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Abstract Evaluation complexity for convexly constrained optimization is consid-
ered and it is shown first that the complexity bound of O(ε−3/2) proved by Cartis
et al. (IMA J Numer Anal 32:1662–1695, 2012) for computing an ε-approximate
first-order critical point can be obtained under significantly weaker assumptions.
Moreover, the result is generalized to the case where high-order derivatives are
used, resulting in a bound of O(ε−(p+1)/p) evaluations whenever derivatives of
order p are available. It is also shown that the bound of O(ε−1/2

P ε
−3/2
D ) evaluations

(εP and εD being primal and dual accuracy thresholds) suggested by Cartis et al.
(SIAM J. Numer. Anal. 53:836–851, 2015) for the general nonconvex case involving
both equality and inequality constraints can be generalized to yield a bound of
O(ε

−1/p
P ε

−(p+1)/p
D ) evaluations under similarly weakened assumptions.

1 Introduction

In [4] and [7], we examined the worst-case evaluation complexity of finding an
ε-approximate first-order critical point for smooth nonlinear (possibly nonconvex)
optimization problems for methods using both first and second derivatives of the
objective function. The case where constraints are defined by a convex set was
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6 C. Cartis et al.

considered in the first of these references, while the general case (with equality
and inequality constraints) was discussed in the second.

It was shown in [4] that at most O(ε−3/2) evaluations of the objective function
and its derivatives are needed to compute such an approximate critical point. This
result, which is identical in order to the best known result for the unconstrained
case, comes at the price of potentially restrictive technical assumptions: it was
assumed that an approximate first-order critical point of a cubic model subject
to the problem’s constraints can be obtained for the subproblem solution in a
uniformly bounded number of descent steps that is independent of ε, that all
iterates remain in a bounded set and that the gradient of the objective function
is also Lipschitz continuous (see [4] for details). The analysis of [7] then built
on the result of the convex case by first specializing it to convexly constrained
nonlinear least-squares and then using the resulting complexity bound in the
context of a two-phase algorithm for the problem involving general constraints.
If εP and εD are the primal and the dual criticality thresholds, respectively, it
was suggested that at most O(ε−1/2

P ε
−3/2
D ) evaluations of the objective function

and its derivatives are needed to compute an approximate critical point in that
case, where the Karush–Kuhn–Tucker (KKT) conditions are scaled to take the
size of the Lagrange multipliers into account. Because the proof of this result
is based on the bound obtained for the convex case, it suffers from the same
limitations (not to mention an additional constraint on the relative sizes of εP and εD,
see [7]).

More recently, Birgin et al. [3] provided a new regularization algorithm for the
unconstrained problem with two interesting features. The first is that the model
decrease condition used for the subproblem solution is weaker than that used
previously, and the second is that the use of problem derivatives of order higher than
two is allowed, resulting in corresponding reductions in worst-case complexity. In
addition, the same authors also analyzed the worst-case evaluation complexity of
the general constrained optimization problem in [2] also allowing for high-order
derivatives and models in a framework inspired by that of [6, 7]. At variance with
the analysis of these latter references, their analysis considers unscaled approximate
first-order critical points in the sense that such points satisfy the standard unscaled
KKT conditions with accuracy εP and εD.

The first purpose of this paper is to explore the potential of the proposals made
in [3] to overcome the limitations of [4] and to extend its scope by considering
the use of high-order derivatives and models. A second objective is to use the
resulting worst-case bounds to establish strengthened evaluation complexity bounds
for the general nonlinearly constrained optimization problem in the framework of
scaled KKT conditions, thereby improving [7]. The paper is thus organized in two
main sections: Section 2 covering the convexly constrained case and Section 3
allowing general nonlinear constraints. The results obtained are finally discussed in
Section 4.
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Cartis, Gould, Toint: Evaluation Complexity of Constrained Optimization 7

2 Convex Constraints

The first problem we wish to solve is formally described as

min
x∈F

f (x), (1)

where we assume that f : Rn −→ R is p-times continuously differentiable,
bounded from below, and has Lipschitz continuous p-th derivatives. For the q-th
derivative of a function h : Rn→ R to be Lipschitz continuous on the set S ⊆ Rn,
we require that there exists a constant Lh,q ≥ 0 such that, for all x, y ∈ S ,

‖∇qx h(x)−∇qx h(y)‖T ≤ (q − 1)!Lh,q‖x − y‖,

where ‖ · ‖T is the recursively induced Euclidean norm on the space of q-th
order tensors. We also assume that the feasible set F is closed, convex and non-
empty. Note that this formulation covers standard inequality (and linear equality)
constrained optimization in its different forms: the set F may be defined by simple
bounds, and both polyhedral and more general convex constraints. We remark
though that we are tacitly assuming here that the cost of evaluating constraint
functions and their derivatives is negligible.

The algorithm considered in this paper is iterative. Let Tp(xk, s) be the p-th order
Taylor-series approximation to f (xk + s) at some iterate xk ∈ Rn, and define the
local regularized model at xk by

mk(xk + s) def= Tp(xk, s)+ σk

p + 1
‖s‖p+1, (2)

where σk > 0 is the regularization parameter. Note that mk(xk) = Tp(xk, 0) =
f (xk). The approach used in [4] (when p = 2) seeks to define a new iterate xk+1
from the preceding one by computing an approximate solution of the subproblem

min
x∈F

mk(xk + s) (3)

using a modified version of the Adaptive Regularization with Cubics (ARC) method
for unconstrained minimization. By contrast, we now examine the possibility of
modifying the ARp algorithm of [3] with the aim of inheriting its interesting
features. As in [4], the modification involves a suitable continuous first-order
criticality measure for the constrained problem of minimizing a given function
h : Rn→ R on F . For an arbitrary x ∈ F , this criticality measure is given by

πh(x)
def= ‖PF [x −∇xh(x)] − x‖, (4)

nick.gould@stfc.ac.uk



8 C. Cartis et al.

where PF denotes the orthogonal projection onto F and ‖·‖ the Euclidean norm. It
is known that x is a first-order critical point of problem (1) if and only if πf (x) = 0.
Also note that πf (x) = ‖∇xh(x)‖ whenever F = Rn.

Next we describe our algorithm as the ARpCC algorithm (ARp for Convex
Constraints).

Algorithm 2.1: Adaptive Regularization using p-th order models for convex constraints
(ARpCC)

A starting point x−1, an initial and a minimal regularization parameter σ0 ≥ σmin > 0,
algorithmic parameters θ > 0, γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are given,
as well as an accuracy threshold ε ∈ (0, 1). Compute x0 = PF [x−1] and evaluate f (x0) and
∇xf (x0).
For k = 0, 1, . . ., until termination, do:

1. Evaluate ∇xf (xk). If

πf (xk) ≤ ε, (5)

terminate. Otherwise compute derivatives of f of order 2 to p at xk .
2. Compute a step sk by approximately minimizing mk(xk + s) over s ∈ F so that

xk + sk ∈ F , (6)

mk(xk + sk) < mk(xk) (7)

and

πmk (xk + sk) ≤ θ ‖sk‖p. (8)

3. Compute f (xk + sk) and

ρk = f (xk)− f (xk + sk)
Tp(xk, 0)− Tp(xk, sk) . (9)

If ρk ≥ η1, set xk+1 = xk + sk . Otherwise set xk+1 = xk .
4. Set

σk+1 ∈
⎧
⎨

⎩

[max(σmin, γ1σk)σk] if ρk > η2 [very successful iteration]
[σk, γ2σk] if η1 ≤ ρk ≤ η2 [successful iteration]
[γ2σk, γ3σk] otherwise. [unsuccessful iteration],

(10)

and go to step 2 if ρk < η1.

We first state a useful property of the ARpCC algorithm, which ensures that
a fixed fraction of the iterations 1, 2, . . . , k must be either successful or very
successful.

nick.gould@stfc.ac.uk



Cartis, Gould, Toint: Evaluation Complexity of Constrained Optimization 9

Lemma 1 ([3, Lem 2.4], [6, Thm 2.2]) Assume that, for some σmax > 0, σj ≤
σmax for all 0 ≤ j ≤ k. Then the ARpCC algorithm ensures that

k ≤ κu|Sk|, where κu
def=

(

1+ | log γ1|
log γ2

)

+ 1

log γ2
log

(
σmax

σ0

)

, (11)

where Sk is the number of successful and very successful iterations, in the sense
of (10), up to iteration k.

We start our worst-case analysis by formalizing our assumptions

AS.1 The objective function f is p times continuously differentiable on
an open set containing F .

AS.2 The p-th derivative of f is Lipschitz continuous on F .

AS.3 The feasible set F is closed, convex and non-empty.

The ARpCC algorithm is required to start from a feasible x0 ∈ F , which,
together with the fact that the subproblem solution in Step 2 involves minimization
over F , leads to AS.3.

We now recall some simple results whose proof can be found in [3] in the context
of the original ARp algorithm.

Lemma 2 Suppose that AS.1–AS.3 hold. Then, for each k ≥ 0,

(i)

f (xk + sk) ≤ Tp(xk, sk)+ Lf,p
p
‖sk‖p+1 (12)

and

‖∇xf (xk + sk)−∇sT (xk, sk)‖ ≤ Lf,p‖sk‖p; (13)

(ii)

Tp(xk, 0)− Tp(xk, sk) ≥ σk

p + 1
‖sk‖p+1; (14)

(iii)

σk ≤ σmax
def= max

[

σ0,
γ3Lf,p(p + 1)

p (1− η2)

]

. (15)

nick.gould@stfc.ac.uk



10 C. Cartis et al.

Proof See [3] for the proofs of (12) and (13), which crucially depend on AS.1 and
AS.2 being valid on the segmentc [xk, xk + sk], i.e.,

‖∇px f (xk + ξsk)−∇px f (xk)‖p ≤ Lf,pξ‖sk‖ for all ξ ∈ [0, 1]. (16)

Observe also that (2) and (7) ensure (14). Assume now that

σk ≥ Lf,p(p + 1)

p (1− η2)
. (17)

Using (12) and (14), we may then deduce that

|ρk − 1| ≤ |f (xk + sk)− Tp(xk, sk)||Tp(xk, 0)− Tp(xk, sk)| ≤
Lf,p(p + 1)

p σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and
σk+1 ≤ σk . As a consequence, the mechanism of the algorithm ensures that (15)
holds. 	

We now prove that, at successful iterations, the step at iteration k must be
bounded below by a multiple of the p-th root of the criticality measure at iteration
k + 1.

Lemma 3 Suppose that AS.1–AS.3 hold. Then

‖sk‖ ≥
[

πf (xk+1)

Lf,p + θ + σmax

] 1
p

for all k ∈ S . (18)

Proof Since k ∈ S and by definition of the trial point, we have that xk+1 = xk+sk .
Observe now that (13) and (15) imply that

‖∇f (xk+1)− ∇xmk(xk+1)‖ ≤ Lf,p‖sk‖p + σk‖sk‖p ≤ (Lf,p + σmax)‖sk‖p.
(19)

Combing this bound with the triangle inequality, the contractive nature of the
projection and (8), we deduce that

πf (xk+1) = ‖PF [xk+1 −∇xf (xk+1)] − PF [xk+1 −∇xmk(xk+1)]
+ PF [xk+1 −∇xmk(xk+1)] − xk+1‖

≤ ‖PF [xk+1 −∇xf (xk+1)] − PF [xk+1 −∇xmk(xk+1)]‖ + πmk (xk+1)

≤ ‖∇xf (xk+1)] − ∇xmk(xk+1)‖ + πmk (xk+1)

≤ (Lf,p + θ + σmax)‖sk‖p

and (18) follows. 	

nick.gould@stfc.ac.uk



Cartis, Gould, Toint: Evaluation Complexity of Constrained Optimization 11

We now consolidate the previous results by deriving a lower bound on the
objective function decrease at successful iterations.

Lemma 4 Suppose that AS.1–AS.3 hold. Then, if iteration k is successful,

f (xk)− f (xk+1) ≥ 1

κ
f
s

πf (xk+1)
p+1
p ,

where

κ
f
s

def= max

[

1,
p + 1

η1σmin

(
Lf,p + θ + σmax

) p+1
p

]

. (20)

Proof If iteration k is successful, we have, using (9), (14), (10), (18) and (15)
successively, that

f (xk)− f (xk+1) ≥ η1[ Tp(xk, 0)− Tp(xk, sk) ]

≥ η1σmin

p + 1
‖sk‖p+1

≥ η1σmin

(p + 1)[Lf,p + θ + σmax]
p+1
p

πf (xk+1)
p+1
p . 	

It is important to note that the validity of this lemma does not depend on the
history of the algorithm, but is only conditional to the smoothness assumption on
the objective function holding along the step from xk to xk+1. We will make use of
that observation in Section 3.

Our worst-case evaluation complexity results can now be proved by combining
this last result with the fact that πf (xk) cannot be smaller than ε before termination.

Theorem 1 Suppose that AS.1–AS.3 hold and let flow be a lower bound on f on
F . Then, given ε > 0, the ARpCC algorithm applied to problem (1) needs at most

⌊

κ
f
s

f (x0)− flow

ε
p+1
p

⌋

successful iterations (each involving one evaluation of f and its p first derivatives)
and at most

κu

⌊

κ
f
s

f (x0)− flow

ε
p+1
p

⌋

iterations in total to produce an iterate xε such that πf (xε) ≤ ε, where κu is given
by (11) with σmax defined by (15).

nick.gould@stfc.ac.uk



12 C. Cartis et al.

Proof At each successful iteration, we have, using Lemma 4, that

f (xk)− f (xk+1) ≥ (κfs )−1πf (xk+1)
p+1
p ≥ (κfs )−1ε

p+1
p ,

where we used the fact that πf (xk+1) ≥ ε before termination to deduce the last
inequality. Thus we deduce that, as long as termination does not occur,

f (x0)− f (xk+1) =
∑

j∈Sk
[f (xj )− f (xj + sj )] ≥ |Sk|

κ
f
s

ε
p+1
p ,

from which the desired bound on the number of successful iterations follows.
Lemma 1 is then invoked to compute the upper bound on the total number of
iterations. 	

For what follows, it is very important to note that the Lipschitz continuity of∇qx f
was only used (in Lemma 2) to ensure that (16) holds for all k ≥ 0.

3 The General Constrained Case

We now consider the general smooth constrained problem in the form

min
x∈F

f (x) subject to c(x) = 0, (21)

where c : Rn → Rm is sufficiently smooth and f and F are as above. Note that
this formulation covers the general problem involving both equality and inequality
constraints, the latter being handled using slack variables and the inclusion of the
associated simple bounds in the definition of F .

Our idea is now to first apply the ARpCC algorithm to the problem

min
x∈F

ν(x)
def= 1

2‖c(x)‖2. (22)

If an approximately feasible point is found, then we may follow the spirit of [5–7]
and [2] and apply the same ARpCC to approximately solve the problem

min
x∈F

μ(x, tk)
def= 1

2‖r(x, tk)‖2 def= 1
2

∥
∥
∥
∥

(
c(x)

f (x)− tk
)∥
∥
∥
∥

2

(23)

in the set for some monotonically decreasing sequence of “targets” tk (k = 1, . . .).

nick.gould@stfc.ac.uk
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Algorithm 3.1: Adaptive Regularization using p-th order models for general constraints
(ARpGC)

A constant β defining Cβ , a starting point x−1, a minimum regularization parameter σmin > 0,
an initial regularization parameter σ0 ≥ σmin are given, as well as a constant δ ∈ (0, 1). The
primal and dual tolerances 0 < εP < 1 and 0 < εD < 1 are also given.

Phase 1:
Starting from x0 = PF (x−1), apply the ARpCC algorithm to minimize 1

2‖c(x)‖2 subject
to x ∈ F until a point x1 ∈ F is found such that

‖c(x1)‖ < δεP or π 1
2 ‖c‖2 (x1) ≤ εD‖c(x1)‖. (24)

If ‖c(x1)‖ ≥ δεP, terminate with xε = x1.
Phase 2:

1. Set t1 = f (x1)−
√

ε2
P − ‖c(x1)‖2.

2. For k = 1, 2, . . ., do:

a. Starting from xk , apply the ARpCC algorithm to minimize μ(x, tk) as a function of
x ∈ F until an iterate xk+1 ∈ F is found such that

‖r(xk+1, tk)‖ < δεP or f (xk+1) < tk or πμ(xk+1, tk) ≤ εD‖r(xk+1, tk)‖
(25)

b. i. If ‖r(xk+1, tk)‖ < δεP, define tk+1 according to

tk+1 = f (xk+1)−
√

ε2
P − ‖c(xk+1)‖2. (26)

and terminate with (xε, tε)= (xk+1, tk+1) if πμ(xk+1, tk+1)≤ εD‖r(xk+1, tk+1)‖.

ii. If ‖r(xk+1, tk)‖ ≥ δεP and f (xk+1) < tk , define tk+1 according to

tk+1 = 2f (xk+1)− tk (27)

and terminate with (xε, tε)= (xk+1, tk+1) if πμ(xk+1, tk+1)≤ εD‖r(xk+1, tk+1)‖.

iii. If ‖r(xk+1, tk)‖ ≥ δεP and f (xk+1) ≥ tk , terminate with (xε, tε) = (xk+1, tk)

Observe that the recomputations of πμ(xk+1, tk+1) in Step 2.(b) do not require
re-evaluating f (xk+1) or c(xk+1) or any of their derivatives.

We now complete our assumptions.

AS.4 All derivatives of f of order 0 to p are Lipschitz continuous in F .

AS.5 For each i = 1, . . . , m, the constraint function ci is p times
continuously differentiable on an open set containing F .

nick.gould@stfc.ac.uk



14 C. Cartis et al.

AS.6 All derivatives of order 0 to p of each ci (i = 1, . . . , m) are
Lipschitz continuous in F .

AS.7 There exists constants β ≥ εP and flow ∈ R such that f (x) ≥ flow

for all x ∈ Cβ
def= {x ∈ F | ‖c(x)‖ ≤ β}.

Assume, without loss of generality, that all Lipschitz constants implied by AS.4 and
AS.6 are bounded above by L ≥ 1. Also note the problem of finding an εP-feasible
minimizer of f (x) is only meaningful if AS.7 holds.

We first verify that our assumptions are sufficient to imply that ν(x) and μ(x, t)
have Lipschitz p-th derivative on all segments [xk, xk + sk] generated by the
algorithm, allowing us to exploit the results of Section 2.

Lemma 5 Assume that AS.3, AS.5 and AS.6 hold. Let the iteration of the ARpCC
algorithm applied to problem (22) be indexed by j . Then the “segment” Lipschitz
condition (16) holds for ∇qx ν(x) holds on every segment [xj , xj + sj ] (j ≥ 0)
generated by the ARpCC algorithm during Phase 1 and any q ∈ {1, . . . , p}. If, in
addition, AS.1 and AS.4 also hold, then the same conclusion holds for ∇qx μ(x, t)
on every segment [xj , xj + sj ] (j ≥ 0) generated by the ARpCC algorithm during
Step 2.(a) of Phase 2 and any q ∈ {1, . . . , p}, the Lipschitz constant in this latter
case being independent of t .

Proof Since

∇qx ν(x) =
m∑

i=1

⎡

⎣
∑

�,j>0, �+j=q
α�,j∇�xci(x)∇jx ci(x)+ ci(x)∇qx ci(x)

⎤

⎦

(where {α�,j } are suitable positive and finite coefficients), condition (16) is satisfied

on the segment [xj , xj + sj ] if (i) the derivatives {∇min[�,j ]
x ci(x)}mi=1 are Lipschitz

continuous on [xj , xj + sj ], (ii) {∇max[�,j ]
x ci(x)}mi=1 are uniformly bounded on

[xj , xj + sj ], and (iii) we have that

m∑

i=1

‖ci(xj + ξsj )∇qx ci(xj + ξsj )− ci(xj )∇qx ci(xj )‖q ≤ L1ξ‖sj‖ (28)

for some constant L1 > 0. The first of these conditions is ensured by AS.6, and
the second by the observation that AS.6 again implies that ‖∇�xci(x)‖ ≤ L for
� ∈ {1, . . . , q} (see [11, Lem. 1.2.2, p. 21]). Moreover,

‖ci(xj + ξsj )∇qx ci(xj + ξsj )− ci(xj )∇qx ci(xj )‖
≤ |ci(xj + ξsj )− ci(xj )| · ‖∇qx ci(xj + ξsj )‖q
+|ci(xj )| · ‖∇qx ci(xj + ξsj )− ∇qx ci(xj )‖q,

nick.gould@stfc.ac.uk



Cartis, Gould, Toint: Evaluation Complexity of Constrained Optimization 15

and the first term on the right-hand side is bounded above by L2ξ‖sj‖ and the
second by |ci(xj )|Lξ‖sj‖. Hence (28) holds with

L1 =
m∑

i=1

(
L2 + |ci(xj )|L

)
≤ mL2 +m‖c(xj )‖L ≤ mL2 +m‖c(x0)‖L

because the ARpCC algorithm ensures that ‖c(xj )‖ ≤ ‖c(x0)‖ for all j ≥ 0. As
a consequence, AS.3, AS.5 and AS.6 guarantee that (16) holds with the Lipschitz
constant

m

[(

max
i=1,...,m

αi

)

L2 + L2 + ‖c(x0)‖L
]

.

If we now assume that AS.1 and AS.4 also hold, we may repeat, for μ(x, t) (with
fixed t) the same reasoning as above and obtain that condition (16) holds for each
segment [xj , xj + sj ] generated by the ARpCC algorithm applied in Step 2.(a) of
Phase 2, with Lipschitz constant

m

[(

max
i=1,...,m

αi

)

L2 + L2 + ‖c(xj,0)‖L
]

+
(

max
i=1,...,m

αi

)

L2 + L2 + |f (xj,0)− tj |L

≤(m+ 1)L2
[

1+
(

max
i=1,...,m

αi

)]

+ 2mL
def= Lμ,p,

where we have used (34) and εP ≤ 1 to deduce the inequality. Note that this constant
is independent of tj , as requested. 	

We now start our complexity analysis as such by examining the complexity of
Phase 1.

Lemma 6 Suppose that AS.3, AS.5 and AS.6 hold. Then Phase 1 of the ARpGC
algorithm terminates after at most

⌊

κcCC‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]⌋

+ 1

evaluations of c and its derivatives, where κcCC

def= 1
2κuκ

1
2 ‖c‖2

s δ
1
p with κ

1
2 ‖c‖2

s

being the problem-dependent constant defined in (20) for the function 1
2‖c(x)‖2

corresponding to (22).

Proof Let us index the iteration of the ARpCC algorithm applied to problem (22)
by j and assume that iteration j is successful and that

‖c(xj )‖ ≥ δεP. (29)

nick.gould@stfc.ac.uk



16 C. Cartis et al.

If ‖c(xj+1)‖ ≤ 1
2‖c(xj )‖, then

‖c(xj )‖ − ‖c(xj+1)‖ ≥ 1
2‖c(xj )‖ ≥ 1

2δ εP. (30)

By contrast, if ‖c(xj+1)‖ > 1
2‖c(xj )‖, then, using the decreasing nature of the

sequence {‖c(xj )‖}, Lemma 4 (which is applicable because of Lemma 5) and the
second part of (24), we obtain that

(‖c(xj )‖ − ‖c(xj+1)‖) ‖c(xj )‖ ≥ 1
2‖c(xj )‖2 − 1

2‖c(xj+1)‖2

≥
(

κ
1
2 ‖c‖2

s

)−1

(εD‖c(xj+1)‖)
p+1
p

≥
(

κ
1
2 ‖c‖2

s

)−1

( 1
2εD‖c(xj )‖)

p+1
p

and thus that

‖c(xj )‖−‖c(xj+1)‖ ≥
(

κ
1
2 ‖c‖2

s

)−1
2−

p+1
p ‖c(xj )‖

1
p ε

p+1
p

D ≥ 1
2

(

κ
1
2 ‖c‖2

s

)−1
δ

1
p ε

1
p

P ε

p+1
p

D ,

where we have used (29) to derive the last inequality. Because of (20), we thus
obtain from this last bound and (30) that, for all j ,

‖c(xj )‖ − ‖c(xj+1)‖ ≥ 1
2

(

κ
1
2 ‖c‖2

s

)−1

δ
1
p min

[

εP, ε
1
p

P ε

p+1
p

D

]

.

As in Theorem 1, we then deduce that the number of successful iterations required
for the ARpCC algorithm to produce a point x1 satisfying (24) is bounded above by

1
2κ

1
2 ‖c‖2

s δ
1
p ‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]

.

The desired conclusion then follows by using Lemma 1 and adding one for the final
evaluation at termination. 	
Note that an improved complexity bound for convexly constrained least-squares
problems, and hence for Phase 1, was given in [8]. In particular, the bound in
Lemma 6 improves to

⌊

κcCC-1‖c(x0)‖
1
p max

[

ε
− 1
p

P , ε
− p+1

p
D

]⌋

+ 1

whenever p is a power of 2. However, we are not aware of how to use the better
Phase 1 result to improve the complexity of Phase 2, so we omit including it here in
full.
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We now partition the Phase 2 outer iterations (before that where termination
occurs) into two subsets whose indexes are given by

K+
def= {k ≥ 0 | ‖r(xk+1, tk)‖ < δεP and (26) is applied } (31)

and

K−
def= {k ≥ 0 | ‖r(xk+1, tk)‖ ≥ δεP and (27) is applied }. (32)

This partition allows us to prove the following technical results.

Lemma 7 The sequence {tk} is monotonically decreasing. Moreover, in every
Phase 2 iteration of the ARpGC algorithm of index k ≥ 1, we have that

f (xk)− tk ≥ 0, (33)

‖r(xk+1, tk+1)‖ = εP for k ∈ K+, (34)

‖r(xk+1, tk+1)‖ = ‖r(xk+1, tk)‖ ≤ εP for k ∈ K−, (35)

‖c(xk)‖ ≤ εP and f (xk)− tk ≤ εP, (36)

tk − tk+1 ≥ (1− δ)εP for k ∈ K+. (37)

Finally, at termination of the ARpGC algorithm,

‖r(xε, tε)‖ ≥ δεP and f (xε) ≥ tε and πμ(xε, tε) ≤ εD‖r(xε, tε)‖. (38)

Proof The inequality (33) follows from (26) for k − 1 ∈ K+ and from (27) for
k−1 ∈ K−. Equation (34) is also deduced from (26), while (27) implies the equality
in (35), the inequality in that statement resulting from the monotonically decreasing
nature of ‖r(x, tk)‖ during inner iterations in Step 2.(a) of the ARpGC algorithm.
The inequalities (36) then follow from (33), (34) and (35). We now prove (37),
which only occurs when ‖r(xk+1, tk)‖ ≤ δεP, that is when

(f (xk+1)− tk)2 + ‖c(xk+1)‖2 ≤ δ2ε2
P . (39)

From (26), we then have that

tk − tk+1 = −(f (xk+1)− tk)+
√

‖r(xk, tk)‖2 − ‖c(xk+1)‖2. (40)

Now taking into account that the global minimum of the problem

min
(f,c)∈R2

ψ(f, c)
def= −f +

√

ε2
P − c2 subject to f 2 + c2 ≤ ω2
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18 C. Cartis et al.

for ω ∈ [0, εP] is attained at (f∗, c∗) = (ω, 0) and it is given by ψ(f∗, c∗) = εP −ω
(see [7, Lemma 5.2]), we obtain from (39) and (40) (setting ω = δεP) that

tk − tk+1 ≥ εP − ω = (1− δ)εP for k ∈ K+

for k ∈ K+, which is (37). Note that, if k ∈ K−, then we must have that tk >
f (xk+1) and thus (27) ensures that tk+1 < tk . This observation and (37) then allow
us to conclude that the sequence {tk} is monotonically decreasing.

In order to prove (38), we need to consider, in turn, each of the three possible
cases where termination occurs in Step 2.(b). In the first case (i), ‖r(xk+1, tk)‖ is
small (in the sense that the first inequality in (25) holds) and (26) is then used,
implying that (34) holds and that f (xk+1) > tk+1. If termination occurs because
π(xk+1, tk+1) ≤ εD‖r(xk+1, tk+1)‖, then (38) clearly holds at (xk+1, tk+1). In
the second case (ii), ‖r(xk+1, tk)‖ is large (the first inequality in (25) fails), but
f (xk+1) < tk , and tk+1 is then defined by (27), ensuring that f (xk+1) > tk+1
and, because of (35), that ‖r(xk+1, tk+1)‖ is also large. As before (38) holds at
(xk+1, tk+1) if termination occurs because π(xk+1, tk+1) ≤ εD‖r(xk+1, tk+1)‖. The
third case (iii) is when ‖r(xk+1, tk)‖ is sufficiently large and f (xk+1) ≥ tk . But (25)
then guarantees that π(xk+1, tk) ≤ εD‖r(xk+1, tk)‖, and the inequalities (38) are
again satisfied at (xk+1, tk). 	
Using the results of this lemma allows us to bound the number of outer iterations
in K+.

Lemma 8 Suppose that AS.7 holds. Then

|K+| ≤ f (x1)− flow + 1

1− δ ε−1
P .

Proof We first note that (34) and (35) and AS.7 ensure that xk ∈ Cβ for all k ≥
0. The result then immediately follows from AS.7 again and the observation that,
from (37), tk decreases monotonically with a decrease of at least (1 − δ)εP for k ∈
K+. 	
We now state a very useful consequence of Lemmas 5 and 7.

Lemma 9 Suppose that AS.1 and AS3–AS.6 hold. Then there exists a constant
σμ,max > σmin such that all regularization parameters arising in the ARpCC
algorithm within Step 2.(a) of the ARpGC algorithm are bounded above by σμ,max.

Proof AS.1, AS.4–AS.6 and Lemma 5 guarantee the existence of a Lipchitz
constant independent of t such that the “segment-wise” Lipschitz condition (16)
holds for each segment [xj,�, xj,� + sj,�]. The result is then derived by introducing
Lμ,p in (15) to obtain σμ,max. 	
The main consequence of this result is that we may apply the ARpCC algorithm to
the minimization of μ(x, tk) in Step 2.(a) of the ARpGC algorithm and use all the
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properties of the former (as derived in the previous section) using problem constants
valid for every possible tk .

Consider now xk for k ∈ K+ and denote by xk+�(k) the next iterate such that
k+ �(k) ∈ K+ or the algorithm terminates at k+ �(k). Two cases are then possible:
either a single pass in Step 2.(a) of the ARpGC algorithm is sufficient to obtain
xk+�(k) (�(k) = 1) or two or more passes are necessary, with iterations k+1, . . . , k+
�(k) − 1 belonging to K−. Assume that the iterations of the ARpCC algorithm
at Step 2.(a) of the outer iteration j are numbered (j, 0), (j, 1), . . . , (j, ej ) and
note that the mechanism of the ARpGC algorithm ensures that iteration (j, ej ) is
successful for all j . Now define, for k ∈ K+, the index set of all inner iterations
necessary to deduce xk+�(k) from xk , that is

Ik
def= {(k, 0), . . . , (k, ek), . . . , (j, 0), . . . , (j, ej ),

. . . , (k + �(k)− 1, 0), . . . (k + �(k)− 1, ek+�(k)−1)},
(41)

where k < j < k+�(k)−1. Observe that, by definitions (31) and (41), the index set
of all inner iterations before termination is given by ∪k∈K+Ik , and therefore that
the number of evaluations of problem’s functions required to terminate in Phase 2
is bounded above by

|
⋃

k∈K+

Ik| + 1 ≤
(
f (x1)− flow + 1

1− δ ε−1
P × max

k∈K+
|Ik|

)

+ 1, (42)

where we added 1 to take the final evaluation into account and where we used
Lemma 8 to deduce the inequality. We now invoke the complexity properties of
the ARpCC algorithm applied to problem (23) to obtain an upper bound on the
cardinality of each Ik .

Lemma 10 Suppose that AS.1 and AS.3–AS.6 hold. Then, for each k ∈ K+ before
termination,

|Ik| ≤ (1− δ)κμCC max

[

1, ε
p−1
p

P ε
− p+1

p
D

]

,

where κμCC is independent of εP and εD and captures the problem-dependent constants
associated with problem (23) for all values of tk generated by the algorithm.

Proof Observe first that, because of Lemma 9, we may apply the ARpCC algorithm
for the minimization of μ(x, tj ) for each j such that k ≤ j < k + �(k). Observe
that (35) and the mechanism of this algorithm guarantee the decreasing nature of the
sequence {‖r(xj , tj )‖}k+�(k)−1

j=k and hence of the sequence {‖r(xj,s, tj )‖}(j,s)∈Ik .
This reduction starts from the initial value ‖r(xk,0, tk)‖ = εP and is carried out for
all iterations with index in Ik at worst until it is smaller than δεP (see the first part
of (25)). We may then invoke Lemmas 9 and 4 to deduce that, if (j, s) ∈ Ik is the
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index of a successful inner iteration and as long as the third part of (25) does not
hold,

(‖r(xj,s , tj )‖ − ‖r(xj,s+1, tj )‖)‖r(xj,s , tj )‖ ≥ 1
2‖r(xj,s , tj )‖2 − 1

2‖r(xj,s+1, tj )‖2

≥ [
κ
μ,s
CC

]−1
(εD‖r(xj,s+1, tj )‖)

p+1
p ,

(43)

for 0 ≤ s < ej and for some constant κμ,sCC > 0 independent of εP, εD, s and j , while

1
2‖r(xj,ej , tj )‖ − 1

2‖r(xj+1,0, tj+1)‖ = 0.

As above, suppose first that ‖r(xj,s+1, tj )‖ ≤ 1
2‖r(xj,s , tj )‖. Then

‖r(xj,s , tj )‖ − ‖r(xj,s+1, tj )‖ ≥ 1
2‖r(xj,s , tj )‖ ≥ 1

2δεP (44)

because of the first part of (25). If ‖r(xj,s+1, tj )‖ > 1
2‖r(xj,s, tj )‖ instead, then (43)

implies that

‖r(xj,s , tj )‖−‖r(xj,s+1, tj )‖ ≥
[
κ
μ,s
CC

]−1
2−

p+1
p ‖r(xj,s , tj )‖

1
p ε

p+1
p

D ≥ [
κ
μ,s
CC

]−1
2−

p+1
p δ

1
p ε

1
p

P ε

p+1
p

D .

Combining this bound with (44) gives that

‖r(xj,s, tj )‖ − ‖r(xj,s+1, tj )‖ ≥
[
κμ,sCC

]−1 2−
p+1
p δ

1
p min

[

εP, ε
1
p

P ε

p+1
p

D

]

.

As a consequence, the number of successful iterations of the ARpCC algorithm
needed to compute xk+�(k) from xk cannot exceed

κμ,sCC 2
p+1
p δ

− 1
p

⎡

⎢
⎢
⎣

εP − δεP

min

[

εP, ε
1
p

P ε

p+1
p

D

]

⎤

⎥
⎥
⎦ = (1− δ) κμ,sCC 2

p+1
p δ

− 1
p max

[

1, ε
p−1
p

P ε
− p+1

p
D

]

.

We now use Lemma 9 again and invoke Lemma 1 to account for possible
unsuccessful inner iterations, yielding that the total number of successful and
unsuccessful iterations of the ARpCC algorithm necessary to deduce xk+�(k) from
xk is bounded above by

κu(1−δ) 2
p+1
p δ

− 1
p κμ,sCC max

[

1, ε
p−1
p

P ε
− p+1

p
D

]
def= (1−δ)κμCC max

[

1, ε
p−1
p

P ε
− p+1

p
D

]

. 	

We now state a useful property of the set F .
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Lemma 11 For arbitrary x ∈ F , v ∈ Rn and τ ∈ R with τ ≥ 1,

‖PF [x + τv] − x‖ ≤ τ ‖PF [x + v] − x‖.

Proof The result follows immediately from [1, Lem.2.3.1] which states that
‖PF [x + τv] − x‖/τ is a monotonically non-increasing function of τ > 0 for
any x in a given convex set F . 	

We finally combine our results in a final theorem stating our evaluation complex-
ity bound for the ARpGC algorithm.

Theorem 2 Suppose that AS.1 and AS.3–AS.7 hold. Then, for some constants κcCC

and κμCC independent of εP and εD, the ARpGC algorithm applied to problem (21)
needs at most

⌊(

κcCC‖c(x0)‖ + κμCC[f (x1)− flow + 1]
)

max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]

+ 1

⌋

(45)

evaluations of f , c and their derivatives up to order p to compute a point xε such
that either

‖c(xε)‖ > δεP and π 1
2 ‖c‖2(xε) ≤ εD‖c(xε)‖ (46)

or

‖c(xε)‖ ≤ εP and πΛ(xε, yε) ≤ εD‖(yε, 1)‖, (47)

where Λ(x, y)
def= f (x) + yT c(x) is the Lagrangian with respect to the equality

constraints and yε is a vector of Lagrange multipliers associated with the equality
constraints.

Proof If the ARpGC algorithm terminates in Phase 1, we immediately obtain
that (46) holds, and Lemma 6 then ensures that the number of evaluations of c and
its derivatives cannot exceed

⌊

κcCC‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]⌋

+ 1. (48)

The conclusions of the theorem therefore hold in this case.
Let us now assume that termination does not occur in Phase 1. Then the

ARpGC algorithm must terminate after a number of evaluations of f and c and
their derivatives which is bounded above by the upper bound on the number of
evaluations in Phase 1 given by (48) plus the bound on the number of evaluations of
μ given by (42) and Lemma 10. Using the fact that �a
+�b
 ≤ �a+b
 for a, b ≥ 0
and �a + i
 = �a
 + i for a ≥ 0 and i ∈ N, this yields the combined upper bound
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⌊

κcCC‖c(x0)‖ max

[

ε−1
P , ε

− 1
p

P ε
− p+1

p
D

]

+
[

(1− δ)κμCCε

p−1
p

P max

[

1, ε
p−1
p

P ε
− p+1

p
D

]]

×
[
f (x1)− flow + 1

1− δ ε−1
P

]⌋

+ 2,

and (45) follows.
Remember now that (38) holds at termination of Phase 2, and therefore that

εP ≥ ‖r(xε, tε)‖ ≥ δεP. (49)

Moreover, we also obtain from (38) that

|PF [xε − J (xε)T c(xε)− (f (xε)− tk)∇xf (xε)] − xε‖ = πμ(xε, tε) ≤ εD‖r(xε, tε)‖.
(50)

Assume first that f (xε) = tε . Then, using the definition of r(x, t), we deduce that

π 1
2 ‖c‖2(xε) = ‖PF [xε − J (xε)T c(xε)] − xε‖ ≤ εD‖c(xε)‖,

and (46) is again satisfied because (49) gives that ‖c(xε)‖ = ‖r(xε, tε)‖ ≥ δεP.
Assume now that f (xε) > tε (the case where f (xε) < tε is excluded by (38))

and note that

0 < f (xε)− tε ≤ εP ≤ 1

because of the second bound in (36) and the decreasing nature of ‖r(x, tk)‖ during
inner iterations. Defining now

yε
def= c(xε)

f (xε)− tε ,

and successively using Lemma 11 with x = xε , v = −(J (xε)T c(xε) + (f (xε) −
tε)∇xf (xε)) and τ = 1/(f (xε) − tε) ≥ 1, the third part of (25), (49) and the
definition of r(x, t), we deduce that

πΛ(xε, yε) = ‖PF [xε − J (xε)T c(xε)

f (xε)− tε −∇xf (xε)] − xε‖

≤ 1

f (xε)− tε ‖PF [xε − J (xε)
T c(xε)− (f (xε)− tε)∇xf (xε)] − xε‖

= 1

f (xε)− tε πμ(xε, tε)

≤ εD

‖r(xε, tε)‖
f (xε)− tε

= εD‖(yε, 1)‖.
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This implies (47) since ‖c(xε)‖ ≤ ‖r(xε, tε)‖ ≤ ε. 	
Note that the bound (45) is O(ε−

p+2
p ) whenever εP = εD = ε.

It is important to note that the complexity bound given by Theorem 2 depends
on f (x1), the value of the objective function at the end of Phase 1. Giving an
upper bound on this quantity is in general impossible, but can be done in some
case. A trivial bound can of course be obtained if f (x) is bounded above in Cβ .
This has the advantage of providing a complexity result which is self-contained (in
that it only involves problem-dependent quantities), but it is quite restrictive as it
excludes, for instance, problems only involving equality constraints (F = Rn)
and coercive objective functions. A bound is also readily obtained if the set F
is itself bounded (for instance, when the variables are subject to finite lower and
upper bounds) or if one assumes that the iterates generated by Phase 1 remain
bounded. This may, for example, be the case if the set {x ∈ Rn | c(x) = 0} is
bounded. An εP-dependent bound can finally be obtained if one is ready to assume
that all derivatives of order 1 to p of c(x) (and thus of ν(x)) are bounded by a

constant in the level set C0
def= {x ∈ F | ‖c(x)‖ ≤ ‖c(x0)‖} because it can

then be shown that ‖sk‖ is uniformly bounded above and hence that ‖x1 − x0‖
is itself bounded above by a constant times the (εP-dependent) number of iterations
in Phase 1 given by Lemma 6. Using the boundedness of the gradient of ν(x) on
the path of iterates then ensures the (extremely pessimistic) upper bound f (x1) =
f (x0) + O

(

max

[

ε−1
P , ε

− 1
p

P ε
− p+1
p+1−q

D

])

. Substituting this bound in (45) in effect

squares the complexity of obtaining (xε, tε).

4 Discussion

We have first shown in Section 2 that, if derivatives of the objective function up
to order p can be evaluated and if the p-th one is Lipschitz continuous, then the
ARpCC algorithm applied to the convexly constrained problem (1) needs at most

O(ε
p+1
p ) evaluations of f and its derivatives to compute an ε-approximate first-

order critical point. This worst-case bound corresponds to that obtained in [4] when
p = 2, but with significantly weaker assumptions. Indeed, the present proposal
no longer needs any assumption on the number of descent steps in the subproblem
solution, the iterates are no longer assumed to remain in a bounded set and the
Lipschitz continuity of the gradient is no longer necessary. That these stronger
results are obtained as the result of a considerably simpler analysis is an added
bonus. While we have not developed here the case (covered for p = 2 in [4]),
where the p-th derivative is only known approximately (in the sense that ∇px f (xk)
is replaced in the model’s expression by some tensor Bk such that the norm of
(∇px f (xk)−Bk) applied p− 1 times to sk must beO(‖sk‖p)), the generalization of
the present proposal to cover this situation is easy.

nick.gould@stfc.ac.uk



24 C. Cartis et al.

The proposed worst-case evaluation bound also generalizes that of [3] for
unconstrained optimization to the case of set-constrained problems, under very
weak assumptions on the feasible set. As was already the case for p ≤ 2, it is
remarkable that the complexity bound for the considered class of problems (which
includes the standard bound constrained case) is, for all p ≥ 1, identical in order to
that of unconstrained problems.

The present framework for handling convex constraints is however not free of
limitations, resulting from the choice to transfer difficulties associated with the
original problem to the subproblem solution, thereby sparing precious evaluations
of f and its derivatives. The first is that we need to compute projections onto
the feasible set to obtain values of πf and πmk . While this is straightforward
and computationally inexpensive for simple convex sets such boxes, spheres,
cylinders or the order-simplex, the process might be more intensive for the general
case. The second limitation is that, even if the projections can be computed, the
approximate solution of the subproblem may also be very expensive in terms of
internal calculations (we do not consider here suitable algorithms for this purpose).
Observe nevertheless that, crucially, neither the computation of the projections nor
the subproblem solution involves evaluating the objective function or its derivatives:
despite their potential computational drawbacks, they have therefore no impact on
the evaluation complexity of the original problem. However, as the cost of evaluating
any constraint function/derivative possibly necessary for computing projections is
neglected by the present approach, it must therefore be seen as a suitable framework
to handle “cheap inequality constraint” such as simple bounds.

We have also shown in Section 3 that the evaluation complexity of finding
an approximate first-order scaled critical point for the general smooth nonlinear
optimization problem involving both equality and inequality constraints is at most
O(ε

−1/p
P ε

−(p+1)/p
D ) evaluations of the objective function, constraints and their

derivatives up to order p. We refer here to an “approximate scaled critical point”
in that such a point is required to satisfy (46) or (47), where the accuracy is scaled
by the size of the constraint violation or that of the Lagrange multipliers. Because
this bound now only depends on the assumptions necessary to prove the evaluation
complexity bound for the ARpCC algorithm in Section 2, it therefore strengthens
and generalizes that of [7] since the latter directly hinges on [4]. Moreover, it also
corrects an unfortunate error1 in [7] that allows a vector of Lagrange multipliers
whose sign is arbitrary (in line with a purely first-order setting where minimization
and maximization are not distinguished). The present analysis now yields the
multiplier with the sign associated with minimization.

Interestingly, an O(εPε
−(p+1)/p
D min[εD, εP]−(p+1)/p) evaluation complexity

bound was also proved by Birgin et al. in [2] for unscaled, standard KKT conditions
and in the least expensive of three cases depending on the degree of degeneracy

1The second equality in the first equation of Lemma 3.4 in [7] only holds if one is ready to flip the
gradient’s sign if necessary.
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identifiable by the algorithm.2 Even if the bounds for the scaled and unscaled
cases coincide in order when εP ≤ εD, comparing the two results is however not
straightforward. On one hand the scaled conditions take into account the possibly
different scaling of the objective function and constraints. On the other hand the
same scaled conditions may result in earlier termination with (47) if the Lagrange
multipliers are very large, as (47) is then consistent with the weaker requirement of
finding a John’s point. But the framework discussed in the present paper also differs
from that of [2] in two additional significant ways. The first is that the present
one provides a potentially stronger version of the termination of the algorithm at
infeasible points (in Phase 1): indeed the second part of (46) can be interpreted
as requiring that the size of the feasible gradient of ‖c(x)‖ is below εD, while
[2] considers the gradient of ‖c(x)‖2 instead. The second is that, if termination
occurs in Phase 2 for an xε such that π 1

2 ‖c‖2(xε) = ‖J (xε)T c(xε)‖ is itself of order

εPεD (thereby covering the case, where f (xε) = tk discussed in Theorem 2), then
Birgin et al. show that the Łojasiewicz inequality [10] must fail for c in the limit
for εP and εD tending to zero (see [2] for details). This observation is interesting
because smooth functions satisfy the Łojasiewicz inequality under relatively weak
conditions, implying that termination in these circumstances is unlikely. The same
information is also obtained in [2], albeit at the price of worsening the evaluation
complexity bound mentioned above by an order of magnitude in εD. We also note
that the approach of [2] requires the minimization, at each iteration, of a residual
whose second derivatives are discontinuous, while all functions used in the present
paper are p times continuously differentiable. A final difference between the two
approaches is obviously our introduction of πΛ and π 1

2 ‖c‖2 in the expression of the
criticality condition in Theorem 2 for taking the inequality constraints into account.

We conclude our discussion by a remark about criticality measures. At variance
with [4] and [7], we have preferred, in this paper, to use the first-order criticality
measure πf (x) rather than χf (x), the decrease in the linearized function in the
intersection of the feasible set and the ball of radius one. While a similar result can
indeed be obtained for this latter measure (in this case for general closed non-empty
convex sets even in Section 3), our choice is motivated by the observation made by
Gratton, Mouffe and Toint [9] that πf is backward stable as a criticality measure
(in the sense that an approximate solution of problem (1) yielding a small value of
πf can be interpreted as the exact solution of a neighbouring problem), while this
is not the case for χf even when F is described by simple bounds on the problem’s
variables.
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