inequalities, and only to check the other if the first
holds (the order is immaterial). One could imagine a variant of the algorithm in which
failure of one (but not both) of (20) might influence the requirement for the next step cal-
culation/model minimization. Specifically, if χf ,1(xk) > ε1, one might simply require that
χm,1(xk, sk, σk) ≤ θ‖sk‖p rather than (22) as this alone would aim to improve first-order
criticality. However, though this decoupling is possible both in practice and in the analy-
sis, it is not as straightforward as in the case of say, trust-region methods [14], as the lower
bounds on the step in (27) and (28) depend on the objective’s gradient andHessian value at
the next trial point/iterate, not the current xk. Also, one might modify the ARp algorithm
to check the optimality measures (20) at every trial point, not just successful ones. This
may allow earlier termination but possibly at an unsuccessful step and at increased first-
and second-derivatives evaluation cost.

Extending the approach here to the constrained case, even convex constraints, seems
challenging as the connection betweenmodel eigenvalues and function eigenvalues in a set
is no longer straightforward. Another aspect for future work is quantifying the cost of the
subproblem solution in a similar vein to recent works [1,13], where there is particular inter-
est due to large scale applications, in quantifying the number of derivative actions required
per iteration as derivatives cannot be stored/called explicitly. More generally, finding effi-
cient ways to solve higher order polynomial models would bring ARp methods closer to
practical use.

Notes

1. Note that ‖ · ‖[1] = ‖ · ‖, the usual Euclidean vector norm.
2. When p is even, m(x, s, σ) is smooth everywhere but at the origin, but a step from s = 0 in the

steepest-descent/eigen direction will move to a region for which the model is always smooth.
3. We implicitly assume here that derivatives at xk can be stored explicitly.
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Appendix

A.1 Proof of Lemma 2.1

As in [8], consider the Taylor identity

φ(1) − τk(1) = 1
(k − 1)!

∫ 1

0
(1 − ξ)k−1[φ(k)(ξ) − φ(k)(0)] dξ (A1)

involving a given univariate Ck function φ(α) and its kth-order Taylor approximation

τk(α) =
k∑

i=0
φ(i)(0)

αi

i!

expressed in terms of the value φ(0) = φ and ith derivatives φ(i), i = 1, . . . , k. Then, picking φ(α) =
f (x + αs) and k = p, the identity

∫ 1

0
(1 − ξ)k−1 dξ = 1

k
, (A2)

(4), (5) and (A1) imply that, for all x, s ∈ R
n,

f (x + s) ≤ Tp(x, s) + L
p

‖s‖p+1

[8, (2.8) with Lf ,p = (p − 1)!L] since τp(1) = Tp(x, s), which is the required (7).
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Likewise, for an arbitrary unit vector v, selecting instead φ(α) = ∇1
x f (x + αs)[v] and k = p−1,

it follows from (A1) that

(∇1
x f (x + s) − ∇1

s Tp(x, s))[v]

= 1
(p − 2)!

∫ 1

0
(1 − ξ)p−2(∇p

x f (x + ξ s) − ∇p
x f (x))[s]p−1[v] dξ (A3)

since τp−1(1) = ∇1
s Tp(x, s)[v]. Thus, using the symmetry of the derivative tensors, picking v tomax-

imize the absolute value of the left-hand side of (A3) and using (A2), (5) and (4) successively, we
obtain that

‖∇1
x f (x + s) − ∇1

s Tp(x, s)‖[1]

= 1
(p − 2)!

∣∣∣∣∣
∫ 1

0
(1 − ξ)p−2(∇p

x f (x + ξ s) − ∇p
x f (x))[v]

[
s

‖s‖
]p−1

‖s‖p−1 dξ

∣∣∣∣∣
≤ 1

(p − 2)!

[∫ 1

0
(1 − ξ)p−2 dξ

]
max

ξ∈[0,1]

∣∣∣∣∣(∇p
x f (x + ξ s) − ∇p

x f (x))[v]
[

s
‖s‖

]p−1
∣∣∣∣∣ ‖s‖p−1

≤ 1
(p − 1)!

max
ξ∈[0,1]

max
‖w1‖=···=‖wp‖=1

∣∣∣(∇p
x f (x + ξ s) − ∇p

x f (x))[w1, . . . ,wp]
∣∣∣ ‖s‖p−1

= 1
(p − 1)!

max
ξ∈[0,1]

‖∇p
x f (x + ξ s) − ∇p

x f (x)‖[p]‖s‖p−1

≤ L‖s‖p

which gives (8).
Finally, for arbitrary unit vectors v1 and v2, choosing φ(α) = ∇2

x f (x + αs)[v1, v2] and k = p−2,
the identity τp−2(1) = ∇2

s Tp(x, s)[v1, v2] and (A1) together show that

(∇2
x f (x + s) − ∇2

s Tp(x, s))[v1, v2]

= 1
(p − 3)!

∫ 1

0
(1 − ξ)p−3(∇p

x f (x + ξ s) − ∇p
x f (x))[v1, v2][s]p−2 dξ . (A4)

As before, picking v1 and v2 to maximize the absolute value of the left-hand side of (A4),

‖∇2
x f (x + s) − ∇2

s Tp(x, s)‖[2]

= 1
(p − 3)!

∣∣∣∣∣
∫ 1

0
(1 − ξ)p−3(∇p

x f (x + ξ s) − ∇p
x f (x))[v1, v2]

[
s

‖s‖
]p−2

‖s‖p−2 dξ

∣∣∣∣∣
≤ 1

(p − 3)!

[∫ 1

0
(1 − ξ)p−3dξ

]
max

ξ∈[0,1]

∣∣∣∣∣(∇p
x f (x + ξ s) − ∇p

x f (x))[v1, v2]
[

s
‖s‖

]p−2
‖s‖p−2

∣∣∣∣∣
≤ 1

(p − 2)!
max

ξ∈[0,1]
max

‖w1‖=···=‖wp‖=1

∣∣∣(∇p
x f (x + ξ s) − ∇p

x f (x))[w1, . . . ,wp]
∥∥∥ s‖p−2

= 1
(p − 2)!

max
ξ∈[0,1]

‖∇p
x f (x + ξ s) − ∇p

x f (x)‖[p]‖s‖p−2

≤ (p − 1)L‖s‖p−1

again using (4), (5) and (A2), which provides (9).
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A.2 Proof of Lemmas in Section 3

Proof of Lemma 3.1: (See [2, Lemma 2.1]) Observe that, because of (21) and (10),

0 < m(xk, 0, σk) − m(xk, sk, σk) = Tp(xk, 0) − Tp(xk, sk) − σk

p + 1
‖sk‖p+1

which implies the desired bound. Note that sk 	= 0 as long as we can satisfy condition (21), and
so (25) implies (23) is well defined. �

Proof of Lemma 3.2: (See [2, Lemma 2.2]) Assume that

σk ≥ L(p + 1)
p (1 − η2)

. (A5)

Using (7) and (25), we may then deduce that

|ρk − 1| ≤ |f (xk + sk) − Tp(xk, sk)|
|Tp(xk, 0) − Tp(xk, sk)|

≤ L(p + 1)
p σk

≤ 1 − η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk. As a
consequence, the mechanism of the algorithm ensures that (26) holds. �

Proof of Lemma 3.3: (See [2, Lemma 2.3]) Using the triangle inequality, (8), (11) and (22) for i = 1,
we obtain that

χf ,1(xk + sk) ≤ ‖∇1
x f (xk + sk) − ∇1

s Tp(xk, sk)‖ +
∥∥∥∥∇1

s Tp(xk, sk) + σk‖sk‖p sk
‖sk‖

∥∥∥∥
+ σk‖sk‖p

= ‖∇1
x f (xk + sk) − ∇1

s Tp(xk, sk)‖[1] + χm,1(xk, sk, σk) + σk‖sk‖p
≤ L‖sk‖p + χm,1(xk, sk, σk) + σk‖sk‖p
≤ [L + θ + σk] ‖sk‖p

and (27) follows. �

Proof of Lemma 3.5: The regularization parameter update (24) gives that, for each k,

γ1σj ≤ max[γ1σj, σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk.

Thus we deduce inductively that

σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk.

We therefore obtain, using (30), that

|Sk| log γ1 + |Uk| log γ2 ≤ log
(

σmax

σ0

)
,

which then implies that

|Uk| ≤ −|Sk| log γ1

log γ2
+ 1

log γ2
log

(
σmax

σ0

)
,

since γ2 > 1. The desired result (31) then follows from the equality k + 1 = |Sk| + |Uk| and the
inequality γ1 < 1 given by (19). �
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