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Abstract

We establish or refute the optimality of inexact second-order methods for un-
constrained nonconvex optimization from the point of view of worst-case evalua-
tion complexity, improving and generalizing our previous results. To this aim, we
consider a new general class of inexact second-order algorithms for unconstrained
optimization that includes regularization and trust-region variations of Newton’s
method as well as of their linesearch variants. For each method in this class and
arbitrary accuracy threshold � 2 (0; 1), we exhibit a smooth objective function
with bounded range, whose gradient is globally Lipschitz continuous and whose
Hessian is ˛�Hölder continuous (for given ˛ 2 [0; 1]), for which the method in
question takes at least b��(2+˛)/(1+˛)c function evaluations to generate a first
iterate whose gradient is smaller than � in norm. Moreover, we also construct an-
other function on which Newton’s takes b��2c evaluations, but whose Hessian is
Lipschitz continuous on the path of iterates. These examples provide lower bounds
on the worst-case evaluation complexity of methods in our class when applied to
smooth problems satisfying the relevant assumptions. Furthermore, for ˛ = 1, this
lower bound is of the same order in � as the upper bound on the worst-case evalua-
tion complexity of the cubic regularization method and other algorithms in a class
of methods recently proposed by Curtis, Robinson and Samadi or by Royer and
Wright, thus implying that these methods have optimal worst-case evaluation com-
plexity within a wider class of second-order methods, and that Newton’s method is
suboptimal.

1 Introduction

Newton’s method has long represented a benchmark for rapid asymptotic convergence
whenminimizing smooth, unconstrained objective functionsDennis and Schnabel [1983].
It has also been efficiently safeguarded to ensure its global convergence to first- and
even second-order critical points, in the presence of local nonconvexity of the objec-
tive using linesearch Nocedal and Wright [1999], trust-region Conn, N. I. M. Gould,
and P. L. Toint [2000] or other regularization techniques Griewank [1981], Nesterov
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and Polyak [2006], and Cartis, N. I. M. Gould, and P. L. Toint [2011a]. Many vari-
ants of these globalization techniques have been proposed. These generally retain fast
local convergence under non-degeneracy assumptions, are often suitable when solving
large-scale problems and sometimes allow approximate rather than true Hessians to
be employed. We attempt to capture the common features of these methods in the de-
scription of a general class of second-order methods, which we denote by M:˛ in what
follows.

In this paper, we are concerned with establishing lower bounds on the worst-case
evaluation complexity of the M:˛ methods(1) when applied to “sufficiently smooth”
nonconvex minimization problems, in the sense that we exhibit objective functions on
which these methods take a large number of function evaluations to obtain an approxi-
mate first-order point.

There is a growing literature on the global worst-case evaluation complexity of first-
and second-order methods for nonconvex smooth optimization problems (for which we
provide a partial bibliography with this paper). In particular, it is known Vavasis [1993],
Nesterov [2004, p. 29] that steepest-descent method with either exact or inexact line-
searches takes at most(2) O

�
��2

�
iterations/function-evaluations to generate a gradient

whose norm is at most � when started from an arbitrary initial point and applied to non-
convex smooth objectives with gradients that are globally Lipschitz continuous within
some open convex set containing the iterates generated. Furthermore, this bound is
essentially sharp (for inexact Cartis, N. I. M. Gould, and P. L. Toint [2010] and exact
Cartis, N. Gould, and P. L. Toint [2012] linesearches). Similarly, trust-region methods
that ensure at least a Cauchy (steepest-descent-like) decrease on each iteration satisfy
a worst-case evaluation complexity bound of the same order under identical conditions
Gratton, Sartenaer, and P. L. Toint [2008]. It follows that Newton’s method globalized
by trust-region regularization has the same O

�
��2

�
worst-case evaluation upper bound;

such a bound has also been shown to be essentially sharp Cartis, N. I. M. Gould, and
P. L. Toint [2010].

From a worst-case complexity point of view, one can do better when a cubic regu-
larization/perturbation of the Newton direction is used Griewank [1981], Nesterov and
Polyak [2006], Cartis, N. I. M. Gould, and P. L. Toint [2011a], and Curtis, Robinson,
and Samadi [2017b]—such a method iteratively calculates step corrections by (exactly
or approximately) minimizing a cubic model formed of a quadratic approximation of
the objective and the cube of a weighted norm of the step. For such a method, the worst-
case global complexity improves to be O

�
��3/2

�
Nesterov and Polyak [2006] and Car-

tis, N. I. M. Gould, and P. L. Toint [2011a], for problems whose gradients and Hessians
are Lipschitz continuous as above; this bound is also essentially sharp Cartis, N. I. M.
Gould, and P. L. Toint [2010]. If instead powers between two and three are used in
the regularization, then an “intermediate” worst-case complexity of O

�
��(2+˛)/(1+˛)

�
(1)And, as an aside, on that of the steepest-descent method.
(2)When fakg and fbkg are two sequences of real numbers, we say that ak = O (bk) if the ratio ak/bk

is bounded.
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is obtained for such variants when applied to functions with globally ˛�Hölder con-
tinuous Hessian on the path of iterates, where ˛ 2 (0; 1] Cartis, N. Gould, and P. L.
Toint [2011]. It is finally possible, as proposed in C. W. Royer and Wright [2017], to
obtain the desired O

�
��3/2

�
order of worst-case evaluation complexity using a purely

quadratic regularization, at the price of mixing iterations using the regularized and un-
regularized Hessian with iterations requiring the computation of its left-most eigenpair.

These (essentially tight) upper bounds on the worst-case evaluation complexity of
such second-ordermethods naturally raise the question as to whether other second-order
methods might have better worst-case complexity than cubic (or similar) regulariza-
tion over certain classes of sufficiently smooth functions. To attempt to answer this
question, we define a general, parametrized class of methods that includes Newton’s
method, and that attempts to capture the essential features of globalized Newton vari-
ants we have mentioned. Our class includes for example, the algorithms discussed
above as well as multiplier-adjusting types such as the Goldfeld-Quandt-Trotter ap-
proach Goldfeld, Quandt, and Trotter [1966]. The methods of interest take a potentially-
perturbed Newton step at each iteration so long as the perturbation is “not too large”
and the subproblem is solved “sufficiently accurately”. The size of the perturbation
allowed is simultaneously related to the parameter ˛ defining the class of methods and
the rate of the asymptotic convergence of the method. For each method in each ˛-
parametrized class and each � 2 (0; 1), we construct a function with globally ˛�Hölder-
continuous Hessian and Lipschitz continuous gradient for which the method takes pre-
cisely d��(2+˛)/(1+˛)e function evaluations to drive the gradient norm below �. As
such counts are the same order as the worst-case upper complexity bound of regular-
ization methods, it follows that the latter methods are optimal within their respective
˛-class of methods. As ˛ approaches zero, the worst-case complexity of these methods
approaches that of steepest descent, while for ˛ = 1, we recover that of cubic regular-
ization. We also improve the examples proposed in Cartis, N. I. M. Gould, and P. L.
Toint [2010] and Cartis, N. Gould, and P. L. Toint [2011] in two ways. The first is that
we now employ objective functions with bounded range, which allows refining the as-
sociated definition of sharp worst-case evaluation complexity bounds, the second being
that the new examples now have finite isolated global minimizers.

The structure of the paper is as follows. Section 2 describes the parameter-dependent
class of methods and objectives of interest; Section 2.1 gives properties of the methods
such as their connection to fast asymptotic rates of convergence while Section 2.2 re-
views some well-known examples of methods covered by our general definition of the
class. Section 3 then introduces two examples of inefficiency of these methods and
Section 4 discusses the consequences of these examples regarding the sharpness and
possible optimality of the associated worst-case evaluation complexity bounds. Fur-
ther consequences of our results on the new class proposed by Curtis, Robinson, and
Samadi [2017b] and C. W. Royer and Wright [2017] are developed in Section 5 and 6,
respectively. Section 7 draws our conclusions.

Notation. Throughout the paper, k � k denotes the Euclidean norm on IRn, I the
n � n identity matrix, and �min(H ) and �max(H ) the left- and right-most eigenvalue



May 3, 2018 10:17 icm-961x669 main-pr page 3700

3700 CORALIA CARTIS, NICHOLAS I. GOULD AND PHILIPPE L. TOINT

of any given symmetric matrixH , respectively. The condition number of a symmetric
positive definite matrix M is denoted by �(M )

def
= �max(M )/�min(M ). If M is only

positive-semidefinite which we denote byM � 0, and �min(M ) = 0, then �(0) def
= +1

unlessM = 0, in which case we set �(0) def
= 1. Positive definiteness ofM is written as

M � 0.

2 A general parametrized class of methods and objectives

Our aim is to minimize a given C 2 objective function f (x), x 2 IRn. We consider
methods that generate sequences of iterates fxkg for which ff (xk)g is monotonically
decreasing, we let

fk
def
= f (xk); gk

def
= g(xk) and Hk

def
= H (xk):

where g(x) = rxf (x) andH (x) = rxxf (x).
Let ˛ 2 [0; 1] be a fixed parameter and consider iterative methods whose iterations

are defined as follows. Given some x0 2 IRn, let

(2.1) xk+1 = xk + sk ; k � 0;

where sk satisfies

(2.2) (Hk +Mk)sk = �gk + rk with krkk � min [�rgkgkk; �rskMkskk]

for some residual rk and constants �rg 2 [0; 1) and �rs > 0, and for some symmetric
matrixMk such that

(2.3) Mk � 0; Hk +Mk � 0

and

(2.4) �min(Hk) + �min(Mk) � �� max
n
j�min(Hk)j; kgkk

˛
1+˛

o
for some �� > 1 independent of k. Without loss of generality, we assume that sk ¤ 0.
Furthermore, we require that no infinite steps are taken, namely

(2.5) kskk � �s

for some �s > 0 independent of k. The M:˛ class of second-order methods consists
of all methods whose iterations satisfy (2.1)–(2.5). The particular choicesMk = �kI

and Mk = �kNk (with Nk symmetric, positive definite and with bounded condition
number) will be of particular interest in what follows(3). Note that the definition ofM:˛

just introduced generalizes that of M.˛ in Cartis, N. Gould, and P. L. Toint [2011].
(3)Note that (2.4) is slightly more general than a maybe more natural condition involving �min(Hk +Mk)

instead of �min(Hk) + �min(Mk).



May 3, 2018 10:17 icm-961x669 main-pr page 3701

SECOND-ORDER METHODS FOR OPTIMIZATION 3701

Typically, the expression (2.2) for sk is derived by minimizing (possibly approxi-
mately) the second-order model
(2.6)
mk(s) = fk + gT

k s +
1
2
sT (Hk + ˇkMk)s; with ˇk

def
= ˇk(s) � 0 and ˇk � 1

of f (xk+s)—possibly with an explicit regularizing constraint—with the aim of obtain-
ing a sufficient decrease of f at the new iterate xk+1 = xk +sk compared to f (xk). In
the definition of an M:˛ method however, the issue of (sufficient) objective-function
decrease is not explicitly addressed/required. There is no loss of generality in doing
so here since although local refinement of the model may be required to ensure func-
tion decrease, the number of function evaluations to do so (at least for known methods)
does not increase the overall worst-case evaluation complexity by more than a constant
multiple and thus does not affect quantitatively the worst-case bounds derived; see for
example, Cartis, N. I. M. Gould, and P. L. Toint [2010], Cartis, N. I. M. Gould, and
P. L. Toint [2011b], and Gratton, Sartenaer, and P. L. Toint [2008] and also Section 2.2.
Furthermore, the examples of inefficiency proposed in Section 3 are constructed in such
a way that each iteration of the method automatically provides sufficient decrease of f .

Having defined the classes of methods we shall be concerned with, we now specify
the problem classes that we shall apply the methods in each class to, in order to demon-
strate slow convergence. Given a method in M:˛, we are interested in minimizing
functions f that satisfy

A.˛ f : IRn
! IR is twice continuously differentiable and bounded below, with

gradient g being globally Lipschitz continuous on IRn with constant Lg , namely,

(2.7) kg(x) � g(y)k � Lgkx � yk; for all x; y 2 IRn;

and the Hessian H being globally ˛�Hölder continuous on IRn with constant
LH;˛ , i.e.,

(2.8) kH (x) �H (y)k � LH;˛kx � yk
˛; for all x; y 2 IRn.

2

The case when ˛ = 1 in A.˛ corresponds to the Hessian of f being globally Lipschitz
continuous. Moreover, (2.7) implies (2.8) when ˛ = 0, so that the A.0 class is that of
twice continuously differentiable functions with globally Lipschitz continuous gradient.
Note also that (2.7) and the existence ofH (x) imply that

(2.9) kH (x)k � Lg

for all x 2 IRn Nesterov [2004, Lemma 1.2.2], and that every function f satisfying
A.˛ with ˛ > 1 must be quadratic. As we will see below, it turns out that we could
weaken the conditions defining A.˛ by only requiring (2.7) and (2.8) to hold in an open
set containing all the segments [xk ; xk + sk ] (the “path of iterates”), but these segments
of course depend themselves on f and the method applied.
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The next subsection provides some background and justification for the technical
condition (2.4) by relating it to fast rates of asymptotic convergence, which is a defin-
ing feature of second-order algorithms. In Section 2.2, we then review some methods
belonging to M:˛.

2.1 Properties of the methods inM:˛. We first state inclusions properties for M:˛

and A.˛.

Lemma 2.1. 1. Consider a method of M:˛1 for ˛1 2 [0; 1] and assume that it
generates bounded gradients. Then it belongs to M:˛2 for ˛2 2 [0; ˛1].

2. A.˛1 implies A.˛2 for ˛2 2 [0; ˛1], with LH;˛2
= max[LH;˛1

; 2Lg ].

Proof. By assumption, kgkk � �g for some �g � 1. Hence, if kgkk � 1,

kgkk
˛1

1+˛1 � �
˛1

1+˛1
g � �g � �gkgkk

˛2
1+˛2(2.10)

for any ˛2 2 [0; ˛1]. Moreover, (2.10) also holds if kgkk � 1, proving the first state-
ment of the lemma. Now we obtain from (2.9), that, if kx � yk > 1, then

kH (x) �H (y)k � kH (x)k + kH (y)k � 2Lg � 2Lgkx � yk
˛

for any ˛ 2 [0; 1]. When kx�yk � 1, we may deduce from (2.8) that, if ˛1 � ˛2, then
(2.8) with ˛ = ˛1 implies (2.8) with ˛ = ˛2. This proves the second statement.

Observe if a method is known to be globally convergent in the sense that kgkk ! 0

when k ! 1, then it obviously generates bounded gradients and thus the globally
convergent methods of M:˛1 are included in M:˛2 (˛2 2 [0; ˛1]).

We next give a sufficient, more concise, condition on the algorithm-generated ma-
tricesMk that implies the bound (2.4).

Lemma 2.2. Let (2.2) and (2.3) hold. Assume also that the algorithm-generated ma-
tricesMk satisfies

(2.11) �min(Mk) � ��kskk
˛; for some �� > 1 and ˛ 2 [0; 1] independent of k.

Then (2.4) holds with ��
def
= 2�

1
1+˛

�
(1 + �rg).

Proof. Clearly, (2.4) holds when �min(Hk +Mk) = 0. When �min(Hk +Mk) > 0 and
henceHk +Mk � 0, (2.2) implies that

(2.12) kskk �
kgkk + krkk

�min(Hk +Mk)
�

(1 + �rg)kgkk

�min(Hk) + �min(Mk)
:

This and (2.11) give the inequality

(2.13)  (�min(Mk)) � 0 with  (�)
def
= �

1
˛ (�+ �min(Hk)) � �

1
˛

�
(1 + �rg)kgkk:
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Now note that  (0) =  (��min(Hk)) = ��
1
˛

�
(1 + �rg)kgkk and thus

(2.14)  (�1;k) < 0 with �1;k = maxf0;��min(Hk)g:

Moreover, the form of  (�) implies that  (�) is strictly increasing for � � �1;k . De-
fine now
(2.15)

�2;k
def
= ��min(Hk) + 2max

�
j�min(Hk)j; �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛

�
> �1;k :

Suppose first that �min(Hk) < 0 and j�min(Hk)j � �
1

1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛ . Then

one verifies that �2;k = 3j�min(Hk)j and

 (�2;k) = (3j�min(Hk)j)
1+˛

˛ � (3j�min(Hk)j)
1
˛ j�min(Hk)j � �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk

= 2 � 3
1
˛ j�min(Hk)j

1+˛
˛ � �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk > 0

Suppose now that �min(Hk) � 0 and j�min(Hk)j � �
1

1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛ . Then

�2;k = �min(Hk) and

 (�2;k) = (�min(Hk))
1+˛

˛ +(�min(Hk))
1
˛ j�min(Hk)j � �

1
1+˛

�
(1+ �rg)

˛
1+˛ kgkk > 0:

Thus we deduce that (�2;k) > 0whenever j�min(Hk)j � �
1

1+˛

�
(1+�rg)

˛
1+˛ kgkk

˛
1+˛ .

Moreover the same inequality obviously holds if j�min(Hk)j < �
1

1+˛

�
(1+�rg)

˛
1+˛ kgkk

˛
1+˛

because  (�) is increasing with �. As a consequence,  (�2;k) > 0 in all cases. We
now combine this inequality, (2.14) and the monotonicity of  (�) for � � �1;k to
obtain that either �min(Mk) � �1;k < �2;k or �min(Mk) 2 [�1;k ; �2;k) because of of
(2.13). Thus �min(Mk) � �2;k , which, due to (2.15) and �� > 1, implies (2.4).

Thus a method satisfying (2.1)–(2.5) and (2.11) belongs to M:˛, but not every method
in M:˛ needs to satisfy (2.11). This latter requirement implies the following property
regarding the length of the step generated by methods in M:˛ satisfying (2.11) when
applied to functions satisfying A.˛.

Lemma 2.3. Assume that an objective function f satisfying A.˛ is minimized by a
method satisfying (2.1), (2.2), (2.11) and such that the conditioning ofMk is bounded
in that �(Mk) � �� for some �� � 1. Then there exists �s;˛ > 0 independent of k such
that, for k � 0,

(2.16) kskk � �s;˛kgk+1k
1

1+˛ :

Proof. The triangle inequality provides

(2.17) kgk+1k � kgk+1 � (gk +Hksk)k + kgk +Hkskk:
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From (2.1), gk+1 = g(xk+sk) and Taylor expansion provides gk+1 = gk+
R 1
0 H (xk+

�sk)skd� . This and (2.8) now imply

kgk+1�(gk+Hksk)k �





Z 1

0

[H (xk + �sk) �H (xk)]d�





�kskk � LH;˛(1+˛)
�1

kskk
1+˛;

so that (2.17) and (2.2) together give that

kgk+1k � LH;˛(1 + ˛)
�1kskk1+˛ + (1 + �rs)kMkk kskk:

IfMk ¤ 0, this inequality and the fact that �(Mk) is bounded then imply that

kgk+1k � LH;˛(1 + ˛)
�1

kskk
1+˛ + �(Mk)(1 + �rs)�min(Mk) kskk;

while we may ignore the last term on the right-hand side ifMk = 0. Hence, in all cases,

kgk+1k � LH;˛(1 + ˛)
�1

kskk
1+˛ + ��(1 + �rs)�min(Mk) kskk;

where we used that �(Mk) � �� by assumption. This bound and (2.11) then imply
(2.16) with �s;˛

def
= [LH;˛(1 + ˛)

�1 + ��(1 + �rs)��]
� 1

1+˛ .

Property (2.16) will be central for proving (in Appendix A2) desirable properties of a
class of methods belonging toM:˛. In addition, we now show that (2.16) is a necessary
condition for fast local convergence of methods of type (2.2), under reasonable assump-
tions; fast local rate of convergence in a neighbourhood of well-behaved minimizers is
a “trademark” of what is commonly regarded as second-order methods.

Lemma 2.4. Let f satisfy assumptions A.˛. Apply an algorithm to minimizing f that
satisfies (2.1) and (2.2) and for which

(2.18) kMkk � ��; k � 0, for some �� > 0 independent of k.

Assume also that convergence at linear or faster than linear rate occurs, namely,

(2.19) kgk+1k � �ckgkk
1+˛; k � 0;

for some �c > 0 independent of k, with �c 2 (0; 1) when ˛ = 0. Then (2.16) holds.

Proof. Let

(2.20) 0 � ˛k
def
=

kskk

kgk+1k
1

1+˛

; k � 0:

From (2.19) and the definition of ˛k in (2.20), we have that, for k � 0,

(1 � �rg)
kskk

˛k
� �c;˛(1 � �rg)kgkk � �c;˛kgk + rkk

= �c;˛k(Hk +Mk)skk � �c;˛kHk +Mkk � kskk;
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where �c;˛
def
= �

1
1+˛
c and where we used (2.2) to obtain the first equality. It follows that

(2.21) kHk +Mkk �
(1 � �rg)

˛k�c;˛

; k � 0:

The bounds (2.9) and (2.18) imply that fHk +Mkg is uniformly bounded above for all
k, namely,

(2.22) kHk +Mkk � �hl ; k � 0;

where �hl
def
= Lg + ��. Now (2.21) and (2.22) give that ˛k � 1/(�hl�c;˛) > 0, for all

k � 0, and so it follows from (2.20), that (2.16) holds with �s;˛
def
= (1��rg)/(�c1�c;˛).

It is clear from the proof of Lemma 2.4 that (2.19) is only needed asymptotically, that
is for all k sufficiently large; for simplicity, we have assumed it holds globally.

Note that letting ˛ = 1 in Lemma 2.4 provides a necessary condition for quadrati-
cally convergent methods satisfying (2.1), (2.2) and (2.18). Also, similarly to the above
proof, one can show that if superlinear convergence of fgkg to zero occurs, then (2.16)
holds with ˛ = 0 for all �s;˛ > 0, or equivalently, kgk+1k/kskk ! 0, as k ! 1.

Summarizing, we have shown that (2.16) holds for a method in M:˛ if (2.11) holds
and �(Mk) is bounded, or if linear of faster asymptotic convergence takes place for unit
steps.

2.2 Some examples of methods that belong to the classM:˛. Let us now illustrate
some of the methods that either by construction or under certain conditions belong to
M:˛. This list of methods does not attempt to be exhaustive and other practical methods
may be found to belong to M:˛.

Newton’s method Dennis and Schnabel [1983]. Newton’s method for convex opti-
mization is characterised by finding a correction sk that satisfies Hksk = �gk for
nonzero gk 2 Range(Hk). Letting

(2.23) Mk = 0; rk = 0 and ˇk = 0

in (2.2) and (2.6), respectively, yields Newton’smethod. Provided additionally that both
gk 2 Range(Hk) and Hk is positive semi-definite, sk is a descent direction and (2.3)
holds. Since (2.4) is trivially satisfied in this case, it follows that Newton’s method
belongs to the class M:˛, for any ˛ 2 [0; 1], provided it does not generate infinite
steps to violate (2.5). As Newton’s method is commonly embedded within trust-region
or regularization frameworks when applied to nonconvex functions, (2.5) will in fact,
hold as it is generally enforced for the latter methods. Note that allowing krkk > 0

subject to the second part of (2.2) then covers inexact variants of Newton’s method.

Regularization algorithms Griewank [1981], Nesterov [2004], and Cartis, N. I. M.
Gould, and P. L. Toint [2011b]. In these methods, the step sk from the current iterate
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xk is computed by (possibly approximately) globally minimizing the model

(2.24) mk(s) = fk + gT
k s +

1
2
sTHks +

�k

2 + ˛
ksk2+˛;

where the regularization weight �k is adjusted to ensure sufficient decrease of f at
xk + sk . We assume here that the minimization of (2.24) is carried accurately enough
to ensure that r ²

ssmk � (s) = Hk + �kkskI is positive semidefinite, which is always
possible because of Cartis, N. I. M. Gould, and P. L. Toint [2011a, Theorem 3.1]. The
scalar ˛ is the same fixed parameter as in the definition of A.˛ and M:˛, so that for
each ˛ 2 [0; 1], we have a different regularization term and hence what we shall call
an (2 + ˛)-regularization method. For ˛ = 1, we recover the cubic regularization
(ARC) approach Griewank [1981], Weiser, Deuflhard, and Erdmann [2007], Nesterov
and Polyak [2006], and Cartis, N. I. M. Gould, and P. L. Toint [2011a,b]. For ˛ = 0,
we obtain a quadratic regularization scheme, reminiscent of the Levenberg-Morrison-
Marquardt method Nocedal and Wright [1999]. For these (2 + ˛)-regularization meth-
ods, we have

(2.25) ˛ 2 [0; 1]; Mk = �kkskk
˛I; and ˇk =

2

2 + ˛

in (2.2) and (2.6). If scaling the regularization term is considered, then the second
of these relation is replaced by Mk = �kkskk˛Nk for some fixed scaling symmetric
positive definite matrix having a bounded condition number. Note that, by construction,
�(Mk) = 1. Since ˛ � 0, we have 0 � ˇk � 1 which is required in (2.6). A
mechanism of successful and unsuccessful iterations and �k adjustments can be devised
similarly to ARC Cartis, N. I. M. Gould, and P. L. Toint [2011a, Alg. 2.1] in order to
deal with steps sk that do not give sufficient decrease in the objective. An upper bound
on the number of unsuccessful iterations which is constant multiple of successful ones
can be given under mild assumptions on f Cartis, N. I. M. Gould, and P. L. Toint
[2011b, Theorem 2.1]. Note that each (successful or unsuccessful) iteration requires
one function- and at most one gradient evaluation.

We now show that for each ˛ 2 [0; 1], the (2 + ˛)�regularization method based on
the model (2.24) satisfies (2.5) and (2.4) when applied to f in A.˛, and so it belongs
to M:˛.

Lemma 2.5. Let f satisfy A.˛ with ˛ 2 (0; 1]. Consider minimizing f by applying an
(2 + ˛)-regularization method based on the model (2.24), where the step sk is chosen
as the global minimizer of the local ˛�model, namely ofmk(s) in (2.6) with the choice
(2.25), and where the regularization parameter �k is chosen to ensure that

(2.26) �k � �min; k � 0;

for some �min > 0 independent of k. Then (2.5) and (2.11) hold, and so the (2 + ˛)-
regularization method belongs to M:˛.
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(see Appendix A2 for details). The same argument that is used in Cartis, N. I. M. Gould,
and P. L. Toint [2011a, Lem.2.2] for the ˛ = 1 case (see also Appendix A2) provides

(2.27) kskk � max

(�
3(2 + ˛)Lg

4�k

� 1
˛

;

�
3(2 + ˛)kgkk

�k

� 1
1+˛

)
; k � 0;

so long as A.˛ holds, which together with (2.26), implies

(2.28) kskk � max

(�
3(2 + ˛)Lg

4�min

� 1
˛

;

�
3(2 + ˛)kgkk

�min

� 1
1+˛

)
; k � 0:

The assumptions A.˛, that the model is minimized globally imply that the ˛ � 1 analog
of Cartis, N. I. M. Gould, and P. L. Toint [ibid., Corollary 2.6] holds, which gives
kgkk ! 0 as k ! 1, and so fkgkkg, k � 0, is bounded above. The bound (2.5) now
follows from (2.28).

Using the same techniques as in Cartis, N. I. M. Gould, and P. L. Toint [ibid., Lemma
5.2] that applies when f satisfies A.1, it is easy to show for the more general A.˛ case
that �k � c� max(�0; LH;˛) for all k, where c� is a constant depending solely on ˛
and algorithm parameters. It then follows from (2.25) that (2.11) holds and therefore
that the (2 + ˛)-regularization method belongs to M:˛ for ˛ 2 (0; 1].

We cannot extend this result to the ˛ = 0 case unless we also assume thatHk is positive
semi-definite. If this is the case, further examination of the proof of Cartis, N. I. M.
Gould, and P. L. Toint [ibid., Lem.2.2] allows us to remove the first term in the max in
(2.28), and the remainder of the proof is valid.

We note that bounding the regularization parameter �k away from zero in (2.26) ap-
pears crucial when establishing the bounds (2.5) and (2.4). Requiring (2.26) implies that
the Newton step is always perturbed, but does not prevent local quadratic convergence
of ARC Cartis, N. I. M. Gould, and P. L. Toint [2011b].

Goldfeld-Quandt-Trotter-type (GQT)methodsGoldfeld, Quandt, and Trotter [1966].
Let ˛ 2 (0; 1]. These algorithms setMk = �kI , where

(2.29) �k =

(
0; when �min(Hk) � !kkgkk

˛
1+˛ ;

��min(Hk) + !kkgkk
˛

1+˛ ; otherwise,

in (2.2), where !k > 0 is a parameter that is adjusted so as to ensure sufficient objective
decrease. (Observe that replacing ˛

1+˛
by 1 in the exponent of kgkk in (2.29) recovers

the original method of Goldfeld et al. Goldfeld, Quandt, and Trotter [ibid.].) It is
straightforward to check that (2.3) holds for the choice (2.29). Thus the GQT approach
takes the pure Newton step whenever the Hessian is locally sufficiently positive definite,
and a suitable regularization of this step otherwise. The parameter !k is increased by
a factor, say 
1 > 1, and xk+1 left as xk whenever the step sk does not give sufficient
decrease in f (i.e., iteration k is unsuccessful), namely when

(2.30) �k
def
=
fk � f (xk + sk)

fk �mk(sk)
� �1;
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where �1 2 (0; 1) and

(2.31) mk(s) = fk + gT
k s +

1
2
sTHks

is the model (2.6) with ˇk = 0. If �k > �1, then !k+1 � !k and xk+1 is constructed as
in (2.1). Note that the choice (2.29) implies that (2.4) holds, provided !k is uniformly
bounded above. We show that the latter, as well as (2.5), hold for functions in A.˛.

Lemma 2.6. Let f satisfy A.˛ with ˛ 2 (0; 1]. Consider minimizing f by applying a
GQT method that sets �k in (2.2) according to (2.29), measures progress according to
(2.30), and chooses the parameter !k and the residual rk to satisfy, for k � 0,

(2.32) !k � !min k � 0: and rT
k sk � 0:

Then (2.5) and (2.4) hold, and so the GQT method belongs to M:˛.

Note that the second part of (2.32) merely requires that sk is not longer that the line
minimumof the regularizedmodel along the direction sk , that is 1 � argmin��0mk(�sk).

Proof. Let us first show (2.5). Since !k > 0, and gk + rk ¤ 0 until termination, the
choice of �k in (2.29) implies that �k + �min(Hk) > 0, for all k, and so (2.2) provides

(2.33) sk = �(Hk + �kI )
�1(gk + rk);

and hence,

(2.34) kskk � k(Hk + �kI )
�1

k � kgk + rkk =
(1 + �rg)kgkjj

�k + �min(Hk)
; k � 0:

It follows from (2.29) and the first part of (2.32) that, for all k � 0,

(2.35) �k + �min(Hk) � !kkgkk
˛

1+˛ � !minkgkk
˛

1+˛ ;

This and (2.34) further give

(2.36) kskk �
(1 + �rg)kgkk

1
1+˛

!min
; k � 0:

As global convergence assumptions are satisfied when f in A.˛ Conn, N. I. M. Gould,
and P. L. Toint [2000] and Goldfeld, Quandt, and Trotter [1966], we have kgkk ! 0

as k ! 1 (in fact, we only need the gradients fgkg to be bounded). Thus (2.36)
implies (2.5).

Due to (2.29), (2.4) holds if we show that f!kg is uniformly bounded above. For
this, we first need to estimate the model decrease. Taking the inner product of (2.2)
with sk , we obtain that

�gT
k sk = sT

k Hksk + �kkskk
2

� rT
k sk :
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Substituting this into the model decrease, we deduce also from (2.6) with ˇk = 0 that

fk�mk(sk) = �gT
k sk�

1
2
sT

k Hksk = 1
2
sT

k Hksk+�kkskk
2
�rT

k sk �
�
1
2
�min(Hk) + �k

�
kskk

2:

where we used the second part of (2.32) to obtain the last inequality. It is straightforward
to check that this and (2.35) now imply

(2.37) fk �mk(sk) �
1
2
!kkgkk

˛
1+˛ � kskk

2:

We show next that iteration k is successful for !k sufficiently large. From (2.30) and
second-order Taylor expansion of f (xk + sk), we deduce

j�k � 1j =

ˇ̌̌̌
f (xk + sk) �mk(sk)

fk �mk(sk)

ˇ̌̌̌
�

jHk �H (�k)j � kskk2

2(fk �mk(sk))
�

LH;˛kskk2+˛

2(fk �mk(sk))
:

This and (2.37) now give

(2.38) j�k � 1j �
LH;˛kskk˛

!kkgkk
˛

1+˛

�
LH;˛

!˛
min!k

;

where to obtain the last inequality, we used (2.36). Due to (2.30), iteration k is suc-
cessful when j�k � 1j � 1 � �1, which from (2.38) is guaranteed to hold whenever
!k �

LH;˛

!˛
min(1��1)

. As on each successful iteration we set !k+1 � !k , it follows that

(2.39) !k � !
def
= max

�
!0;


1LH;˛

!˛
min(1 � �1)

�
; k � 0;

where the max term addresses the situation at the starting point and the 
1 factor is
included in case an iteration was unsuccessful and close to the bound. This concludes
proving (2.4).

Trust-region algorithms Conn, N. I. M. Gould, and P. L. Toint [2000]. These meth-
ods compute the correction sk as the global solution of the subproblem

(2.40) minimize fk + gT
k s +

1
2
sTHks subject to ksk � ∆k ;

where∆k is an evolving trust-region radius that is chosen to ensure sufficient decrease
of f at xk + sk . The resulting global minimizer satisfies (2.2)–(2.3) Conn, N. I. M.
Gould, and P. L. Toint [ibid., Corollary 7.2.2] with Mk = �kI (or Mk = �kNk if
scaling is considered) and rk = 0. The scalar �k is the Lagrange multiplier of the
trust-region constraint, satisfies

(2.41) �k � maxf0;��min(Hk)g

and is such that �k = 0 whenever kskk < ∆k (and then, sk is the Newton step) or
calculated using (2.2) to ensure that kskk = ∆k . The scalar ˇk = 0 in (2.6). The
iterates are defined by (2.1) whenever sufficient progress can be made in some relative
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function decrease (so-called successful iterations), and they remain unchanged other-
wise (unsuccessful iterations) while ∆k is adjusted to improve the model (decreased
on unsuccessful iterations, possibly increased on successful ones). The total number
of unsuccessful iterations is bounded above by a constant multiple of the successful
ones plus a (negligible) term in log � Gratton, Sartenaer, and P. L. Toint [2008, page
23] provided∆k is not increased too fast on successful iterations. One successful itera-
tion requires one gradient and one function evaluation while an unsuccessful one only
evaluates the objective.

The property (2.5) ofM:˛methods can be easily shown for trust-regionmethods, see
Lemma 2.7. It is unclear however, whether conditions (2.4) or (2.11) can be guaranteed
in general for functions in A.˛. The next lemma gives conditions ensuring a uniform
upper bound on the multiplier �k , which still falls short of (2.4) in general.

Lemma 2.7. Let f satisfy assumptions A.0. Consider minimizing f by applying a
trust-region method as described in Conn, N. I. M. Gould, and P. L. Toint [2000, Al-
gorithm 6.1.1], where the trust-region subproblem is minimized globally to compute sk
and where the trust-region radius is chosen to ensure that

(2.42) ∆k � ∆max; k � 0;

for some ∆max > 0. Then (2.5) holds. Additionally, if

(2.43) kgk+1k � kgkk; for all k sufficiently large,

then �k � �max for all k and some �max > 0, and �min(Mk) is bounded.

Proof. Consider the basic trust-region algorithm as described in Conn, N. I. M. Gould,
and P. L. Toint [ibid., Algorithm 6.1.1], using the same notation. Since the global
minimizer sk of the trust-region subproblem is feasible with respect to the trust-region
constraint, we have kskk � ∆k , and so (2.5) follows trivially from (2.42).

Clearly, the upper bound on �k holds whenever �k = 0 or �k = ��min(Hk) � Lg .
Thus it is sufficient to consider the case when �k > 0 and Hk + �kI � 0. The first
condition implies that the trust-region constraint is active, namely kskk = ∆k Conn,
N. I. M. Gould, and P. L. Toint [ibid., Corollary 7.2.2]. The second condition together
with (2.2) implies, as in the proof of Lemma 2.2, that (2.12) holds. Thus we deduce

∆k �
kgkk

�k + �min(Hk)
;

or equivalently,

(2.44) �k �
kgkk

∆k

� �min(Hk) �
kgkk

∆k

+ Lg ; k � 0:

It remains to show that

(2.45) fkgkk/∆kg is bounded above independently of k.
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By Conn, N. I. M. Gould, and P. L. Toint [ibid., Theorem 6.4.2], we have that there
exists c 2 (0; 1) such that the implication holds

(2.46) ∆k � ckgkk H) ∆k+1 � ∆k ; i.e., k is successful.

(Observe that the Cauchy model decrease condition Conn, N. I. M. Gould, and P. L.
Toint [ibid., Theorem 6.3.3] is sufficient to obtain the above implication.) Let 
1 2

(0; 1) denote the largest factor we allow ∆k to be decreased by (during unsuccessful
iterations). Using a similar argument to that of Conn, N. I. M. Gould, and P. L. Toint
[ibid., Theorem 6.4.3], we let k � k0 be the first iterate such that

(2.47) ∆k+1 < c
1kgk+1k;

where k0 is the iteration from which onwards (2.43) holds. Then since ∆k+1 � 
1∆k

and from (2.43) we have that∆k < ckgkk. This and (2.46) give

∆k+1 � ∆k � c
1kgkk � c
1kgk+1k;

where to obtain the second and third inequalities, we used the hypothesis and (2.43),
respectively. We have reached a contradiction with our assumption that k + 1 is the
first iteration greater than k0 such that (2.47) holds. Hence there is no such k and we
deduce that

(2.48) ∆k � min
˚
∆k0

; c
1kgkk
	

for all k � k0.

Note that since gk remains unchanged on unsuccessful iterations, (2.43) trivially holds
on such iterations. Since the assumptions of Conn, N. I. M. Gould, and P. L. Toint
[ibid., Theorem 6.4.6] are satisfied, we have that kgkk ! 0, as k ! 1. This and
(2.48) imply (2.45). The desired conclusion then follows from (2.44).

Note that if (2.19) holds for some ˛ 2 [0; 1], then (2.43) is satisfied, and so Lemma 2.7
shows that if (2.19) holds, then (2.18) is satisfied. It follows from Lemma 2.4 that fast
convergence of trust-region methods for functions in A.˛ alone is sufficient to ensure
(2.16), which in turn is connected to our definition of the classM:˛. However, the prop-
erties of the multipliers (in the sense of (2.4) for any ˛ 2 [0; 1] or even (2.16)) remain
unclear in the absence of fast convergence of the method. Based on our experience, we
are inclined to believe that generally, the multipliers �k are at best guaranteed to be
uniformly bounded above, even for specialized, potentially computationally expensive,
rules of choosing the trust-region radius.

As the Newton step is taken in the trust-region framework satisfying (2.2) whenever
it is within the trust region and gives sufficient decrease in the presence of local con-
vexity, the A.1- (hence A.˛-) example of inefficient behaviour for Newton’s method
of worst-case evaluation complexity precisely ��2 can be shown to apply also to trust-
region methods Cartis, N. I. M. Gould, and P. L. Toint [2010] (see also Gratton, Sarte-
naer, and P. L. Toint [2008]).

Linesearch methods Dennis and Schnabel [1983] and Nocedal and Wright [1999].
We finally consider methods using a linesearch to control improvement in the objec-
tive at each step. Such methods compute xk+1 = xk + sk , k � 0, where sk is defined
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via (2.2) in whichMk is chosen so thatHk +Mk , the Hessian of the selected quadratic
model mk(s), is “sufficiently” positive definite, and rk = (1 � �k)gk , yielding a step-
size �k 2 [1 � �rg ; 1] which is calculated so as to decrease f (the linesearch); this
is always possible for sufficiently small �k (and hence sufficiently small �rg .) The
precise definition of ”sufficient decrease” depends on the particular linesearch scheme
being considered, but we assume here that

�k = 1 is acceptable whenever mk(sk) = f (xk + sk):

In other words, we require the unit step to be acceptable when the model and the true
objective function match at the trial point. Because the minimization of the quadratic
model along the step always ensure thatmk(sk) = f (xk)+

1
2
gksk , the above condition

says that sk must be acceptable with �k = 1 whenever f (xk + sk) = f (xk) +
1
2
gksk .

This is for instance the case for the Armijo and Goldstein linesearch conditions(4), two
standard linesearch techniques. As a consequence, the corresponding linesearch vari-
ants of Newton’s method and of the (2 + ˛)-regularization methods also belong to
M:˛ (with ˇk = 1 for all k), and the list is not exhaustive. Note that linesearch
methods where the search direction is computed inexactly are also covered by setting
rk = gk ��k(gk +wk) for some “error vector” wk , provided the second part of (2.2)
still holds.

3 Examples of inefficient behaviour

After reviewing the methods inM:˛, we now turn to showing they can converge slowly
when applied to specific functions with fixed range(5) and the relevant degree of smooth-
ness.

3.1 General methods inM:˛. Let ˛ 2 [0; 1] and � 2 (0; 1) be given and consider an
arbitrary method in M:˛. Our intent is now to construct a univariate function f M:˛

� (x)

satisfying A.˛ such that

(3.1) f M:˛
� (0) = 1; f M:˛

� (x) 2 [a; b] for x � 0;

for some constants a � b independent of � and ˛, and such that the method will termi-
nate in exactly

(3.2) k�;˛ =
l
��

2+˛
1+˛

m
iterations (and evaluations of f , g andH ).

We start by defining the sequences fk , gk andHk for k = 0; : : : ; k�;˛ by

(3.3) fk = 1 �
1
2
k�

2+˛
1+˛ ; gk = �2 � fk and Hk = 4 �

˛
1+˛ f 2

k :

(4)With reasonable algorithmic constants, see Appendix A1.
(5)At variancewith the examples proposed in Cartis, N. I. M. Gould, and P. L. Toint [2010] and Cartis, N.

Gould, and P. L. Toint [2011].
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They are intended to specify the objective function, gradient and Hessian values at
successive iterates generated by the chosen method in M:˛, according to (2.1) and
(2.2) for some choice of multipliers f�kg = fMkg = f�min(Mk)g satisfying (2.3) and
(2.4). In other words, we impose that fk = f M:˛

� (xk), gk = rf M:˛
� (xk) and Hk =

r2f M:˛
� (xk) for k 2 K

def
= f0; : : : ; k�;˛g. Note that fk , jgkj andHk are monotonically

decreasing and that, using (3.2),

(3.4) fk 2 [ 1
2
; 1] for k 2 K:

In addition, (2.3) and (2.4) impose that, for k 2 K,

0 � �k + 4�
˛

1+˛ f 2
k � �� max[4�

˛
1+˛ f 2

k ; (2�fk)
˛

1+˛ ] = 4���
˛

1+˛ f 2
k :

yielding that

(3.5) �k 2

h
0; 4(�� � 1)�

˛
1+˛ f 2

k

i
;

As a consequence, we obtain, using both parts of (2.2), that, for k 2 K,

(3.6) sk = �k

�
1

1+˛

2fk

for some �k 2

�
1 � �rg

��

; 1 + �rg

�
:

Note that our construction imposes that

(3.7)

mk(sk) = fk + gksk + 1
2
gksk + 1

2
sk(Hk + ˇk�k)sk

= fk + gksk + 1
2
sk [�gk + rk + (ˇk � 1)�ksk ]

� fk �
1
2
jgkjsk �

1
2
�rg jgkjsk + 1

2
�2

k
(�� � 1)(ˇk � 1)�

2+˛
1+˛

� fk �
1
2
�k�

2+˛
1+˛ [1 + �rg + �k(1 � ˇk)(�� � 1)]

� fk �
1
2
�

2+˛
1+˛ (1 + �rg)

2[1 + (1 � ˇk)(�� � 1)]

� fk �
1
2
�

2+˛
1+˛ (1 + �rg)

2��

where we have used (2.2), (3.3), (3.6), (3.5) and ˇk � 1. Hence, again taking (3.3) into
account,

(3.8)
fk � fk+1

fk �mk(sk)
�

1
2
�

2+˛
1+˛

1
2
�

2+˛
1+˛ ��(1 + �rg)2

=
1

(1 + �rg)2��

2 (0; 1);

and sufficient decrease of the objective function automatically follows. Moreover,
given (3.4), we deduce from (3.6) that jskj � 1 for k 2 K and (2.5) holds with �s = 1,
as requested for a method in M:˛. It also follows from (2.1) and (3.6) that, if x0 = 0,

(3.9) sk > 0 and xk =

k�1X
i=0

si ; k = 0; : : : ; k�;˛:

We therefore conclude that the sequences ffkg
k�;˛

k=0
, fgkg

k�;˛

k=0
, fHkg

k�;˛

k=0
, f�kg

k�;˛�1

k=0
and

fskg
k�;˛�1

k=0
can be viewed as produced by our chosen method in M:˛, and, from (3.3),

that termination occurs precisely for k = k�;˛ , as desired.
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We now construct the function f M:˛
� (x) for x 2 [0; xk�;˛

] using Hermite interpola-
tion. We set

(3.10) f M:˛
� (x) = pk(x�xk)+fk+1 for x 2 [xk ; xk+1] and k = 0; : : : ; k�;˛ � 1,

where pk is the polynomial

pk(s) = c0;k + c1;ks + c2;ks
2 + c3;ks

3 + c4;ks
4 + c5;ks

5;

with coefficients defined by the interpolation conditions

(3.11)

pk(0) = fk � fk+1; pk(sk) = 0;

p0
k
(0) = gk ; p0

k
(sk) = gk+1;

p
00

k
(0) = Hk ; p

00

k
(sk) = Hk+1;

where sk is defined in (3.6). These conditions yield the following values for the coeffi-
cients

(3.12) c0;k = fk � fk+1; c1;k = gk ; c2;k = 1
2
Hk ;

with the remaining coefficients satisfying0@ s3k s4
k

s5
k

3s2
k

4s3
k

5s4
k

6sk 12s2
k

20s3
k

1A0@ c3;k

c4;k

c5;k

1A =

0@ ∆fk � gksk �
1
2
sT

k
Hksk

∆gk �Hksk
∆Hk

1A ;
where

∆fk = fk+1 � fk ; ∆gk = gk+1 � gk and ∆Hk = Hk+1 �Hk :

Hence we obtain after elementary calculations that

(3.13)

c3;k = 10
∆fk

s3k
� 4

∆gk

s2k
+ ∆Hk

2sk
� 10

gk

s2k
�
Hk
sk

;

c4;k = �15
∆fk

s4k
+ 7

∆gk

s3k
�

∆Hk

s2k
+ 15

gk

s3k
+ Hk

2s2k
;

c5;k = 6
∆fk

s5k
� 3

∆gk

s4k
+ ∆Hk

2s3k
� 6

gk

s4k
;

The top three graphs of Figure 3.1 illustrate the global behaviour of the resulting
function f M:˛

� (x) and of its first and second derivatives for x 2 [0; xk�;˛
], while the

bottom ones show more detail of the first 10 iterations. The figure is constructed using
� = 5:10�2 and ˛ = 1

2
, which then yields that k�;˛ = 148. In addition, we set �k =

1
10 jgkj

˛
1+˛ for k = 0; : : : ; k�;˛ . The nonconvexity of f M:˛

� (x) is clear from the bottom
graphs.
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Figure 3.1: f M:˛
� (x) (left) and its first (center) and second (right) derivatives

as a function of x for ˛ = 1
2 and � = 5:10�2 (top: x 2 [0; xk�;˛

]; bottom:
x 2 [0; x10]). Horizontal dotted lines indicate values of �� and � in the central
top graph.
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Lemma 3.1. The function f M:˛
� defined above on the interval [0; xk�;˛

] can be ex-
tended to a function from IR to IR satifying A.˛ and whose range is bounded indepen-
dently of ˛ and �.

Proof. We start by showing that, on

[0; xk�;˛
] =

[
k2K

[xk ; xk + sk ];

f M:˛
� is bounded in absolute value independently of � and ˛, twice continuously dif-

ferentiable with Lipschitz continuous gradient and ˛-Hölder continous Hessian. Recall
first (3.10) provide that f M:˛

� is twice continuously differentiable by construction on
[0; xk�;˛

]. It thus remains to investigate the gradient’s Lipschitz continuity and Hes-
sian’s ˛�Hölder continuity, as well as whether jf M:˛

� (x)j is bounded on this interval.
Defining now

(3.14) �k
def
=
�k

2

2fk � 1

fk

2 [0; 1
2
�k ] and �(�)

def
= 2 �

1

�
2 [2 �

��

1 � �rg

; 1 + �rg ]

(where we used (3.4) and (3.6)), we obtain from (3.2), (3.3), (3.6) and (3.13), that, for
k 2 K,
(3.15)

jc3;k js2
k

= �fk

�
20 � 10

�k
� 2�k

�
� �

3+2˛
1+˛ (4 + �k) � �

�
10j�(�)j + 2� + 9

2 �
2+˛
1+˛

�
= O(�);

jc4;k js3
k

= �fk

�
15
�k

� 30 + �k

�
+ �

3+2˛
1+˛ (7 + 2�k) � �

�
15j�(�)j + � + 8�

2+˛
1+˛

�
= O(�);

jc5;k js4
k

= �fk

�
12 � 6

�k

�
� �

3+2˛
1+˛ (3 + �k) � �

�
6j�(�)j + 7

2 �
2+˛
1+˛

�
= O(�);

where we also used � � 1 and (3.4). To show that the Hessian of f M:˛
� is globally

˛�Hölder continuous on [0; xk�;˛
], we need to verify that (2.8) holds for all x; y in this

interval. From (3.10), this is implied by

(3.16) jp
000

(s)j � cjsj�1+˛; for all s 2 [0; sk ] and k 2 K,

for some c > 0 independent of �, s and k. We have from the expression of pk and
s 2 [0; sk ] that

(3.17)
jp

000

k
(s)j � jsj1�˛ � (6jc3;kj + 24jc4;kjsk + 60jc5;kjs2

k
)s1�˛

k

= (6jc3;kjs2
k
+ 24jc4;kjs3

k
+ 60jc5;kjs4

k
)s

�(1+˛)

k
:

The boundedness of this last right-hand side on [0; xk�;˛
] , and thus the ˛-Hölder conti-

nuity of the Hessian of f M , then follow from (3.15), (3.6) and (3.4).
Similarly, to show that the gradient off M is globally Lipschitz continuous in [0; xk�;˛

]

is equivalent to proving that p00

k
(s) is uniformly bounded above on the interval [0; sk ]

for k 2 K. Since sk > 0, we have

(3.18)
jp

00

k
(s)j � 2jc2;kj + 6jc3;kjsk + 12jc4;kjs2

k
+ 20jc5;kjs3

k

= 2jc2;kj + (6jc3;kjs2
k
+ 12jc4;kjs3

k
+ 20jc5;kjs4

k
)s�1

k
:
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Then the third part of (3.3) and the bounds � � 1, (3.15), (3.12), (3.6) and (3.4) again
imply the boundedness of the last right-hand side on [0; xk�;˛

], as requested. Finally,
the fact that jf M:˛

� j is bounded on [0; xk�;˛
] results from the observation that, on the

interval [0; sk ] with k 2 K,

jpk(s)j � fk + jgkjjskj + 1
2
jHkj jskj

2 + (jc3;kjs2k + jc4;kjs3k + jc5;kjs4k)sk

from which a finite bound a independent from ˛ and � again follows from � � 1, (3.3),
(3.10), (3.15), (3.12), (3.6) and (3.4). We have thus proved that f M:˛

� satisfies the
desired properties on [0; xk�;˛

].
We may then smoothly prolongate f M:˛

� for x 2 IR, for instance by defining two
additional interpolation intervals [x�1; x0] = [�1; 0] and [xk�;˛

; xk�;˛
+ 1] with end

conditions

f�1 = 1; fk�;˛+1 = fk�;˛
and g�1 = H�1 = gk�;˛+1 = Hk�;˛+1 = 0;

and setting

f M:˛
� (x) =

8<:
1 for x � �1;

pk(x � xk) + fk+1 for x 2 [xk ; xk+1] and k 2 f�1; : : : ; k�;˛g;

f M:˛
� (xk�;˛

) for x � xk�;˛
+ 1;

which subsumes (3.10). Using arguments similar to those used above, it is easy to verify
from (3.12), (3.13) and s�1 = sk�;˛

= 1 that all desired properties are maintained.

We formulate the results of this development in the following theorem.

Theorem 3.2. For every � 2 (0; 1), every ˛ 2 [0; 1] and every method in M:˛, a
function f M:˛

� satisfying A.˛ with values in a bounded interval independent of � and
˛ can be constructed, such, when applied to f M:˛

� , the considered method terminates
exactly at iteration

k�;˛ =
l
��

2+˛
1+˛

m
:

with the first iterate xk�;˛
such that krxf

M:˛
� (xk�;˛

)k � �.

Note that the prolongation of f M:˛
� (x) to x � 0 suggested as an example in the proof

of Lemma 3.1 admits an isolated finite global minimizer. Indeed, since the gk�;˛
< 0,

there must be a value lower than f (xk�;˛
) in (xk�;˛

; xk�;˛
+1), and thus the global min-

imizer must lie in one of the constructed sub-intervals in (�1; xk�;˛+1); since f M:˛
� (x)

is quintic (and not constant) in each of these, the global minimizer must therefore be
isolated.

3.2 The inexact Newton’s method. It is interesting that the technique developed in
the previous subsection can also be used to derive an O

�
��2

�
lower bound on worst-

case evaluation complexity for an inexact Newton’smethod applied to a function having
Lipschitz continuous Hessians on the path of iterates. This is stronger than using The-
orem 3.2 above for ˛ = 1, as it would result in a weaker O

�
��3/2

�
lower bound, or
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for ˛ = 0 as it would then only guarantee bounded Hessians. In the spirit of Cartis,
N. I. M. Gould, and P. L. Toint [2010], this new function is constructed by extending to
IR2 the unidimensional f M:0

� (x) obtained in the previous section for the specific choice
Mk = 0, which then ensures that �k 2 [1 � �rg ; 1 + �rg ] for all k (see (3.5) and (3.6)).
The proposed extension is of the form

(3.19) hN
� (x; y)

def
= f M:0

� (x) + u�(y);

where we still have to specify the univariate function u� such that Newton’s method
applied to u� converges with large steps. In order to define it, we start by redefining

k� = k�;0 = d��2
e and K = f0; : : : ; k�g:

Then we set, for k 2 K,

(3.20) uk = 1 �
1
2
k�2; gu

k = �2�2uk ; Hu
k = 2jgu

k juk > 0;

and

(3.21) su
k =

�k

2uk

with �k 2 [1 � �rg ; 1 + �rg ] and uk 2 [ 1
2
; 1];

this definition allowing for

Hu
k s

u
k = �gu

k + ru
k with jru

k j � �rg jgu
k j:

(Remember that Mk = 0 because we are considering Newton’s method.) Note that
sufficient decrease is obtained in manner similar to (3.7)-(3.8), because of (3.20), (3.21)
and �k = 0, yielding that uk �uk+1 � �(gu

k
su

k
+ 1

2
Hu

k
(su

k
)2)/(1+ �rg). Setting now

y0 = 0 and yk+1 = yk + s
u
k
for k 2 f1; : : : ; k�g, we may then, as in Section 3.1, define

(3.22) u�(y) = pu
k (y � yk) + uk+1 for y 2 [yk ; yk+1] and k = 0; : : : ; k� � 1,

where pu
k
is a fifth degree polynomial interpolating the values and derivatives given by

(3.20) on the interval [0; su
k
]. We then obtain the following result.

Theorem3.3. For every � 2 (0; 1), there exists a function hN
� with Lipschitz continuous

gradient and Lipschitz continuous Hessian along the path of iterates [
k��1
k=0

[xj ; xj+1],
and with values in a bounded interval independent of �, such that, when applied to hN

� ,
Newton’s terminates exactly at iteration

k� =
˙
��2

�
with the first iterate xk�

such that krxf
M:˛

� (xk�
)k � �

p
1 + �2.

Proof. One easily verifies from (3.20), (3.21) and (3.13) that the interpolation coeffi-
cients, now denoted by jdi;kj, are bounded for all k 2 f0; : : : ; k� �1g and i 2 f0; : : : ; 5g.
This observation and (3.21) in turn guarantee that u� and all its derivatives (includ-
ing the third) remain bounded on each interval [0; su

k
] by constants independent of �.
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As in Lemma 3.1, we next extend u� to the whole of IR while preserving this prop-
erty. We then construct hN using (3.19). From the properties of f M:0

� and u� , we
deduce that hN

� is twice continuously differentiable and has a range bounded inde-
pendently of �. Moreover, it satisfies A.0. When applied on hN

� (x; y), Newton’s
generates the iterates (xk ; yk) and its gradient at the k�-th iterate is (�; �2) so that
krhN (xk�

; yk�
)k = �

p
1 + �2, prompting termination. Before that, the algorithm gen-

erates the steps (sk ; su
k
), where, because both fk and uk belong to [ 1

2
; 1] and because

of (3.6) with ˛ = 0,

(3.23) sk 2 [�(1 � �rg); 2�(1 + �rg)] and su
k 2 [1 � �rg ; 2(1 + �rg)]:

Thus the absolute value of the third derivative of hN
� (x; y) is given, for (x; y) in the

k-th segment of the path of iterates, by

(3.24)

1

k(sk ; s
u
k
)k

ˇ̌̌
p

000

k (x � xk)s
3
k + (pu

k )
000

(y � yk)(s
u
k )

3
ˇ̌̌

�
1

1 � �rg

h
jp

000

k
(x � xk)js

3
k
+ j(pu

k
)

000

(y � yk)j(s
u
k
)3
i

= 1
1 � �rg

h �
6jc3;kj + 24jc4;kjsk + 60jc5;kjs2

k

�
s3

k

+
�
6jd3;kj + 24jd4;kjsu

k
+ 60jd5;kj(su

k
)2
�
(su

k
)3
i

= 1
1 � �rg

h �
6jc3;kjs2

k
+ 24jc4;kjs3

k
+ 60jc5;kjs4

k

�
sk

+6jd3;kj(su
k
)3 + 24jd4;kj(su

k
)4 + 60jd5;kj(su

k
)5
i
;

where we used the fact that k(sk ; su
k
)k � ksu

k
k: and (3.23). But, in view of (3.15), (3.14)

with �k 2 [1��rg ; 1+�rg ], (3.23), � � 1 and the boundedness of the di;k , the last right-
hand side of (3.24) is bounded by a constant independent of �. Thus the third derivative
of hN

� (x; y) is bounded on every segment by the same constant, and, as a consequence,
the Hessian of hN

� (x; y) is Lipschitz continuous of each segment, as desired.

Note that the same result also holds for any method in M:0 withMk small enough to
guarantee that sk is bounded away from zero for all k.

4 Complexity and optimality for methods in M:˛

We now consider the consequences of the examples derived in Section 3 on the evalua-
tion complexity analysis of the various methods identified in Section 2 as belonging to
M:˛.

4.1 Newton’s method. First note that the third part of (3.3) ensures that Hk > 0 so
that the Newton iteration is well-defined for the choice (2.23). This choice corresponds
to setting �k = 1 for all k � 0 in the example of Section 3. So we first conclude
from Theorem 3.2 that Newton’s method may require ��(2+˛)/(1+˛) evaluations when
applied on the resulting objective function f M:˛

� satisfying A.˛ to generate jgkj � �.
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However, Theorem 3.3 provides the stronger result that it may in fact require ��2 eval-
uations (as a method in M:0) for nearly the same task (we traded Lipschitz continuity
of the Hessian on the whole space for that along the path of iterates). As a consequence
we obtain that Newton’s method is not optimal in M:˛ as far as worst-case evaluation
complexity is concerned.

The present results also improves on the similar bound given in Cartis, N. Gould,
and P. L. Toint [2011], in that the objective function on Sections 3.1 and 3.2 ensure the
existence of a lower bound flow on f M:˛

� (x) such that f M:˛
� (x0) � flow is bounded,

while the latter difference is unbounded in Cartis, N. Gould, and P. L. Toint [ibid.]
(for ˛ 2 f0; 1g) as the number of iterations approaches ��2. We will return to the
significance of this observation when discussing regularization methods.

Since the steepest-descent method is known to have a worst-case evaluation com-
plexity of O

�
��2

�
when applied on functions having Lipschitz continuous gradients

Nesterov [2004, p. 29] , Theorem 3.3 shows that Newton’s method may, in the worst
case, converge as slowly as steepest descent in the worst case. Moreover, we show
in Appendix A1 that the quoted worst-case evaluation complexity bound for steepest
descent is sharp, which means that steepest-descent and Newton’s method are undistin-
guishable from the point of view of worst-case complexity orders.

Note also that if the Hessian of the objective is unbounded, and hence, we are outside
of the class A.0, the worst-case evaluation complexity of Newton’s method worsens,
and in fact, it may be arbitrarily bad Cartis, N. I. M. Gould, and P. L. Toint [2010].

4.2 Cubic and other regularizations. Recalling our discussion of the (2+˛)-regularization
method in Section 2.2, we first note, in the example of Section 3.1, that, because of (2.2)
and (2.3), sk is a minimizer of the model (2.6) with ˇk = �k at iteration k, in that

(4.1) mk(sk) = f M:˛
� (xk + sk) = fk+1

for k 2 K. Thus every iteration is successful as the objective function decrease exactly
matches decrease in the model. Hence the choice �k = � > 0 for all k is allowed
by the method, and thus �k = �kskk2+˛ satisfies (2.3) and (2.4). Theorem 3.2 then
shows that this method may require at least ��(2+˛)/(1+˛) iterations to generate an
iterate with jgkj � �. This is important as the upper bound on this number of iterations
was proved(6) in Cartis, N. I. M. Gould, and P. L. Toint [2011b] to be

(4.2) O
�
[f (x0) � flow)] �

�
2+˛
1+˛

�
where flow is any lower bound of f (x). Since we have that f (x0) � flow is a fixed
number independent of � for the example of Section 3.1, this shows that the ratio

(4.3) �comp
def
=

upper bound on the worst-case evaluation complexity
lower bound on the worst-case evaluation complexity

(6)As a matter of fact, Cartis, N. I. M. Gould, and P. L. Toint [2011b] contains a detailed proof of the result
for ˛ = 1, as well as the statement that it generalizes for ˛ 2 (0; 1]. Because of the central role of this result
in the present paper, a more detailed proof of the worst-case evaluation complexity bound for ˛ 2 (0; 1] in
provided as Appendix A2.
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for the (2 + ˛)-regularization method is bounded independently of � and ˛. Given
that (4.2) involves an unspecified constant, this is the best that can be obtained as far
as the order in � is concerned, and yields the following important result on worst-case
evaluation complexity.

Theorem 4.1. When applied to a function satisfying A.˛, the (2 + ˛)-regularization
method may require at most (4.2) function and derivatives evaluations. Moreover this
bound is sharp (in the sense that �comp is bounded independently of � and ˛) and the
(2 + ˛)-regularization method is optimal in M:˛.

Proof. The optimality of the (2 + ˛)-regularization method within M:˛ results from
the observation that the example of Section 3 implies that no method in M:˛ can have
a worst-case evaluation complexity of a better order.

In particular, the cubic regularization method is optimal for smooth optimization prob-
lems with Lipschitz continuous second derivatives. As we have seen above, this is in
contrast with Newton’s method.

Note that Theorem 4.1 as stated does not result from the statement in Cartis, N.
Gould, and P. L. Toint [2011] that the bound (4.2) is “essentially sharp”. Indeed this lat-
ter statement expresses the fact that, for any � > 0, there exists a function independent
of �, on which the relevant method may need at least ��3/2+� evaluations to terminate
with jgkj � �. But, for any fixed �, the value of f (x0)�flow tends to infinity when, in
the example of that paper, the number of iterations to termination approaches ��3/2 as �
goes to zero. As a consequence, the numerator of the ratio (4.3), that is (4.2), and �comp
itself are unbounded for that example. Theorem 4.1 thus brings a formal improvement
on the conclusions of Cartis, N. Gould, and P. L. Toint [ibid.].

4.3 Goldfeld-Quandt-Trotter. Recalling (2.29), we can set!k = ! in the algorithm
as every iteration is successful due to (4.1) which, with (3.3) and fk 2 [ 1

2
; 1] gives that

�k+�min(Hk) � !jgkj
˛

1+˛ , which is in agreement with (2.5) and (2.4). Thus the lower
bound of ��(2+˛)/(1+˛) iterations for termination also applies to this method.

An upper bound on the worst-case evaluation complexity for the GQT method can
be obtained by the following argument. We first note that, similarly to regularization
methods, we can bound the total number of unsuccessful iterations as a constant mul-
tiple of the successful ones, provided !k is chosen such that (2.32) holds. Moreover,
since f satisfies A.˛, its Hessian is bounded above by (2.9). In addition, we have
noted in Section 2.2 that kgkk is also bounded above. In view of (2.29) and (2.39),
this in turn implies that kHk + �kIk is also bounded above. Hence we obtain from
(2.33) that kskk � �GQT kgkk � �GQT � for some �QGT > 0, as along as termina-
tion has not occurred. This last bound and (2.37) then give that GQT takes at most
O
�
(f (x0) � flow)�

� ˛
1+˛ �2

�
iterations, which is worse than (4.2) for ˛ > 0. Note

that this bound improves if only Newton steps are taken (i.e. �k = 0 is chosen for all
k � 0), to be of the order of (4.2); however, this cannot be assumed in the worst-case
for nonconvex functions. In any case, it implies that the GQT method is not optimal in
M:˛.
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4.4 Trust-region methods. Recall the choices (2.41) we make in this case. If �k =

0, the trust-region constraint ksk � ∆k is inactive at sk , in which case, sk is the Newton
step. If we make precisely the choices we made for Newton’s method above, choosing
∆0 such that∆0 > js0j implies that the Newton step will be taken in the first and in all
subsequent iterations since each iteration is successful and then∆k remains unchanged
or increases while the choice (3.6) implies that sk decreases. Thus the trust-region ap-
proach, through the Newton step, has a worst-case evaluation complexity when applied
to f M:˛

� which is at least that of the Newton’s method, namely ��2.

4.5 Linesearchmethods. Because the examples of Sections 3.1 and 3.2 are valid for
rk = 0 which corresponds to �k = 1 for all k, and because this stepsize is acceptable
since f (xk+1) = mk(sk), we deduce that at least ��

2+˛
1+˛ iterations and evaluations

may be needed for the linesearch variants of any method in M:˛ applied to a function
satisfying A.˛, and that ��2 evaluations may be needed for the linesearch variant of
Newton’s method applied on a function satisfying A.0. Thus the conclusions drawn
regarding their (sub-)optimality in terms of worst-case evaluation complexity are not
affected by the use of a linesearch.

5 The Curtis-Robinson-Samadi class

We finally consider a class of methods recently introduced in Curtis, Robinson, and
Samadi [2017b], which we call the CRS class. This class depends on the parameters
0 < � � �̄ , � 2 (0; 1) and two non-negative accuracy thresholds �1 and �2. It is
defined as follows. At the start, adaptive regularization thresholds are set according to

(5.1) �L
0 = 0 and �U

0 = �̄ :

Then for each iteration k � 0, a step sk from the current iterate xk and a regularization
parameter �k � 0 are chosen to satisfy(7)

(5.2) (Hk + �kI )sk = �gk + rk ;

(5.3) �L
k kskk � �k � �U

k kskk;

(5.4) sT
k rk �

1
2
sT

k (Hk + �kI )sk + 1
2
�1kskk

3;

and

(5.5) krkk � �kkskk + �2kskk
2:

(7)In Curtis, Robinson, and Samadi [2017b], further restrictions on the step are imposed in order to obtain
global convergence under A.0 and bounded gradients, but are irrelevant for the worst-case complexity anal-
ysis under A.1. We thus ignore them here, but note that this analysis also ensures global convergence to
first-order stationary points.
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The step is then accepted, setting xk+1 = xk + sk , if

(5.6) �CRS =
f (xk) � f (xk + sk)

kskk3
� �

or rejected otherwise. In the first case, the regularization thresholds are reset according
to (5.1). If sk is rejected, �L

k
and �U

k
are updated by a simple mechanism (using � )

which is irrelevant for our purpose here. The algorithm is terminated as soon as an
iterate is found such that kgkk � �.

Observe that (5.2) corresponds to inexactly minimizing the regularized model (2.6)
and that (5.5) is very similar to the subproblem termination rule of E. G. Birgin, Gar-
denghi, Martı́nez, Santos, and P. L. Toint [2017].

An upper bound of O
�
��3/2

�
is proved in Curtis, Robinson, and Samadi [2017b,

Theorem 17] for the worst-case evaluation complexity of the methods belonging to the
CRS class. It is stated in Curtis, Robinson, and Samadi [ibid.] that both ARC Griewank
[1981], Weiser, Deuflhard, and Erdmann [2007], Nesterov and Polyak [2006], and Car-
tis, N. I. M. Gould, and P. L. Toint [2011a,b] and TRACE Curtis, Robinson, and Samadi
[2017a] belong to the class, although the details are not given.

Clearly, the CRS class is close to M:1, but yet differs from it. In particular, no
requirement is made that Hk + �kI be positive semi-definite but (5.4) is required in-
stead, there is no formal need for the step to be bounded and (5.5) combined with (5.3)
is slightly more permissive than the second part of (2.2). We now define CRSa, a
sub-class of the CRS class of methods, as the set of CRS methods for which (5.5) is
strengthened(8) to become

(5.7) krkk � min
h
�rgkgkk; �kkskk + �2kskk

2
i

with �rg < 1:

(in a manner reminiscent of the second part of (2.2)) and such that

(5.8) 2�(1 + �rg)
3

� 1

(a mild technical condition(9) whose need will become apparent below). We claim that,
for any choice of method in the CRSa class and termination threshold �, we can con-
struct a function satisfying A.1 such that the considered CRSa method terminates in
exactly

˙
��3/2

�
iterations and evaluations. This achieved simply by showing that the

generated sequences of iterates, function, gradient and Hessian values belong to those
detailed in the example of Section 3.1.

We now apply a method of the CRSa class for a given � > 0, and first consider an
iterate xk with associated values fk , gk andHk given by (3.3) for ˛ = 1, that is

(5.9) f0 = 1; fk = f0 �
1
2
k�3/2; gk = �2�fk and Hk = 4�1/2f 2

k ;

Suppose that

(5.10) �L
k = 0 and �U

k = �̄

(8)Hence the subscript a, for “accurate”.
(9)Due to the lack of scaling invariance of (5.6), at variance with (2.30).
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(as is the case by definition for k = 0), and let

(5.11) sk = �k

�1/2

2fk

(�k > 0)

be an acceptable step for an arbitrary method in the CRSa class. Now, because of (5.10),
(5.3) reduces to

(5.12) �k 2 [0; �̄ jskj] =

"
0; �̄�k

�1/2

2fk

#
and, given thatHk > 0 because of (5.9), this in turn implies thatHk + �k > 0. Condi-
tion (5.7) requires that

(5.13) jgk + (Hk + �k)skj = jrkj � �rg jgkj = 2�rg�fk < 2�;

where we used the fact that fk � 1 because of (5.9) and �rg < 1 because of (5.7).
Moreover, (5.13) and (5.12) imply that

(5.14)
2(1 � �rg)�fk

4�1/2f 2
k
+ �̄sk

�
jgkj(1 � �rg)

Hk + �k

� sk �
jgkj(1 + �rg)

Hk + �k

�
(1 + �rg)�

1/2

2fk

:

Thus, using (5.11) and the right-most part of these inequalities, we obtain that �k �

1 + �rg , which in turn ensures that sk � (1 + �rg)�
1/2/(2fk). Substituting this latter

bound in the denominator of the left-most part of (5.14) and using (5.11) again with the
fact that fk �

1
2
before termination, we obtain that

(5.15) �k 2

�
1 � �rg

1 + �̄(1 + �rg)
; 1 + �rg

�
(note that this is (3.6) with �� = 1 + �̄(1 + �rg)). We immediately note that �k and
�(�k) are then both guaranteed to be bounded above and below as in (3.14). (Since
this is enough for our purpose, we ignore the additional restriction on �k which might
result from (5.4).) Using the definitions (5.9) for k + 1, we may then construct the
objective function f CRS

� on the interval [xk ; xk + sk ] by Hermite interpolation, as in
Section 3.1. Moreover, using (5.6), (5.9), (5.11), (5.15), fk 2 [ 1

2
; 1] and the condition

(5.8), we obtain that

�k =
�3/2

2

�
2fk

�k�1/2

�3

=
4f 3

k

�3
k

�
1

2(1 + �rg)3
� �:

Thus iteration k is successful, xk+1 = xk + sk , �L
k+1

= �L
k
= 0, �U

k+1
= �U

k
= �̄ , and

all subsequent iterations of the CRSa method up to termination follow the same pattern
in accordance with (5.9). As in Section 3.1, we may construct f CRS

� on the whole of
IR which satisfies A.1 and such that, the considered CRSa method applied to f CRS

�

will terminate in exactly d��3/2e iterations and evaluations. This and the O
�
��3/2

�
upper bound on the worst-case evaluation complexity of CRS methods allow stating
the following theorem.
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Theorem 5.1. For every � 2 (0; 1) and every method in the CRSa class, a function
f CRS

� satisfying A.1 with values in a bounded interval independent of � can be con-
structed, such that the considered method terminates exactly at iteration

k� =
l
��3/2

m
with the first iterate xk�

such that krxf
CRS

� (xk�
)k � �. As a consequence, methods

in CRSa are optimal within the CRS class and their worst-case evaluation complexity
is, in order, also optimal with respect to that of methods in M:1.

CRSa then constitutes a kernel of optimal methods (from the worst-case evaluation
complexity point of view) within CRS and M:1. Methods in CRS but not in CRSa

correspond to very inaccurate minimization of the regularized model, which makes it
unlikely that their worst-case evaluation complexity surpasses that of methods in CRSa.
Finally note that, since we did not use (5.4) to construct our example, it effectively
applies to a class larger than CRSa where this condition is not imposed.

6 The algorithm of Royer and Wright

We finally consider the linesearch algorithm proposed in C.W. Royer andWright [2017,
Algorithm 1], which is reminiscent of the double linesearch algorithm of N. I. M. Gould,
Lucidi, Roma, and P. L. Toint [1998] and Conn, N. I. M. Gould, and P. L. Toint [2000,
Section 10.3.1]. From a given iterate xk , this algorithm computes a search direction dk

whose nature depends on the curvature of the (unregularized) quadratic model along
the negative gradient, and possibly computes the left-most eigenpair of the Hessian if
this curvature is negative or if the gradient’s norm is small enough to declare first-order
stationarity. A linesearch along dk is then performed by reducing the steplength ˛k

from ˛k = 1 until

(6.1) f (xk + ˛kdk) � f (xk) �
�

6
˛3kkdkk

3

for some � > 0. The algorithm uses �g and �H , two different accuracy thresholds for
first- and second-order approximate criticality, respectively.

Our objective is now to show that, when applied to the function f M:1
�g

of Section 3.1
with � = �g , this algorithm, which we call the RW algorithm, takes exactly k�g ;1 =

d�
�3/2
g e iterations and evaluations to terminate with kgkk � �g .
We first note that (3.3) guarantees thatHk is positive definite and, using (3.4), that

gT
k
Hkgk

kgkk2
= 4�

1/2
g f 2

k > �g

for k 2 f0; : : : ; k�g ;1g. Then, provided

(6.2) �H �
p
�g ;
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and because �min(Hk) = 4�
1/2
g f 2

k
> �H (using (3.4) again), the RW algorithm defines

the search direction from Newton’s equation Hkdk = �gk (which corresponds, as
we have already seen, to taking Mk = 0 = rk and thus �k = 1 in the example of
Section 3.1). The RW algorithm is therefore, on that example, identical to a linesearch
variant of Newton’s method with the specific linesearch condition (6.1). Moreover,
using (3.4) once more,

f (xk) � f (xk + dk) =
1

2
�
3/2
g �

�

6

 
�
1/2
g

2fk

!3

�
�

6
�
3/2
g

whenever � � 3, an extremely weak condition(10). Thus (6.1) holds(11) with ˛k = 1.
We have thus proved that the RW algorithm generates the same sequence of iterates as
Newton’s method when applied to f M:1

�g
. The fact that an upper bound of O

�
�

�3/2
g

�
iterations and evaluations was proved to hold in C. W. Royer and Wright [2017, Theo-
rem 5] then leads us to stating the following result.

Theorem 6.1. Assume that � 2 (0; 3]. Then, for every �g 2 (0; 1) and �H satisfying
(6.2), a function f M:1

�g
satisfying A.1 with values in a bounded interval (independent

of �g and �H ) can be constructed, such that the Royer-Wright algorithm terminates
exactly at iteration

k�g
=
l
�

�3/2
g

m
with the first iterate xk�g

such that krxf
M:1

�g
(xk�g

)k � �g . As a consequence and un-

der assumption (6.2), the first-order worst-case evaluation complexity order ofO
�
�

�3/2
g

�
for this algorithm is sharp and it is (in order of �g ), also optimal with respect to that of
algorithms in the M:1 and CRS classes.

7 Conclusions

Wehave provided lower bounds on the worst-case evaluation complexity of a wide class
of second-order methods for reaching approximate first-order critical points of noncon-
vex, adequately smooth unconstrained optimization problems. This has been achieved
by providing improved examples of slow convergence on functions with bounded range
independent of �. We have found that regularization algorithms, methods belonging to
a subclass of that proposed in Curtis, Robinson, and Samadi [2017b] and the linesearch
algorithm of C. W. Royer and Wright [2017] are optimal from a worst-case complexity
point of view within a very wide class of second-order methods, in that their upper com-
plexity bounds match in order the lower bound we have shown for relevant, sufficiently
smooth objectives satisfying A.˛. At this point, the question of whether all known op-
timal second-order methods share enough design concepts to be made members of a
single class remains open.
(10)In practice, � is most likely to belong to (0; 1) and even be reasonably close to zero.
(11)But fails for the example of Section 3.2 as kskk = 1.
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Note that every iteration complexity bound discussed above is of the order ��p (for
various values of p > 0) for driving the objective’s gradient below �; thus the methods
we have addressed may require an exponential number of iterations 10p�k to generate
k correct digits in the solution. Also, as our examples are one-dimensional, they fail to
capture the problem-dimension dependence of the upper complexity bounds. Indeed,
besides the accuracy tolerance �, existing upper bounds depend on the distance to the
solution set, that is f (x0) � flow, and the gradient’s and Hessian’s Lipschitz or Hölder
constants, all of which may dependent on the problem dimension. Some recent develop-
ments in this respect can be found in Jarre [2013], Agarwal, Allen-Zhu, Bullins, Hazan,
and T. Ma [2016], B. Jiang, Lin, S. Ma, and S. Zhang [2016], and C. W. Royer and
Wright [2017].

Here we have solely addressed the evaluation complexity of generating first-order
critical points, but it is common to require second-order methods for nonconvex prob-
lems to achieve second-order criticality. Indeed, upper worst-case complexity bounds
are known in this case for cubic regularization and trust-region methods Nesterov and
Polyak [2006], Cartis, N. I. M. Gould, and P. L. Toint [2011b], and Cartis, N. I. M.
Gould, and P. L. Toint [2012b], which are essentially sharp in some cases Cartis, N. I. M.
Gould, and P. L. Toint [2012b]. A lower bound on the whole class of second order meth-
ods for achieving second-order optimality remains to be established, especially when
different accuracy is requested in the first- and second-order criticality conditions.

Regarding the worst-case evaluation complexity of constrained optimization prob-
lems, we have shown Cartis, N. I. M. Gould, and P. L. Toint [2012a] and Cartis, N. I. M.
Gould, and P. L. Toint [2011c, 2014] that the presence of constraints does not change
the order of the bound, so that the unconstrained upper bound for some first- or second-
order methods carries over to the constrained case; note that this does not include the
cost of solving the constrained subproblems as the latter does not require additional
problem evaluations. Since constrained problems are at least as difficult as uncon-
strained ones, these bounds are also sharp. It remains an open question whether a uni-
fied treatment such as the one given here can be provided for the worst-case evaluation
complexity of methods for constrained problems.

A1. An example of slow convergence of the steepest-descent method

We show in this paragraph that the steepest-descent method may need at least ��2 iter-
ation to terminate on a function whose range is fixed and independent of �.

We once again follow the methodology used in Section 3.1 and build a unidimen-
sional function f SD

� by Hermite interpolation, such that the steepest-descent method
applied to this function takes exactly k� = d��2e iterations and function evaluations
to terminate with an iterate xk such that jg(xk)j � �. Note that, for the sequence of
function values to be interpretable as the result of applying the steepest-descent method
(using a Goldstein linesearch), we require that, for all k,
(A.1)
f (xk)+�1g

T
k sk � f (xk��kgk) � f (xk)+�2g

T
k sk for constants 0 < �2 < �1 < 1
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where, as above, sk = xk+1 � xk . Keeping this in mind, we define the sequences fk ,
gk ,Hk and sk for k 2 f0; : : : ; k� � 1g by

fk = 1 �
1
2
k�2 gk = �2�fk ; Hk = 0; rk = 0 and �k =

1

4f 2
k

2 [ 14 ; 1]:

Note that this last definition ensures that (A.1) holds provided 0 < �2 <
1
2
< �1 < 1.

It also gives that sk = �/(2fk) � � < 1. Using these values, it can also be verified that
termination occurs for k = k� , that f SD

� defined by (3.10) and Hermite interpolation is
twice continuously differentiable on [0; xk�

] and that (3.12) again holds. Since jgkj � �,
we also obtain that, for k 2 f0; : : : ; k� � 1g,ˇ̌̌̌

ˇ∆fk

s2
k

ˇ̌̌̌
ˇ = 2f 2

k � 1;

ˇ̌̌̌
∆gk

sk

ˇ̌̌̌
= 2�2fk � 2 and

ˇ̌̌̌
gk

sk

ˇ̌̌̌
= 4f 2

k � 4:

These bounds, Hk = ∆Hk = 0, the first equality of (3.18) and (3.13) then imply that
theHessian of f SD

� is bounded above by a constant independent of �. f SD
� thus satisfies

A.0 and therefore has Lipchitz continuous gradient. Moreover, since sk � 1, we also
obtain, as in Section 3.1 and 3.2, that jf SD

� j is bounded by a constant independent of �
on [0; xk�

]. As above we then extend f SD
� to the whole of IR while preserving A.0.

Theorem A.1. For every � 2 (0; 1), a function f SD
� satisfying A.0 (and thus having

Lipschitz continuous gradient) with values in a bounded interval independent of � can
be constructed, such that the steepest-descent method terminates exactly at iteration

k� =
˙
��2

�
with the first iterate xk�

such that krxf
SD

� (xk�
)j � �.

As a consequence, the O
�
��2

�
order of worst-case evaluation complexity is sharp

for the steepest-descent method in the sense that the complexity ratio �comp is bounded
above independently of of �, which improves on the conclusion proposed in Cartis,
N. I. M. Gould, and P. L. Toint [2010] for the steepest-descent method.

The top three graphs of Figure A.2 illustrate the global behaviour of the resulting
function f N

� (x) and of its first and second derivatives for x 2 [0; xk�
], while the bottom

ones show more detail of the first 10 iterations. The figure is once more constructed
using � = 5:10�2 (k� = 400).

A2. Upper complexity bound for the (2 + ˛)-regularization method

The purpose of this paragraph is to to provide some of the missing details in the proof
of Lemma 2.5, as well as making explicit the statement made at the end of Section 5.1
in Cartis, N. I. M. Gould, and P. L. Toint [2011b] that the (2+˛)-regularization method
needs at most (4.2) iterations (and function/derivatives evaluations) to obtain and iterate
xk such that jgkj � �.
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Figure A.2: f SD
� (x) (left) and its first (center) and second (right) derivatives

as a function of x for � = 5:10�2 (top: x 2 [0; xk�;˛
]; bottom: x 2 [0; x10]).

Horizontal dotted lines indicate values of �� and � in the central top graph.
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We start by proving (2.27) following the reasoning of Cartis, N. I. M. Gould, and
P. L. Toint [2011a, Lem.2.2]. Consider

mk(s) � f (xk) = gT
k
s + 1

2
sTHks +

1
2+˛

�kksk2+˛

� �kgkk ksk �
1
2
ksk2 kHkk + 1

2+˛
�kksk2+˛

�

�
1

3(2+˛)
�kksk2+˛ � kgkk ksk

�
+
�

2
3(2+˛)

�kksk2+˛ �
1
2
ksk2kHkk

�
But then 2

3(2+˛)
�kksk2+˛ � kHkk ksk2 > 0 if kskk < (3(2+˛)kHkk/(4�k))

1
˛ while

1
3(2+˛)

�kksk2+˛ � kgkk ksk > 0 if kskk < (3(2 + ˛)kgkk/�k)
1

1+˛ . Hence, since
mk(sk) < f (xk), we have that

kskk � max

"�
3(2 + ˛)kHkk

4�k

� 1
˛

;

�
3(2 + ˛)kgkk

�k

� 1
1+˛

#

which yields (2.27) because kHkk � Lg .
We next explicit the worst-case evaluation complexity bounf of Section 5.1 in Cartis,

N. I. M. Gould, and P. L. Toint [2011b]. Following Cartis, N. I. M. Gould, and P. L.
Toint [2011a, Lemma 5.2], we start by proving that

(A.1) �max
def
= c� max(�0; LH;˛)

for some constant c� only dependent on ˛ and algorithm’s parameters. To show this in-
equality, we deduce from Taylor’s theorem that, for each k � 0 and some �k belonging
the the segment [xk ; xk + sk ],

f (xk+sk)�mk(sk) �
1

2
kH (�k)�H (xk)k�kskk

2
�

�k

2 + ˛
kskk

2+˛
�

�
LH;˛

2
�

�k

2 + ˛

�
kskk

2+˛;

where, to obtain the second inequality, we employed (2.8) in A.˛ and k�k �xkk � kskk.
Thus f (xk+sk) < mk(sk)whenever �k >

1
2
(2+˛)LH;˛ , providing sufficient descent

and ensuring that �k+1 � �k . Taking into account the (possibly large) choice of the
regularization parameter at startup then yields (A.1).

We next note that, because of (2.25) and (A.1), (2.11) holds. Moreover, �(Mk) =

� (�kkskk˛I ) = 1. Lemma 2.3 then ensures that (2.16) also holds.
We finally follow Cartis, N. I. M. Gould, and P. L. Toint [ibid., Corollary 5.3] to

prove the final upper bound on the number of successful iterations (and hence on the
number of function and derivatives evaluations). Let S�

k
index the subset of the first k

iterations that are successful and such that min[kgkk; kgk+1k] > �, and let jS�
k
j denote

its cardinality. It follows from this definition, (2.11), (2.26) and the fact that sufficient
decrease is obtained at successful iterations that, for all k before termination,

(A.2) f (xj ) �mk(sj ) � ˛S�
2+˛
1+˛ ; for all j 2 S�

k
,
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for some positive constant ˛S independent of �. Now, if flow > �1 is a lower bound
on f (x), we have, using the monotonically decreasing nature of ff (xk)g, that

f (x0) � flow � f (x0) � f (xk+1) =
X

j 2S�
k

[f (xj ) � f (xj+1)]

� �1
X

j 2S�
k

[f (xj ) �mk(sj )] � jS�
k
j �1˛S �

2+˛
1+˛ ;

where the constant �1 2 (0; 1) defines sufficient decrease. Hence, for all k � 0,

jS�
kj �

f (x0) � flow

�1˛S
��

2+˛
1+˛ :

As a consequence, the (2+˛)-regularizationmethod needs at most (4.2) successful itera-
tions to terminate. Since it known that, for regularizationmethods, k � �SjS�

k
j for some

constant �S Cartis, N. I. M. Gould, and P. L. Toint [2011b, Theorem 2.1] and because
every iteration involves a single evaluation, we conclude that the (2+˛)-regularization
method needs at most (4.2) function and derivatives evaluations to produce an iterate
xk such that kgkk � � when applied to an objective function satisfying A.˛.

We finally oserve that the statement (made in the proof of Lemma 2.5) that kgkk is
bounded above immediately follows from this worst-case evaluation complexity bound.
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